

Supplemental Figure 1: Histone removal from Arabidopsis nuclei. A

Coomassie-stained SDS/polyacrylamide gel of proteins remaining after extracting nuclei with the LIS- containing buffer HIB2. LIS concentration (mM) is indicated above the each lane. From left to right: Lane 1, purified wheat histones; Lane 2, total nuclear proteins; Lanes 3 to 7, nuclear proteins after treatment with increasing LIS concentrations; Lane 8; purified wheat histones; Lane 9, molecular mass markers. Locations of wheat and Arabidopsis histones are indicated on the left, and masses (kDa) of the markers are shown on the right.

Supplemental Figure 2: In vitro binding assay steps. The binding of a particular DNA fragment was tested by incubation of end-labeled exogenous fragment with nuclear matrices. Details are described within the Methods.

B Supernatant

Supplemental Figure 3: Matrix binding competition between S/MARs and

E.coli DNA. The total assay volume was 50 μ L and contained ~6 x 10⁴ NT-1 nuclear matrices. The non-S/MAR DNA served as an internal negative control. The total DNA stained with ethidium bromide (EtBr) is shown below each binding assay for both the pellet and the supernatant fractions. (A) Pellet lanes show the labeled S/ MAR or non-S/MAR DNA bound to the nuclear matrix in the presence of 0, 1, 2.5, 5, 10, or 20 μ g of sonicated *E. coli* competitor DNA. Binding of S/MAR and non-S/MAR DNA are similar in the absence of competitor DNA, but only the S/MAR binds to the matrix in the presence of high concentrations of competitor DNA. (B) Supernatant lanes show the labeled S/MAR or non-S/MAR or non-S/MAR or non-S/MAR DNA that did not bind to the nuclear matrix in the presence of 0, 1, 2.5, 5, 10, or 20 μ g of *E. coli* competitor DNA. The S/MAR DNA does not appear in the supernatant until high concentrations of competitor DNA are added.

MARs and DNA Replication

1.

Supplemental Figure 4: Modest S/MARs enrichment in DNA replication initiation zones and early replicating regions. Determination of the intersection of S/MARs with putative DNA replication initiation and termination zones and segments of DNA replicating at three times in S phase, early-mid, mid only or late only. For comparison, 100,000 random samples of the same size distribution of the S/MARs were generated. S/ MARs are modestly enriched in initiation zones and segments of early-mid replication, and depleted in termination zones, and segments of mid-only and late-only replication. P value significance codes *** p <= 0.001, * p <= 0.05 based on permutation tests.

Supplemental Figure 5: Selection of K for K-means clustering of S/MAR

data. K-means clustering was used on the gene, exon and TE content to cluster our S/MARs into putative functional groups for further analysis. To determine a reasonable number of clusters, k = 2 to k = 25 was scanned. K = 5 was selected because the reduction in the sum of squares of the residuals began to plateau at this point, and the resulting clusters at k = 5 seemed biologically relevant, i.e. unannotated, TE-associated, flanking genes, exonic, and intronic.

Supplemental Figure 6: Relationship between TE-SF AT content and enrichment of TE-SF in S/MARs. (A) The overlap of the various annotated TE-SFs with S/MARs was determined. Shown are the total numbers of each TE-SF for chr4, the number of TE-SF in S/MARs, and the number of S/ MARs that overlap with each TE-SF. (B) The sequence coverage of each of the 18 annotated TE-SFs for chr4 and for the S/MAR was determined. As a measure of enrichment in S/MARs, the ratio of coverage in S/MARs to coverage in chr4 was calculated. The mean AT content for each TE-SF was also determined. A simple linear model was used to determine the correlation between AT content and S/MAR enrichment for each TE-SF (R2 = 0.56, p value = 0.0003). Statistical significance for any observed enrichment was estimated by permutation, and enriched TE-SFs are indicated in red (p ≤ 0.01), with the single depleted TE-SF indicated in blue (p ≤ 0.01).

Supplemental Data. Pascuzzi et al. Plant Cell (2014). 10.1105/tpc.113.121194 Supplemental Table 1. Distribution and density of genes, TEs and S/MARs in chr4 regions.

Region	Low Coord	High Coord	Length	AT content	Gene Count	Gene Density	TE Count	TE Density	S/MAR Count	S/MAR Density	S/MAR distance
				(%)		(count/Mb)		(count/Mb)		(count/Mb)	(kb)
Distal Short	1	1592652	1592652	63.85	452	284	404	254	141	89	11.2
Proximal Short	2310328	2811478	501151	65.55	124	247	260	519	42	84	11.9
Proximal Long	5266604	9200060	3933457	65.35	1020	259	1559	396	325	83	12
Distal Long	9200061	18585056	9384996	63.66	2748	293	1013	108	850	91	11
Combined	NA	NA	15412256	64.17	4344	282	3236	210	1358	88	11.4

Supplemen	Supplemental Table 2. Comparison of mapped and pS/MARs.												
		mapp	oed S/MAR										
		0	1										
ne/MAD	0	-	498										
p5/IVIAR	1	2032	860	29.7									
			63.3										
				S/MAR Clus	ter								
			Not Identified	Α	В	С	D	Е					
predicted	NO	498	0	114	15	117	181	71					
	YES	860	2032	310	261	168	50	71					
	%	63.3		73.1	94.6	58.9	21.6	50.0					

Supple	emental	Table 3	. Summ						
Cluster	Gene	Exon	TE	Count	WithinSS	WithinSS/Count	Unannotated	Intron	AT_percent
А	3.24	2.93	7.38	424	105326.46	248.41	89.15	0.31	69.99
В	5.75	4.77	80.54	276	160962.87	583.20	14.87	0.98	72.91
С	47.67	36.83	7.12	285	158016.00	554.44	45.82	10.84	65.88
D	89.94	82.21	4.21	231	129215.36	559.37	9.44	7.73	58.69
E	93.78	28.84	14.21	142	162702.89	1145.79	5.11	64.94	67.12

Supplemental Data. Pascuzzi et al. Plant Cell (2014). 10.1105/tpc.113.121194

Supplemental Table 4. Data for TE superfamily enrichment analysis.												
TE_SF	TE_SF_Count	TE_SF_BP	TE_SF_Perc	SMAR_TE_Count	SMAR_Count	SMAR_TE_BP	SMAR_TE_SF_Perc	Ratio	Pvalue	TE_AT_Perc		
DNA	121	43528	0.2824	31	29	8047	0.6771	2.398	0.00576	74.97243154		
DNA/En-Spm	46	22365	0.1451	7	7	1055	0.08877	0.6118	1	62.48602727		
DNA/Harbinger	39	22751	0.1476	15	15	7002	0.5892	3.992	0.00108	67.83438091		
DNA/HAT	131	48968	0.3177	20	20	6738	0.5669	1.785	0.48996	66.8109786		
DNA/Mariner	22	4964	0.0322	9	9	1914	0.161	5.001	0.00036	80.60032232		
DNA/MuDR	607	363159	2.356	201	158	62417	5.252	2.229	0	67.53047563		
DNA/Pogo	58	22872	0.1484	10	10	2585	0.2175	1.466	1	79.52955579		
DNA/Tc1	15	3379	0.02192	5	5	1121	0.09432	4.303	0.05904	81.23705238		
LINE?	13	3167	0.02054	2	2	133	0.01119	0.5447	1	65.51941901		
LINE/L1	140	82568	0.5356	13	12	2011	0.1692	0.3159	0.25128	59.02407712		
LTR/Copia	185	209256	1.357	17	17	2120	0.1784	0.1314	0	61.51364835		
LTR/Gypsy	130	111791	0.7252	10	8	4949	0.4164	0.5742	1	57.01174513		
RathE1_cons	27	3541	0.02297	6	6	631	0.05309	2.311	1	63.31544761		
RathE2_cons	15	2287	0.01484	4	4	428	0.03601	2.427	1	63.7516397		
RathE3_cons	17	2452	0.01591	3	3	199	0.01674	1.053	1	64.96737357		
RC/Helitron	1653	873336	5.665	546	357	194615	16.38	2.89	0	76.46035027		
SINE	14	4631	0.03004	3	3	404	0.03399	1.132	1	61.56337724		
Unassigned	4	6879	0.04462	0	0	0	0	0	1	59.36909435		

Suppleme	ntal Table 5.	Binomial te	sts of gene	activity.					
		TSS-assoc	iated Genes	;					
	Cluster	on	total	pvalue	est	confint_low confint_h		niq null	
	A	112	239	0.01334174	0.4686192	0.4040002	0.5340262	0.5498975	
	В	58	145	0.00031245	0.4	0.3196149	0.484558	0.5498975	
	С	167	243	1.4119E-05	0.6872428	0.624864	0.7449846	0.5498975	
	D	83	137	0.1984159	0.6058394	0.5187991	0.6882005	0.5498975	
	E	57	99	0.615439	0.5757576	0.4723362	0.6745238	0.5498975	
		1							
		TTS-assoc	iated genes	-					
	Cluster	on	total	pvalue	est	confint_lov	confint_hig	null	
	A	69	124	0.9281978	0.5564516	0.4645328	0.6456112	0.5498975	
	В	32	66	0.3227705	0.4848485	0.3599108	0.6111897	0.5498975	
	С	35	72	0.2882447	0.4861111	0.3665003	0.6069	0.5498975	
	D	47	74	0.1609528	0.6351351	0.5150697	0.7440246	0.5498975	
	E	9	21	0.2805597	0.4285714	0.2181969	0.6597937	0.5498975	
		TFs and No	on-TFs						
	Cluster	on	total	pvalue	est	confint_lov	confint_hig	null	
TFs	A	12	35	0.60593449	0.3428571	0.1913241	0.52211	0.3956044	
	В	2	8	0.49158875	0.25	0.031854	0.6508558	0.3956044	
	С	12	19	0.05730479	0.6315789	0.3835779	0.8371141	0.3956044	
	D	3	11	0.54366332	0.2727273	0.0602177	0.6097426	0.3956044	
	E	4	8	0.72037381	0.5	0.1570128	0.8429872	0.3956044	
Non-TFs	A	9	13	0.75261848	0.6923077	0.3857383	0.9090796	0.739726	
	В	6	9	0.70443005	0.6666667	0.2992951	0.9251454	0.739726	
	С	13	18	0.79372956	0.7222222	0.465198	0.9030508	0.739726	
	D	8	12	0.52341314	0.6666667	0.3488755	0.9007539	0.739726	
	E	5	6	1	0.8333333	0.3587654	0.9957893	0.739726	

Supplementa	I Table	6. NDR	conten	t of S/N	IARs.					
				NDR (NDR Positive (%)	NDR Coverage (%)				
S/MAR Cluster	0	1	2	3	4	5	6	7		
Α	8	144	186	62	12	9	2	1	98.1	65.1
В	4	81	104	56	20	9	0	2	98.6	67.5
С	11	101	115	40	12	5	0	1	96.1	53.7
D	75	106	36	12	2	0	0	0	67.5	30.2
E	7	56	51	26	2	0	0	0	95.1	53.9

Supplemental Table 7. Comparison of S/MAR-positive and S/MAR-negative NDRs.										
	S/MAR+	S/MAR-	t	d.f.	p value					
Ν	2407	12677	-	-	-					
Length	278	283	-1.23	3015.2	0.2181					
AT content	70.92	68.41	18.31	3225.4	< 2.2E-16					
AT content (enrichment)	10.53	6.61	18.31	3225.4	< 2.2E-16					
Poly(dA:dT) content	18.0	13.18	27.8	2929.6	< 2.2E-16					
Poly(dA:dT) content (enrichment)	85.8	36.4	27.8	2929.6	< 2.2E-16					

Welch Two-Sample T-test used for comparisons

Poly(dA:dT) Content determined using tracts of 4 bp or longer and allowing no mismatches.

Enrichment for AT and Poly(dA:dT) content was calculated to make direct comparisons easier.

This enrichment was calculated relative to the means for chr4, 64.1% for AT content and 9.66% for poly(dA:dT) content.