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Bacteria are increasingly recognized to be highly social organisms,
at times working together to perform impressive feats of collective
foraging, defense, or dispersal, mediated by the production of
secreted exoproducts such as digestive enzymes, antibiotics, or
surfactants (1, 2). Even more impressively, bacteria commonly
display complex regulatory control over these secreted factors so
that, when conditions are favorable for the population to exert
effective control over the local environment, individuals within
the population up-regulate a suite of genes, turning on their
collective phenotypes (3).
A major strand in the study of bacterial social life has argued

that bacteria are able to sense and respond to changes in local
densities via a process called “quorum sensing.” Quorum-sensing
bacteria produce small diffusible signal molecules, and when the
density of these molecules is sufficiently high, the bacteria shift
their gene expression. Quorum sensing is now seen to be pro-
foundly important to bacterial behavior, regulating many bac-
terial genes in various organisms, including those involved in
bacterial swarming as well as biofilm and toxin production
(Table S2). This great importance has brought quorum sens-
ing intense attention since its discovery. Detailed biochemical
pathways for the production, uptake, and regulation of quorum-
sensing molecules are available; the signal–receptor interactions
are well understood; and, already, biomedical therapies are be-
ing developed to disrupt quorum-sensing mechanisms in patho-
gens within human hosts.
Despite the intense mechanistic scrutiny quorum sensing has

received in recent years, there is disagreement about the func-
tional significance of the behavior in bacteria (4–7). The classical
interpretation has been that quorum sensing is a proxy for bac-
terial cell density: the higher the signal concentration, the higher
the bacterial density. However, factors other than bacterial
density are likely to modify the concentration of bacterially de-
rived molecules (diffusion, degredation, flow, etc.), and, there-
fore, the resultant changes in gene expression may be more
closely tied to changes in physical rather than social variation.
Some have argued that, rather than quorum sensing acting to
survey cellular density, the information most important for the
microbe is abiotic environmental properties (4). When most
molecules secreted are lost by mass transfer in the environment,
secreting costly molecules makes little sense; so, in effect, these
signal molecules may play a role as cheap probes to survey
whether more costly secretions are worth producing or would
instead be immediately lost. The controversy between classical
quorum-sensing interpretations and diffusion-sensing ones re-
mains because, in their starkest forms, both cannot be correct;
high autoinducer quantities signify either high bacterial density
or low diffusion rate (Fig. 1 and Fig. S1).
It has been argued that this distinction between social and

nonsocial influences on signal concentration is unimportant (5);
the observation of a moderate or high level of signal molecule
should favor the production of more costly secreted factors, re-
gardless of whether the focal cell is able to transform a confined
environment alone (a low-density, low-mass transfer environ-
ment) or whether it can rely on complementation from mul-
tiple neighbors (a high-density, high-mass transfer environment).
However, in some cases, this paradigm clearly breaks down.
Luminescence in Vibrio fischeri, for instance, is not susceptible to
mass-transfer properties of the environment, and so the extent of
confinement or diffusion is largely immaterial to the investment
decision, whereas density is decisive. Mass transfer is probably

also unimportant for pathogens that infect using a contact-based
type-3 secretory system because, here, accumulation of the
chemical in the environment is unnecessary (8). The existence of
down-regulated phenotypes also demonstrates that sometimes
phenotypes are down-regulated even as signal density is in-
creased (9). Perhaps most generally, the molecular properties of
signal molecules and public-goods molecules are very distinct
from one another; not only do signal molecules have different
molecular weights and diffusion constants, but, as we will soon
show, when secretions interact with the environment to produce
a public good, the correspondence between signal density and
public-good density can quickly break down.
Bacteria responding to signal densities are operating under

conditions of imperfect information and have thus elaborated
various heuristics or “rules of thumb” to arrive at robust esti-
mates of the most relevant characteristics of their shared exter-
nal environment. We illustrate that the use of multiple signals,
a practice very common in many well-studied bacteria (Table
S2), can give significantly more information than using one
molecule alone. In particular, if these signal molecules have
differing chemical properties, this can allow bacteria to distin-
guish between a range of distinct environmental scenarios, in-
cluding a separation of the effects of bacterial density and
environmental properties like diffusion and advection (flow).

The Difficulty: Mass Transfer or Density
The most basic ingredient of quorum-sensing logic is that the
density of a signal molecule is reliably informative of the density
of bacteria, at least up to the threshold density at which the
regulatory shift occurs. Above this point, autoinduction of the
signal molecule is well-understood to decouple signal and bac-
terial density. Fig. 1A illustrates the basic argument schemati-
cally. With one signal molecule and a predictable mass-transfer
regime (i.e., a known value of m), postautoinduction signal con-
centration is informative of bacterial density N (i.e., classic quo-
rum sensing). However, it is also true that, for the same signal
molecule and a predictable density (i.e., a known value of N),
signal concentration is also informative of the mass-transfer regime
(diffusion sensing). For bacteria experiencing uncertainty over
both N and m, estimates of either parameter are confounded by
uncertainty over the other, so that high-density, high-mass transfer
environments can be indistinguishable from low-density, low-
mass transfer environments.

Two Signals
With twomolecules of different durabilities, it is possible for a cell
to separate the confounding effects of mass transfer and pop-
ulation density and simultaneously improve resolution of both
dimensions (Fig. 1B). In the simplest case, suppose a cell pro-
duces molecules of differing durabilities, meaning they naturally
break apart at different rates. If, in the cell’s environment, the
durable molecule is much more common than the fragile one
(compared with their relative rates of production), the relative
abundance of the durable molecule indicates there has been
little mass-transfer removal of either molecule because the
fragile molecules have been around long enough in the local
environment to naturally degrade. Conversely, if the two mole-
cules exist in concentrations proportional to their rates of pro-
duction, then mass transfer must be sufficiently high to mask the
differences in their rates of chemical decay. In a sense, the decay
of the fragile molecule works as a clock that informs how long
typical molecules stay near the cell before diffusing or being
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washed away. This concept is illustrated in Fig. S1; in this figure,
the four environmental scenarios each display a unique signature
in a two-signal language but suffer from ambiguity when only one
signal is used.

Analytical Models
We will consider very simple models for the extracellular dy-
namics of signal and public-goods concentrations (Fig. S2). In our
models, secreted molecules are lost by two factors: decay of the
molecules themselves at rates specific to each secreted molecule,
and mass transfer, which is when the environment washes away
the molecules and is the same for all secretions. In our model of
signal density, the local density of signal (S) is increased by the
production (at baseline per-capita rate p) of signal by local bac-
teria (at density N) and is decreased by mass transfer (advection
at rate m; independent of molecular design) and by physical
decay (at rate u; sensitive to molecular design). Autoinduction is
represented by aS, which is the rate of increased signal induction
dependent on present signal concentration. The dynamics of two
distinct signal molecules is given by the equations:

dS1
dt

= ð p+ a1S1ÞN − ðm+ u1ÞS1

dS2
dt

= ð p+ a2S2ÞN − ðm+ u2ÞS2:

For each, the equilibrium is given by Spk =Np=ðm− akN + ukÞ. At
sufficiently low-density and/or high-mass transfer regimes, the
equilibrium is stable (when Nak < m+ uk), and we consider the
autoinduction process to be “off.” In constrast, when Nak >m+ uk,
the equilibrium becomes unstable (leading to an unconfined in-
crease in Sk), and we consider autoinduction to be “on.”
We can describe public-goods dynamics in a similar manner.

We will consider two cases. In the most general scenario, we
assume that a secreted molecule of concentration X interacts with
the environment to form a beneficial, shared extracellular
product of concentration Y. For instance, siderophores bind to
iron and can then be imported by bacteria, and proteases break
down a protein into usable amino acids. This “two-stage” public-
goods scenario, where the secreted product catalyzes the for-
mation of an external and beneficial molecule, can be modeled
by the production of a secreted catalyst X at rate P, with decay
rate f, driving the production of the beneficial molecule Y,
formed when the catalyst molecules interact with another mol-
ecule in the environment (we assume this conversion to the
beneficial molecule occurs at rate q, proportional to the catalyst
concentration). The beneficial molecule Y is consumed at rate c
and decays at rate e.

dX
dt

=PN − ðm+ f ÞX

dY
dt

= qX − ðcN +m+ eÞY :

These equations yield the equilibria:

X p=
NP
m+ f

Y p=
PqN

ðm+ f ÞðcN +m+ eÞ:

In our second, and seemingly less-common scenario, the secreted
factor generates a benefit that is not susceptible to processes of re-

moval or decay, for example, in cases where the shared benefit is
tied to host death or changes in the host immune system. We ap-
proach these scenarios by assuming that the benefit of the se-
creted factor is tied directly to its abundance so that the
secreted factor is itself the beneficial product Y:

dY
dt

=PN − ðcN +m+ eÞY ;

yielding the equilibrium Y p =PN=ðcN +m+ eÞ.
Fig. S8 illustrates the behavior of a multisignal model as a

function of changing density N and mass transfer m for the two-
stage and one-stage public-goods scenarios. The parameters in
Fig. S8A are the same as in Figs. 1 and 4. Qualitatively, the
difference between the two- and one-stage models is that, in the
one-stage model, the threshold curve above which production is
favored, is linear and well-approximated with a single signal
molecule. On the other hand, for the two-stage case, the curve
curves upward, which can make the optimal region difficult to
approximate with one signal molecule alone and can be better
approximated using a combination of the two molecules (using
AND-gate signal integration). We show below that, when public
goods are of the two-stage type, the contour of equilibrium
public good at any threshold level has positive concavity. Be-
cause two-stage public goods seem much more abundant, we
expect an increased prevalence of AND-gates among secreted
factors, which we test in our microarray analysis. However, it is
worth noting that being able to separate the {density, mass-
transfer} plane into four quadrants can have other functional
benefits as well. For instance, some genes may be most advan-
tageous in the environments with highest mass-transfer proper-
ties, and either with or without high densities; further detailed
study of mappings between environment and gene expression are
necessary to further understand these issues.
We can demonstrate that in the two-stage model, the con-

tour of public goods equilibrium at threshold value k has positive
concavity as follows: Anytime there is a positive level of public
goods at equilibrium, we know Y p = qXp

cN +m+ e, and therefore
qXp >Y pcN. At the threshold Y p = k, we know that qXp > kcN.
This means Pq> ckðm+ f Þ. Let Z be the value of N such that
Y p = k. Then d2Z

dm2 = − 2kPqðcðe− f Þk+PqÞ
ðcðm+f Þk−PqÞ3 > 0. This means that the

threshold function has positive concavity for m≥ 0. Note that
this same argument holds also in the case where the secreted
enzyme is degraded in the reaction that produces the beneficial
product [such as dX=dt=PN − ðm+ f + qÞX].

Simulation Models
To provide an evolutionary exploration of our analytical model,
we developed an agent-based model, implemented with a genetic
algorithm (Fig. 2A). We considered a population of 1,000 strains,
which interacted in clonal groups in environments with varying
cellular density and mass-transfer regimes. We defined the en-
vironments as a 10 × 10 grid (100 environments in total), with
cellular density varying between 101:5 and 105 cells per μL, and
mass-transfer rate varying between 1:5p10−7 and 1:5p10−4 μL/s.
We defined four regulons with different target environmental
types for their expression (Fig. 2A):

i) high-density, low-mass transfer regulon (to be expressed at
above median density and below median mass transfer);

ii) high-density, high-mass transfer regulon (to be expressed at
above median density and above median mass transfer);

iii) low-density, low-mass transfer regulon (to be expressed at
below median density and below median mass transfer); and

iv) low-density, high-mass transfer regulon (to be expressed at
below median density and above median mass transfer).
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Strains received a payoff B when a regulon was turned on in an
appropriate environment and paid a payoff cost C for gene ex-
pression whenever a regulon was turned on (regardless of the
environment). We used the parameter values B = 1.5 and C = 0.5
so that correct expression yields a net payoff of 1.
Signal dynamics operated according to the equation dSi/dt =

ðp+ aiSiÞN − ðm+ uiÞSi, where Si is the concentration of signal,
N is the cellular density, pi is the constitutive rate of signal pro-
duction, ai controls the strength of autoinduction, ui is the signal
decay rate, and m is the rate of signal removal by mass transfer.
Autoinduction occurs whenever aiN > ui + m because, when this
condition is satisfied, signal concentration tends toward infinity.
The parameters ai and ui evolved with mutation in our simu-
lations. Autoinduction parameters were allowed to vary between
10−10 and 10−4, and signal-decay rates were allowed to vary be-
tween 10−11 and 10. The state of each signal (1, autoinduced; 0,
not autoinduced) acted as inputs for the following logic gates to
determine gene expression:

i) An AND gate (express only when both signals autoinduced)
for the high-density, low-mass transfer regulon.

ii) An X-durable gate (express when only the durable signal is
autoinduced) for the low-density, low-mass transfer regulon.

iii) An X-fragile gate (express when only the fragile signal is
autoinduced) for the high-density, high-mass transfer regulon.

iv) A NOR gate (express only when no signals are autoinduced)
for the low-density, high-mass transfer regulon.

These logic gates were set a priori as they achieve optimal
division of the environment, and there are 65,536 possible com-
binations of logic gates for four regulons, which is too large a
phenotypic space to explore in our algorithm.
Our genetic algorithm operates as follows:

i) An initial population of 1,000 strains was constructed. Decay
rates and autoinduction parameters for both signals were set
to 10−6 and 10−7, respectively.

ii) Each strain’s gene expression patterns were assessed in the
100 possible environments, and fitness payoffs based on these
expression patterns were calculated.

iii) Strains were selected with replacement to reproduce with prob-
ability proportional to their relative payoffs (i.e., roulette-
wheel selection) to produce a new population of 1,000 strains.

iv) Strains selected to reproduce underwent mutation with prob-
ability 0.01 for all traits. Autoinduction parameters and sig-
nal-decay rates had a mutational effect drawn from a normal
distribution of mean 0 and SD equal to 1/5 of the range of
their possible values. All mutation occurred on the log10 scale
for all parameters.

v) The algorithm returned to step 2 until 3,000 generations
were reached.

In total, we performed 100 replicates of our genetic algorithm.
To give a baseline for the performance of two-signal systems, we
compared their payoffs to the maximum payoff possible using one
signal. As one signal can at best dissect the environmental space
into two equal parts, the maximum mean payoff for a one-signal
network is 0.5.

PAO-JG1 Strain Construction
We constructed a double mutant in the two N-Acyl homoserine
lacton (AHL) synthase genes, lasI and rhlI, starting with the
single mutant in only the lasI gene (PA01 ΔlasI) (10). The ap-
proach used was to interrupt the rhlI gene with a tetracycline
(Tc) resistance cassette in the following way. We first conjugated
the plasmid pRIC380ΔrhlI (11) from an Escherichia coli donor
strain S17-1 into the recipient lasI single mutant PAO1ΔlasI.
Conjugation was performed by drying a liquid spot on agar of
a 1:1 mix of concentrated donor and recipient cultures and in-

cubating at 30 °C for 6 h. Transconjugants were selected-for on
pseudomonas isolation agar (Difco) containing 200 μg·ml−1 Tc
to obtain single crossover events. To select for double crossover
events, a random sample of the resulting transconjugants was
grown in 5% salt-free sucrose selection broth medium for 16 h
and plated onto 5% salt-free sucrose agar. The colonies growing
on sucrose were grid-plated onto carbenicillin 400 μg·ml−1 and
gentamicin 100 μg·ml−1. Colonies growing on gentamicin but not
on carbenicillin were taken to contain the insertion but not the
remainder of the plasmid, thus being double crossover mutants.
The rhlI mutation was confirmed by PCR of the entire region to
detect a larger fragment where a successful insertion event had
happened in candidate mutants using the parent PAO1ΔlasI. A
single colony of the new mutant was grown in LB containing
200 μg·ml−1 Tc, and a sample of the culture stored at −80 °C in
25% glycerol.

Signal Half-Life Experiments
Synthetic AHLs (chemically identical to their natural counter-
parts, obtained from the S.P.D. laboratory) were diluted in 1 mL
of medium (M9, LB, KB, and BHI) from MeOH stocks (2 mM
and 200 μM) to a final concentration of 0.1 μM and 0.01 μM (C4
HSL and 3-oxo-C12 HSL), respectively, at varying intervals.
After incubation at 37 °C, the AHL solutions were removed from
the incubator and mixed 1:1 with a washed log-phase culture
of the appropriate biosensor strain at a density of OD600 0.1
(pSB536 and pSB1075 for C4-HSL and 3-oxo-C12 HSL, re-
spectively) in a microplate. OD600 and luminescence (relative
light units, RLU) was measured after 30 min incubation at 37 °C.
Luminescence per cell was calculated as RLU/OD600 and com-
pared with a calibration curve (Fig. S5) of known 2× serially
diluted concentrations to determine AHL concentrations. Decay
rates were determined by fitting log-linear models to AHL
concentrations over time (Fig. S4). The media constituents
were as follows. BHI: (calf brains (infusion from 200 g) 12.5g/L,
beef heart (infusion from 250 g) 5g/L, peptone 10 g/L, sodium
chloride 5 g/L, D(+)-glucose 2g/L, disodium hydrogen phos-
phate 2.5 g/L). KB: (proteose peptone 20 g/L, dipotassium
hydrogen phosphate 1.5 g/L, magnesium sulphate heptahydrate
1.5 g/L, glycerol 10 mL). LB: (tryptone 10 g/L, yeast extract 5 g/L,
sodium chloride 10 g/L). M9: (Na2HPO4 6.8 g/L, KH2PO4 3 g/L,
NaCl 0.5 g/L, NH4Cl 0.53 g/L, CaCl2 0.0011 g/L, MgSO4.7H2O
2.64 g/L).

Microarray Experiment
A double QS synthase mutant of Pseudomonas aeruginosa PAO1
lasI/rhlI (see PAO-JG1 Strain Construction) was grown at 37 °C in
25 mL of LB broth and 250-mL flasks with shaking at 200 rpm
(approximately 2.2 × g). Where required, LB broth was supple-
mented with 15 μM QS signal(s) in the following four treat-
ments: (i) no addition; (ii) N-(3-oxododecanoyl)-L-homoserine
lactone (3-oxo-C12-HSL); (iii) N-butyryl-homoserine lactone (C4-
HSL); and (iv) both 3-oxo-C12-HSL and C4-HSL. Two replicate
cultures were used for each treatment. RNA was extracted from
each culture after 8 h incubation (late exponential/early stationary
phase of growth). Cells were treated with RNAprotect Bacteria
Reagent (Qiagen), and total RNA extraction was performed with
the RNeasy Midi Kit (Qiagen) as per the manufacturer’s in-
structions. For the expression profiling experiments, the microarrays
were designed to contain multiple oligonucleotide probes for all of
the PAO1 genes, including the small RNA genes, and were pur-
chased from Oxford Gene Technology. For each array, 10 mg of
RNA was reverse-transcribed and directly labeled with Cy5-dCTP,
and 2 mg of genomic DNA was directly labeled with Cy3-dCTP.
Samples were hybridized onto the arrays for 16 h. Scanning of the
arrays was performed using the Axon 4000B GenePix Scanner, and
the data-extraction software used was GenePix Pro-6, both from
Molecular Devices.
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For each strain, microarray experiments were performed in
duplicate, and data capture was performed using GeneSpring
GX10 (Agilent Technologies). Further data analysis was per-
formed using the linear models for microarray data (“limma”)
package on the open source statistical platform R (v2.14.2).
Following Quantile normalization, differential expression was
identified using Bayesian-adjusted t statistics, with false discovery
rate correction for multiple testing. In all comparisons, the cri-
terion for differential expression was a false discovery rate-
corrected P value of less than 0.05.

Bioinformatic Analysis
The genes in which differential expression was observed were then
clustered by expression pattern across the four treatments using
k-means clustering of mean standardized expression values (Fig.
S7). The most likely number of clusters was determined using the
Bayesian information criterion (BIC), which is calculated as

BIC= n p ln
�
σ2e=n

�
+ k p lnðnÞ;

where n is the number of genes clustered, k is the number of
parameters fitted (4× the number of clusters), and σ2e is the total
within-cluster error deviance. The number of clusters with the
lowest BIC value is taken as the most likely model (Fig. S6). The
relative likelihood of any model i can then be taken as Ri = exp
[(BICmin – BICi)/2], where BICmin is the BIC of the best model

(most likely number of clusters). The likelihood that any model
is the best from the model set can then be calculated as Li =
Ri/ΣjRj. From these likelihoods, we calculated the 95% credible
interval of the number of expression clusters present in the dataset.
We used a linear model to test our prediction that the se-

cretome is under synergistic control. The secretome (Fig. S7)
was identified using predictions from PSORTb v3 (12) for the
PAO1 genome, available from Pseudomonas.com. We calcu-
lated the expected values for gene expression for each gene
under an additive gene-expression model by summing the
expression values for both signals when added in isolation.
Both these expected values and the observed expression val-
ues when both signals were added were square root-transformed
before analysis to homogenize variances. We fit the model with
the following structure: observed values for the addition of
both signals as a response variable; separate intercepts for both
nonsecretome and secretome genes; and expected expression
values under additive effects of the signals as an offset [model
code: lm(sqrt(observed) ∼ secretome – 1, offset = sqrt(ex-
pected)]. With this model formulation, an intercept signifi-
cantly greater than zero indicates synergistic effects of the
signals on gene expression, whereas an intercept of less than
zero indicates interference between the signals (Table S1).
The inclusion of whether or not a gene is in the secretome as
a factor in the model was supported by an F test (F2,262 = 14.18,
P = 1.42 × 10−6).
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Fig. S1. Multiple signals allow simultaneous inferences on bacterial density and mass transfer regimes. The panels show schematically environments with high
(A and B) and low (C and D) densities, along with high (B and D) and low (A and C) rates of mass transfer. The associated bar charts illustrate the “bacterial eye
view” of resulting signal densities. With only one signal, there is not enough information to simultaneously resolve variations in density vs. variations in
diffusion. However, with two appropriately parameterized signal molecules, each of the four basic environments (high/low density and high/low mass transfer)
gives a distinct signal distribution signature.
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Fig. S2. A schematic representation of the dynamics used in our mathematical model. Each individual (at density N) produces signal molecules and public-
goods molecules. These secretions are degraded at rates dependent on the characteristics of the secretions, and the molecules are lost by mass transport at
a rate (m) common to all secretions.
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Fig. S3. Shown are the evolved parameters for signal decay and autoinduction of both signals from the final 1,000 generations of our simulations. Plotted
values are means ± 1 SD. The higher decay signal (red) also shows stronger autoinduction than the low decay signal (blue). This covariance maximizes the
division of the space of potential environmental states by ensuring that the unstable equilibria of both signals intersect.
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Fig. S4. Decay of 3-oxo-C12-HSL (red) and C4-HSL (blue) in various laboratory growth media. Although the absolute rates of decay differ significantly over the
environments tested (Upper), the ratio of decay rates is similar across environments (Lower). Decay rates of both molecules was measured in three rich lab-
oratory liquid-growth media (BHI, KB, and LB) and a defined minimal medium (M9). Decay rates were determined by first incubating AHL molecules in liquid
media for a range of time intervals and then measuring the luminescence induced by the resulting samples when mixed with a bioluminescent reporter strain.
Reporter strains were calibrated with known concentrations of each molecule to obtain concentration estimates of AHLs in unknown samples.

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c12 bhi

Luminescence

[A
H

L]

rsq =  0.9889

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c12 kb

Luminescence

rsq =  0.9936

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c12 lb

Luminescence

rsq =  0.9945

200 400 600 800 1000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

c12 m9

Luminescence

rsq =  0.8969

30000 40000 50000 60000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c4 bhi

Luminescence

[A
H

L]

rsq =  0.9877

60000 80000 100000 130000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c4 kb

Luminescence

rsq =  0.9965

60000 100000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c4 lb

Luminescence

rsq =  0.9966

4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c4 m9

Luminescence

rsq =  0.9787

1000

Fig. S5. AHL concentration calibration curves. The relationship between known AHL concentrations (given as a proportion of the starting concentration in
decay experiments: 0.1 μM for C4-HSL and 0.01 μM for C4-HSL) and Luminescence for both the long-chain (Upper) and short-chain (Lower) AHL reporters.
Calibrations were performed in all media tested to account for physiological differences in the reporter strains across environments (Left to Right).
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Fig. S6. The Bayesian information criterion (BIC) (A) and probability (B) of being the best model for differing cluster numbers for the expression-profile data.
The data give most support for 14 clusters of expression profiles.
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Fig. S7. P. aeruginosa responds combinatorially to multiple signal inputs (extended version of Fig. 3). The lists indicate the genes falling into each regulon and
the grey dots indicate genes whose products are secreted. Gene encoding secretions were identified using PSORTb (12). (A) The set of QS-regulated genes in
P. aeruginosa is partitioned into 14 distinct regulons, differentiated by distinct expression patterns across the four signal-addition treatments. The line plots
represent the mean-centered and scaled-expression profiles for each cluster of genes. Coarse-graining the expression data to discrete on/off states allows
assignment of discrete logic-gate families, highlighting the prevalence and diversity of combinatorial processing rules. (B) Combining the distinct combinatorial
responses to dual signal inputs with knowledge of relative signal stability (Table 1), we use our model to infer under which population-density and mass-
transfer regimes each gene cluster would be expressed. The region plots (B) represent the inferred density/mass transfer target. Gene expression was measured
using microarray. Cultures of PAO-JG1were initiated with either (i) no signals, (ii) 15 μM C4-HSL, (iii) 15 μM 3-oxo-C12-HSL, or (iv) both 15 μM C4-HSL and 15 μM
3-oxo-C12-HSL in shaken cultures of LB broth for 8 h before RNA extraction. Regulon partitioning was achieved via k-means clustering, with selection of cluster
number by BIC minimization.
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Fig. S8. Signal and public-goods thresholds as a function of density and mass transfer. The four sectors defined by the signal molecules are replotted from Fig. 1,
superimposed in gray by the region where public good (Y) exceeds a threshold value (where benefits exceed costs). (A) A two-stage PG, which is better ap-
proximated by two signal molecules integrated with an AND gate. In B, the public goods is a one-stage PG and therefore can be well-approximated by a signal
molecule with similar properties. Parameters for the two signal molecules are: u1 = 1:3p10−5 =s, a1 = 1:15p10−9=cell=s, u2 =1:45p10−4=s,a2 = 3:625p10−9=cell=s.
The parameters for the PG model in A are: P = 9:6p10−9μg=ml=s,q= 10−1=s,e= 4p10−3=s,f = 1:2p10−3 =s,c= 7p10−7μl=cell=s; the parameters for B are:
c= 10−10μl=cell=s, P = 1:25p10−9μg=cell=s, e= 1:56p10−5=s. In both cases, the threshold quantity for Y is 1 μg/mL. Here, densities (N) range from 0 to 100,000 cells
per mL and mass transfer (m) from 0 to 0.00015=s. The parameters in A are the same as in Figs. 1 and 4.

Table S1. Results of linear model testing synergistic control of
secretion

Predictor Estimate (β) SE t value P value

Nonsecretome genes −0.297 0.061 −4.863 1.99 x 10−6

Secretome genes 0.522 0.241 2.17 0.0309
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Table S2. Many quorum-sensing bacteria use multiple signals

Organism
Major signal
molecules

Signal response
genes

Signal synthase
genes

QS-regulated
phenotypes

Burkholderia cenocepacia C6-HSL, C8-HSL CepR, CciR CepI, CciI Exoenzymes, biofilm
formation, swarming motility,
siderophore, virulence

Burkholderia
pseudomallei

C8-HSL, C10-HSL,
3-hydroxy-C8-HSL,
3-hydroxy-C10-HSL,
3-hydroxy-C14-HSL

PmlIR1, BpmR2,
BpmR3

PmlI1, PmlI2,
PmlI3

Virulence, exoprotease

Burkholderia mallei C8-HSL, C10-HSL BmaR1, BmaR3,
BmaR4, BmaR5

BmaI1, BmaI3 Virulence

Pseudomonas aeruginosa C4-HSL; C6-HSL,
3-oxo-C12-HSL

LasR, RhlR, QscR, VqsR LasI, RhlI Exoenzymes, exotoxins, protein
secretion, biofilms, swarming
motility, secondary metabolites,
4-quinolone signaling, virulence

Rhizobium leguminosarum
bv viciae

C14:1-HSL, C6-HSL, C7-HSL,
C8-HSL, 3-oxo-C8-HSL,
3-hydroxy-C8-HSL

CinR, RhiR, RaiR,
TraR, BisR, TriR

CinI, RhiI, RaiI Root nodulation/symbiosis,
plasmid transfer, growth
inhibition; stationary phase
adaptation

Yersinia pseudotuberculosis C6-HSL, 3-oxo-C6-HSL, C8-HSL YpsR, YtbR YpsI, YtbI Motility, aggregation
Vibrio harveyi 3-hydroxy-C4-HSL, AI-2, CAI-1 LuxN, LuxPQ, CqsS LuxM, LuxS, CqsS Bioluminescence, biofilm

production, type III secretion,
protease production

Vibrio fischeri 3-oxo-C6-HSL, 3-oxo-C8-HSL LuxR, AinR LuxI, AinS Bioluminescence,
colonization

Bacillus subtilis ComX, CSF comX, antagonize the
inhibitory activity of the
Rap proteins on ComA

ComP/ComA Sporulation,
competence

Shown are several examples in well-studied bacteria. For each species shown, the major signal molecules, receptors, synthase genes, and types of genes that
are QS-regulated in the system are listed (1–3).
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