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Methods
Overview. Our computational approaches involve two stages: esti-
mation of knowledge-based statistical potentials and Monte Carlo/
Simulated Annealing (MC/SA) sampling of 3D graphs.

In the first stage, we develop knowledge-based statistical po-
tentials based on 3D graph representations of non-redundant solved
RNAs and statistical analysis of their 3D geometrical features, from
parts to whole, including sizes of helices/hairpins/bulges/junctions,
bending and torsion angles between two helices of internal loops, and
radii of gyration of the entire RNAs. Three steps are involved in this
process of potential development:

(i) Non-redundant sets of solved RNAs are translated to 3D graphs
and linked to their 2D structures. See below for detailed translation
rules of 3D graphs and RNA dataset.

(ii) To determine overall helical arrangements, we measure de-
tails of local and global geometries and correlate these 3D geometries
to 2D structural information. The local geometrical descriptors for
RNA include sizes for each building block (helices, hairpins, internal
loops, and junctions) and local inter-helical angles (bending and tor-
sion angles). The global geometrical measure of the radius of gyration
describes the overall compactness in 3D. We quantify these measures
using 3D graphs and relate them to the available 2D information. See
below for a coordinate system for 3D graphs, mathematical formulas
for measures, and the resulting statistics.

(iii) Based on resulting statistics of 3D geometries linked to 2D in-
formation, knowledge-based statistical potentials of bending, torsion
angles and radii of gyration are calculated and extrapolated by poly-
nomial expansion to handle unrepresented regions of experimental
data. See below for the detailed refinement procedures and resulting
statistical potentials.

In the second stage, to build native-like structures from 2D struc-
tures guided by preferred conformations, we employ hierarchical
MC/SA sampling approaches where the objective junction is the com-
bination of knowledge-based statistical potentials computed from the
first stage. The MC/SA consists of three steps: (i) set-up of initial
graphs given a 2D structure by assignment of weighted edges and ver-
tices to the different families of 2D structures (helices, hairpins, inter-
nal loops, junctions) and using size measures and junction prediction;
(ii) MC/SA sampling of RNA 3D graphs based on two types of moves
(restricted and random pivot moves) guided by the knowledge-based
potentials; (iii) analysis of resulting sampled graphs using RMSD and
by clustering analysis. Detailed procedures are described below.

RNA dataset for statistical analysis of RNA geometries. We collect
781 non-redundant high-resolution PDB structures for 3D geome-
try analysis. We generate 2D structures corresponding to these PDB
structures using results from three 2D extraction tools – RNAView [1],
MC-Annotate [2], and FR3D [3]. From these RNAs, we obtain 1181
hairpins (with 0-20 nucleotides [nt] in loop regions), 2118 internal
loops (0-20 nt in each side of bulges), and 244 junctions (3- and 4-
way junctions).

RNA 3D graph representation. The original RAG representation de-
fines planar tree graphs where unpaired regions are vertices and helices
are edges [4,5]. To represent RNA helical arrangements given a 2D
structure before MC/SA, we refine our RAG tree graph by defining
additional vertices at helix ends and edges connecting loop vertices

to proximal helix-end vertices. We also add a vertex for an inter-
nal loop with at least one nt: in RAG, internal loops with at least
two nucleotides are represented as vertices. Regarding helices, like
RAG, we represent each helix having at least two consecutive canon-
ical Watson-Crick or wobble GU base pairs by two vertices which are
connected by one edge: if there is only one base pair, it is considered
as two single strands with one nt for each side. Two vertices represent
two terminal base pairs denoting a helix (Figure S1A).

We further extend these refined RAG planar tree graph to non-
planar graph in 3D space for MC moves by defining a coordinate
system for vertices representing helix ends or center of hairpin, inter-
nal loop, or junction (Figures 2A and S1B). To make comparable 3D
models with solved structures, the Cartesian coordinates for each ver-
tex are defined by the origin of each terminal base pair. We utilize an
algorithm to calculate the origin of a base pair proposed by Schlick [6],
where the origin is defined as a translation (4 Å) of the projection from
the midpoint of C8 atom for purine and C6 atom for pyrimidine to
the line connecting C1′ atoms for both purine and pyrimidine bases.
The edge connecting these two vertices forms the global axis of an
A-form RNA helix (Figure 2A). The Cartesian centroid of an internal
loop is defined as an average of coordinates of two adjacent vertices
representing two proximal helix ends. Extending this definition, the
centroid of an N-way junction is an average of coordinates of N ad-
jacent vertices for N helix ends (see Figure 2A for illustration for
3-way and 4-way junctions). Since hairpins has only one helix con-
nected to them, we define the centroid of a hairpin end as an average
of C1′ atoms of all unpaired bases of a hairpin loop. We connect each
vertex representing the centroid to adjacent vertices representing the
proximal helix ends. For example, an N-way junction has N edges
connecting the junction centroid to N vertices representing helix ends.
Similarly, the number of edges connected to the centroid vertices of
hairpin, dangling ends, and internal loop are 1, 1, and 2, respectively.
Figure S1B shows three examples of solved structures and their 3D
graph representations.

Size measures of RNA structural elements. To evaluate RNA 3D
geometrical features correlated with 2D information, we quantify the
sizes of helices, hairpins, internal loops, and junctions, using solved
RNAs, and estimate them using the number of bases or base pairs of
each 2D element.

We formulate the helix length (Shelix) as the distance connecting
the two base pair origins at the helix ends. According to Ref. [6], the
axial rise parameter – the vertical distance along the double helix axis
between adjacent base pairs – is determined as 2.87 Å for an A-form
helix. Thus, we set Shelix(Å) to 2.87*(n-1), where n is the number
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of base pairs. Correspondingly, the length of edge is scaled by the
number of base pairs.

We determine the hairpin size (Shairpin) as the distance between
the hairpin centroid and the origin of the last base pair of the hairpin.
From our analysis of 1181 hairpins with 1 to 20 nt of the non-redundant
dataset of solved RNA structures, we identify a strong linear relation
between the sequence length of hairpin, Nhairpin (nt), and hairpin size:
Shairpin (Å) = 0.66*Nhairpin+4.23, where the coefficent of determination
R2 = 1 −

P
(actual value − estimated value)2/

P
(actual value −

mean (actual value))2 = 0.7. As R2 is close to 1, the linear regression
fits the actual data better [7]. Thus, the total length of an edge for
hairpins is scaled by the number of bases in the hairpin.

Similarly, the size of an internal loop (Sinternal) is defined as the
distance between the centroid of the internal loop and the origin
of one of the two base pairs adjacent to the centroid (distance be-
tween v1 and C in Figure 2A). For the 2188 internal loops analyzed,
we find a linear relationship for the internal loop size: Sinternal(Å) =
2.44+1.16*L+0.21*R (R2 = 0.8), where L and R are the nucleotide
numbers in the two portions of the loop where L≤R.

For junctions, we calculate the distances between coaxial helices
(s0) in all three-way and four-way junctions (Figure S2). We find a lin-
ear relationship for the coaxial helical distance s0 (Å) = 2.75*Ncoaxial+
3.91 (R2 = 0.84), where Ncoaxial is the number of nucleotides of single
strands between coaxial helices (e.g., residues colored green in Fig.
S2). To locate non-coaxial helices, we calculate additional distances
between perpendicular (noted as s1), diagonal (s2), and parallel (s3)
helices, which are averaged as 19.95, 21.17, and 20.48 Å, respectively.
We also calculate distance between non-connected perpendicular he-
lices in the cL 4-way junction family, which is averaged as 19.95 Å(see
s4 in Fig. S2). With the application of RNAJAG [8], this statistical
analysis allows us to set up an initial planar tree graph (a revised RAG
graph which we embed in 3D) of junctions.

Bending and torsion angles of inter-helices. To determine the ori-
entations between two helices of internal loops, we formulate bending
and torsion angles of inter-helices (Fig. 2B). The bending angle is de-
fined as the angle between two consecutive helices (vectors ν1 and
ν3 in Fig. 2B) connected by two single stranded regions, L and R,
where L≤R, of an internal loop:

Bending angle θ = cos−1(|ν1 · ν3|/|ν1||ν3|). [1]
The torsion angle is defined by the dihedral angle between two

consecutive helices (vectors ν1 and ν3 in Fig. 2B) connected by two
single strand regions, L and R, where L≤R, of an internal loop along
ν2 which is the bulge loop connecting two base pair origins of two
helix ends proximal to a bulge (vector ν2 in Fig. 2B):

Torsion angle τ = sign(n1 · ν2)(cos−1(|n1 · n3|/|n1||n3|), [2]
where sign(x) is 1 if x is positive and −1 if x is negative, and n1
and n3 are the normal vectors of planes spanned by ν1ν2 and ν2ν3,
respectively. The torsion angles determine the angular orientations
of the bend angles, and thus, the two variables of bending and tor-
sion angles describe local arrangements of two helices adjacent to an
internal loop in 3D space.

We calculate the bending and torsion angles of 2188 internal loops
obtained from the 781 non-redundant RNA set that we collect. To link
these angles to 2D information, all internal loops are classified by L
and R, where L≤R. Our analysis reveals a strong correlation between
these bend and torsion angles and L/R. We observe a positive corre-
lation of the bend angle with the loop size while the correlation of
torsion angles with the loop size is negative. Figure S3 shows typi-
cal distributions (L/R = 0/1, 0/2, 0/3+, and 1/1 are taken as examples
for illustrative purpose) of bending and torsion angles for symmetric
groups and asymmetric groups. As shown in the case of L/R = 1/1,
the bending angles for symmetric internal loops show narrow distribu-
tions, with a strong preference for small bending angles (∼ 30◦) and

large torsion angles (180◦ ∼ 240◦[= −120◦]). For asymmetric cases
(L/R = 0/1, 0/2, and 0/3+), we observe a high degree of flexibility in
strongly asymmetric internal loops. For L/R = 0/1, the bending and
torsion angles are centered around 30◦ and 160◦, respectively, while
those angles for L/R = 0/2 are 45◦ and 150◦, respectively. When
longer single strands exist on one side (e.g., L/R = 0/3+), the bending
angles tend to increase while the torsion angles tend to decrease. As
shown in the examples in Figure S3, two helices connected to one in-
ternal loop have similar helical shape with A-form RNA with bending
angle to 0◦ and torsion angle close to 180◦.

Since there are not many internal loops with L>6, all loops with
at least six nt on either side are grouped together, resulting in the 27
following groups by L/R with L≤R as: 0/1, 0/2, 0/3, 0/4, 0/5, 0/6+,
1/1, 1/2, 1/3, 1/4, 1/5, 1/6+, 2/2, 2/3, 2/4, 2/5, 2/6+, 3/3, 3/4, 3/5,
3/6+, 4/4, 4/5, 4/6+, 5/5, 5/6+, and 6+/6+, where 6+ means greater
than or equal to six. See Figure S4 for full histogram of the bending
and torsion angles for each group of internal loops. Incidentally, the
corresponding knowledge-based statistical potentials for bending and
torsion preferences for internal loops are classified into 27 groups (see
Figures S4 and S5).

Radii of gyration of 3D graphs. To capture the overall compactness
of RNA in addition to local bending and torsion geometries, we for-
mulate radius of gyration (Rg) measure. We define Rg of a graph as
the root mean square distance of vertices representing all loop centers
and helix ends (Fig. 2B):

Rg =

PV
i=1 |Vi − V̄ |

V
, [3]

where Vi is the coordinates of vertex from i = 1 to V , and V̄ is the
average of all vertices of 3D graphs. We analyze the radii of gyration
(Rg) of 781 solved structures in our RNA dataset along the sequence
length (L) and the vertex number (V ). The sequence length (L) and
vertex number (V ) range from 14 to 2633 nt and from 4 to 416 ver-
tices, respectively. Among the 781 RNAs, 774 have less than 400 nt
and 80 vertices and Rg < 40 Å. The other 7 represent 16S rRNAs
and 23S rRNAs with around 1500 nt and 3000 nt, respectively, and
Rg near 65 Å. Using correlation analysis, we find that Rg follows
a logarithmic relationship with sequence length (L) and the vertex
number (V ):

Rg(L, V ) = a ∗ ln(L) + b ∗ ln(V ) + c, [4]

where a, b, and c are fitted parameters. For our dataset, a= 8.58,
b = 2.30, and c = −19.50. This formula shows that Rg increases
logarithmically with the sequence length, but for a given sequence
length, decreases logarithmically with the vertex number. Since the
vertex number increases with the degree of branching of a graph, Rg

decreases with increasing branches. Our corresponding scoring func-
tion uses the relationship above to reproduce the overall compactness
of the RNA.

Knowledge-based potentials for 3D graphs. Our combined statisti-
cal potential is

∆G = ∆Ginternal + ∆GRg , [5]

∆Ginternal =

all internal loopsX
i=1

(∆G(θi) + ∆G(τi)), [6]

∆GRg = |R− R̄|, [7]

where θi, τi, R and R̄ are the bending and torsion angles of all i
internal loops in a given RNA 2D structure, the radius of gyration of
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an RNA conformation, and the preferable radius of gyration given the
length of RNA, respectively.

Specifically, for ∆Ginternal, we categorize internal loop families
by the lengths of single strands L/R, L≤R, where L and R are the nu-
cleotide length of single strands of internal loops. Note that we have
the 27 groups by L/R with L≤R as: 0/1, 0/2, 0/3, 0/4, 0/5, 0/6+, 1/1,
1/2, 1/3, 1/4, 1/5, 1/6+, 2/2, 2/3, 2/4, 2/5, 2/6+, 3/3, 3/4, 3/5, 3/6+, 4/4,
4/5, 4/6+, 5/5, 5/6+, and 6+/6+, where 6+ means greater than or equal
to six (see Figures S4 and S5). For each L/R category, we develop the
bending and torsion angle statistical potentials in three steps. First,
we partition the angles (θ) every 45◦ (for bending angles which are
0◦ ≤ θ < 180◦, partition number |P | = 4 with partitions Pi, i=1,2,3,
and 4 while for torsion angles which are −180◦ ≤ τ < 180◦, parti-
tion number |P | = 8 with partitions Pi, i=1,2,. . . ,8). The probability
for a given angle ( θ or τ in Pi) is then:

Pr(θ) = Ni/N, [8]

where Ni is the number of internal loops that have an angle in Pi

among all N internal loops. The probability that such an angle would
form randomly is: Prandom = 1/|P | = 1/4 for bending angles or 1/8
for torsion angles. We apply Boltzmann statistics to the internal loop
angles, so that the free energy for the angle becomes:

∆G(θ) = −kbT ln(Pr(θ)/Prandom), [9]

where kb is the Boltzmann factor (8.31J/K) and T is the temperature
(300K). Smoothing functions are needed since data have gaps missing
values due to limited experimental data (see Fig. S5).

Set-up of 2D structure to initial graph. To form an initial 3D graph,
we use a 2D structure in a BPSEQ format as an input. The information
in the BPSEQ file is parsed to capture all the aspects of paired and
unpaired bases of a given 2D structure (Fig. 1). Then, we determine
topology and Cartesian coordinates of an initial graph in two steps.
First, we label all loops and involved helices following the order of 5′

to 3′ end, hairpins, internal loops, and junctions, and determine a tree
graph topology from the 2D structure by translating helices and loops
defined as edges and vertices based on our graph definition. Second,
we determine the geometry of an initial graphs by fixing the Cartesian
coordinates of each vertex after adding the scaled edge lengths by size
measures in one direction. If junctions are present, we determine the
coordinates of junction vertices (one for the junction loop center and
2N for N-way helices) using the RNAJAG program [8].

MC/SA sampling: pivot moves, steric clash removal, and score
minimization. We use two types of pivot moves of a graph based on
range of angle degrees: (1) reciprocally decreasingly restricted angle
ranges along MC steps (∼ 1/Step) from 360◦ to 10◦ (restricted moves)
and (2) 360◦ (random moves). With random degrees within given
range of angles, all vertices linked to a randomly selected internal
loop by a randomly-selected helix which is rotated along randomly-
selected one of three axis (x, y, z axis). For each move, we identify a
steric clash to eliminate conformations before scoring. A steric clash

in an RNA graph is defined when a minimum distance between any
two edges of an RNA 3D graph is less than 1 Å. We score each graph
conformation without steric clashes by our statistical potentials (Eq
[5]). For each step j, graph moves are selected at random within
given range of angles to transform the old conformation gj−1 into a
new conformation gj . A score E(gj) is assigned to each conforma-
tion gj and used to determine acceptance or rejection. Specifically,
if the score E(gj) for a new conformation gj is lower than that of
the old conformation (i.e., E(gj−1) ≥ E(gj)), the new graph con-
formation gj is accepted. If the score E(gj) is higher, the simulated
annealing sampling proceeds: the move is accepted with probability
P (j) = 2Ej/Tj , where Ej = E(gj) − E(gj−1) and the decreasing
system temperature Tj = c/log2(1 + j/s) where s is the total MC
step and c = 1/4log2(10) (for restricted moves) or c = 1/log2(10)
(for random moves). The rejected probability is 1 − P (j). We run
our program implemented in C++ on the local Mac computer (2x2.26
GHz Quad-Core Intel Xeon processor with 8GB memory) and the
computational time is less than 20 minutes for 104 MC steps.

Comparison between graphs by RMSD. To evaluate our predicted
graph structure, we compare our sampled graphs to the reference
graph translated from the solved structures or predicted by other com-
putational tools. We superimpose the two graphs by translating both
graphs into the origin and rotate one graph using singular value de-
composition [9]. To compare the difference of global helical arrange-
ments, we use graph-based root mean square deviation (RMSD). The
graph RMSD measures the average distance of vertices between two
superimposed 3D graphs:

RMSD =

PV
i=1 |Vi −Wi|

V
, [10]

where Vi and Wi (1≤ i ≤ V ) are vertices in our graph and the ref-
erence graph after they are aligned, respectively, and V is the total
number of vertices.

Clustering of sampled RNA graphs. To assign representative graphs
of clusters with similar geometries, we further cluster sampled con-
formations by MC scores and graph RMSD from reference graph
(e.g., graph translated from solved structure or lowest-scored graph).
We use the k-means algorithm, which partitions the sampled graphs
into k groups so that the sum of squares between the assigned cluster
centers and each point is minimized [10]. To validate the clustering,
we calculate the silhouette width SC, for each sampled graph gj ,
SCgj = (bgj − agj )/max(agj , bgj ), where agj is the average dis-
tance from gj to other members in its group and bgj is the minimum
distance from gj to other cluster centers. The standard measure of
clustering, SC, can vary −1 (poor clustering) to +1 (good cluster-
ing). Typically, SC >0.4 indicates good clustering. We cluster into
5 groups since SC for all 30 RNAs clustering is greater than 0.5 and
give best prediction results (see Table S2). The average SC indicates
how well separated the clusters are as well as how well cohered each
cluster within the group. We select the graph from these 5 clusters as
canddiate for procedure P3 by the lowest-scored representative.
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Table S1. List of 30 RNAs from the PDB database. The function of each structure is listed along with protein-binding property, sequence
length, maximum degree of branches up to 4-way junction (4WJ), and numbers of internal loops (IL), junctions (J), and pseudoknots (PK).

PDB Function Protein-Binding Seq. Length (nt) Branching Degree # of IL # of J PK
1RLG box C/D RNA Yes 25 IL 1 0 0
1OOA NF-κB aptamer Yes 29 IL 1 0 0
2IPY iron-responsive element Yes 30 IL 1 0 0
2OZB snRNA Yes 33 IL 2 0 0
1MJI 5S rRNA Yes 34 IL 1 0 0

2HW8 mRNA Yes 36 IL 1 0 0
1I6U rRNA fragment Yes 37 IL 2 0 0
1F1T MG aptamer No 38 IL 2 0 0
1ZHO mRNA Yes 38 IL 1 0 0
1S03 mRNA Yes 47 IL 3 0 0
1XJR viral RNA No 47 IL 4 0 0
1U63 mRNA Yes 49 IL 2 0 0
2PXB SRP Yes 49 IL 2 0 0
2OIU RNA ligase No 51 3WJ 1 1 0
1MZP rRNA fragment Yes 55 IL 2 0 0
2HGH 5S rRNA No 55 3WJ 1 1 0
1DK1 rRNA fragment Yes 57 3WJ 2 1 0
1MMS rRNA fragment Yes 58 3WJ 1 1 0
1D4R SRP No 58 IL 3 0 0
1KXK group II intron No 70 IL 3 0 0
1SJ4 HDV ribozyme No 73 4WJ 2 0 1
1P5O HCV IRES No 77 IL 5 0 1
3D2G A. Thaliana TPP riboswitch No 77 3WJ 2 1 0
2HOJ E. Coli TPP riboswitch No 79 3WJ 2 1 0
2GDI E. Coli TPP riboswitch No 80 3WJ 3 1 0
2GIS SAM riboswitch No 94 4WJ 2 1 1
1LNG SRP Yes 97 3WJ 3 1 0
2LKR U2/U6 snRNA No 111 3WJ 4 1 0
1MFQ SRP Yes 128 3WJ 4 1 0
1GID group I intron P4-P6 No 158 3WJ 6 1 0
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Table S2. Graph results for 30 test RNAs. RMSD between reference graphs from solved structures and our sampled graphs by two
MC/SA protocols (restricted and random pivot moves) – initial, lowest RMSD (P1), lowest score (P2) and lowest cluster representa-
tive (P3, only for random moves) and the correlation coefficient between RMSD and score (r) are shown. In comparison to predic-
tions by MC-Sym, FARNA, and NAST, best RMSDs are indicated in bold. Best results for P3 and other tools are highlighted in gray.

PDB Length Initial MC/SA (restricted moves) (Å) MC/SA (random moves) (Å) Pearson’s Other Tools (Å)
ID (nt) (Å) P1 P2 P1 P2 P3 r MC-Sym FARNA NAST

1RLG 25 4.28 2.20 4.18 2.20 4.00 4.17 0.43 5.97 6.31 5.94

1OOA 29 3.72 2.46 3.93 2.44 2.59 3.57 0.93 4.12 8.46 6.23

2IPY 30 2.42 1.95 2.38 1.96 2.29 2.91 0.96 1.22 2.09 3.47

2OZB 33 7.30 3.17 6.95 2.82 6.57 5.45 0.46 5.52 4.27 5.34

1MJI 34 6.24 2.47 2.48 2.47 3.28 3.15 0.91 5.33 5.08 N/A

2HW8 36 8.32 2.07 5.60 2.11 6.35 5.40 0.16 8.37 6.19 5.85

1I6U 37 3.01 1.37 2.56 1.47 2.58 2.52 0.86 2.88 5.85 4.25

1F1T 38 2.98 1.97 2.84 1.86 2.99 2.68 0.83 3.01 6.07 4.83

1ZHO 38 8.74 2.33 6.50 2.24 7.46 7.24 0.20 7.91 5.75 8.09

1S03 47 4.56 2.05 4.72 1.93 3.74 3.23 0.79 1.73 4.67 6.57

1XJR 47 6.82 3.74 6.18 3.48 5.45 4.25 0.82 6.84 9.72 9.21

1U63 49 10.39 2.74 7.89 2.55 7.83 6.01 0.31 14.22 14.82 N/A

2PXB 49 4.71 1.92 4.26 1.30 5.07 3.85 0.89 4.84 5.52 5.04

2OIU 51 6.23 2.83 6.14 2.79 7.43 7.72 0.67 6.40 14.55 N/A

1MZP 55 8.47 3.04 7.20 2.58 6.94 6.74 0.55 14.09 11.70 6.14
2HGH 55 5.24 4.18 5.89 4.17 5.93 7.16 0.84 13.98 11.58 7.64

1DK1 57 10.32 4.09 6.23 3.97 7.16 6.43 0.56 8.14 15.59 9.47

1MMS 58 10.13 4.25 10.79 4.48 10.97 10.35 −0.29 18.00 18.31 11.13

1D4R 58 4.30 2.93 8.64 3.69 8.13 7.27 0.74 N/A 7.33 N/A

1KXK 70 6.21 2.77 5.24 2.58 4.02 5.29 0.88 4.70 7.21 7.04

1SJ4 73 13.63 5.87 12.28 5.45 12.08 11.14 0.13 N/A 7.10 N/A

1P5O 77 14.64 5.20 9.55 4.33 8.33 9.44 0.82 6.69 9.38 9.14

3D2G 77 13.39 4.08 15.74 3.62 17.24 18.34 −0.42 10.97 16.67 N/A

2HOJ 79 15.40 5.09 14.93 4.70 15.83 13.01 −0.47 16.34 17.64 N/A

2GDI 80 13.73 6.13 17.98 4.25 15.25 17.90 −0.44 13.81 19.11 12.90
2GIS 94 15.34 12.95 13.43 12.47 17.87 17.43 −0.01 19.04 12.33 N/A

1LNG 97 6.20 4.48 13.43 4.98 12.51 14.56 0.22 17.29 19.18 27.98

2LKR 111 16.78 11.32 30.89 12.57 19.31 16.90 0.17 15.47 25.42 16.35

1MFQ 128 7.78 6.68 12.08 6.77 9.28 10.55 0.63 35.28 16.48 27.76

1GID 158 46.11 14.56 29.56 10.62 28.63 28.24 0.42 N/A 27.13 61.03
(N/A: program fails.)
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Table S3. RMSD of the lowest cluster representative graph using the number of clusters from 2 to 6 of MC/SA based on random moves
with 104 MC steps without knowledge of reference structures for 30 RNAs and comparisons with other tools including MC-Sym, FARNA,
and NAST. The bold fonts indicate the best results among all prediction results for each structure. The graph RMSD of our prediction
better than any of three prediction results is indicated in bold. The last row indicates the number of RNAs predicted better than other
tools. The best RMSD among all predictions (P3 in 5 groups and three other methods) is highlighted in gray. (N/A: program fails).

PDB 2gps 3gps 4gps 5gps 6gps MC-Sym FARNA NAST

1RLG 3.65 3.63 3.75 4.17 3.31 5.97 6.31 5.94

1OOA 4.28 3.14 3.56 3.57 2.81 4.12 8.46 6.23

2IPY 2.56 2.62 2.76 2.91 2.41 1.22 2.09 3.47

2OZB 5.03 5.95 4.90 5.45 5.59 5.52 4.27 5.34

1MJI 2.52 2.69 2.62 3.15 2.76 5.33 5.08 N/A

2HW8 6.82 6.37 7.24 5.40 7.50 8.37 6.19 5.85

1I6U 3.27 2.72 2.61 2.52 1.87 2.88 5.85 4.25

1F1T 3.32 3.71 3.50 2.68 2.82 3.01 6.07 4.83

1ZHO 6.84 6.75 6.77 7.24 7.24 7.91 5.75 8.09

1S03 2.76 3.32 3.99 3.23 3.91 1.73 4.67 6.57

1XJR 5.81 4.24 4.57 4.25 4.25 6.84 9.72 9.21

1U63 7.35 5.69 6.10 6.01 6.01 14.22 14.82 N/A

2PXB 5.09 2.75 5.86 3.85 4.11 4.84 5.52 5.04

2OIU 8.31 5.97 6.09 7.72 7.00 6.40 14.55 N/A

1MZP 4.68 5.76 5.50 6.74 6.01 14.09 11.70 6.14
2HGH 4.64 7.11 6.07 7.16 6.02 13.98 11.58 7.64

1DK1 8.51 8.11 5.86 6.43 6.63 8.14 15.59 9.47

1MMS 8.78 9.20 9.49 10.35 9.73 18.00 18.31 11.13

1D4R 8.25 8.60 8.89 7.27 7.38 N/A 7.33 N/A

1KXK 8.47 7.18 6.21 7.59 6.78 4.70 7.21 7.04

1SJ4 9.89 10.01 10.55 11.14 10.64 N/A 7.10 N/A

1P5O 9.62 11.46 9.35 9.44 7.33 6.69 9.38 9.14

3D2G 14.52 13.90 15.71 18.34 16.51 10.97 16.67 N/A

2HOJ 15.25 17.34 12.66 13.01 15.06 16.34 17.64 N/A

2GDI 10.43 16.67 16.80 17.90 17.11 13.81 19.11 12.90
2GIS 16.33 16.86 17.01 17.43 16.43 19.04 12.33 N/A

1LNG 16.28 8.66 14.98 14.56 10.17 17.29 19.18 27.98

2LKR 17.07 20.83 14.34 16.90 16.88 15.47 25.42 16.35

1MFQ 12.67 15.93 14.81 10.55 10.27 35.28 16.48 27.76

1GID 31.52 33.21 30.61 28.24 26.66 N/A 27.13 61.03
# 11 14 15 16 16 7 5 2
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Table S4. Graph results of MC/SA based on random moves with 104 steps without knowledge of reference structures for 30 RNAs and
comparisons with other tools including MC-Sym, FARNA, and NAST. The graph RMSDs from native structure graphs and five repre-
sentative graphs from Cluster 1 (lowest score, P3) to 5 (highest score), and the correlation coefficients r between graph RMSD from
native structures and MC scores are shown. The graph RMSD of our prediction better than any of three prediction results (or other
prediction results better than any of five representatives) is indicated in bold and the numbers are on the last row. The best RMSD
among all graphs (five representative graphs and three other methods) is highlighted in gray. Corresponding cluster ID is indicated. A
more thorough statistical analysis based on linear models to predict the best cluster ranks (the predicted cluster ID by the linear model
EstR∼0.5572*IL + 1.3290*J + 1.2211*PK+1) did not reveal ways to improve results consistently, but this may be reassessed in the fu-
ture with improvements in the scoring system for the cases with protein-binding cases and junction structures. (N/A: program fails).

PDB C1 C2 C3 C4 C5 r Cluster ID EstR MC-Sym FARNA NAST

1RLG 4.17 3.55 3.74 3.66 4.54 0.43 2 1 5.97 6.31 5.94

1OOA 3.57 4.36 5.85 8.20 10.74 0.93 1 1 4.12 8.46 6.23

2IPY 2.91 3.58 4.97 6.67 9.93 0.96 1 1 1.22 2.09 3.47

2OZB 5.45 4.75 4.86 7.19 8.93 0.46 2 1 5.52 4.27 5.34

1MJI 3.15 2.75 3.95 5.14 7.74 0.91 2 1 5.33 5.08 N/A

2HW8 5.40 6.49 6.61 9.25 6.24 0.16 1 1 8.37 6.19 5.85

1I6U 2.52 3.53 6.58 7.71 10.90 0.86 1 1 2.88 5.85 4.25

1F1T 2.68 4.30 5.83 7.90 11.39 0.83 1 1 3.01 6.07 4.83

1ZHO 7.24 4.39 3.99 6.20 7.18 0.20 3 1 7.91 5.75 8.09

1S03 3.23 3.48 5.76 8.98 11.77 0.79 1 2 1.73 4.67 6.57

1XJR 4.25 4.69 6.50 8.12 11.21 0.82 1 2 6.84 9.72 9.21

1U63 6.01 7.27 4.93 5.24 7.57 0.31 3 1 14.22 14.82 N/A

2PXB 3.85 4.22 6.82 12.67 14.86 0.89 1 1 4.84 5.52 5.04

2OIU 7.72 3.85 4.96 8.60 14.42 0.67 2 2 6.40 14.55 N/A

1MZP 6.74 4.65 6.33 6.83 8.48 0.55 2 1 14.09 11.70 6.14

2HGH 7.16 5.62 8.83 7.43 11.56 0.84 2 2 13.98 11.58 7.64

1DK1 6.43 10.32 8.96 10.62 16.44 0.56 1 2 8.14 15.59 9.47

1MMS 10.35 8.04 7.55 8.14 7.85 –0.29 3 2 18.00 18.31 11.13

1D4R 7.27 10.16 10.60 13.24 17.72 0.74 1 2 N/A 7.33 N/A

1KXK 5.29 4.78 8.90 11.15 15.81 0.88 1 2 4.70 7.21 7.04

1SJ4 11.14 9.06 11.80 7.90 10.71 0.13 4 2 N/A 7.10 N/A

1P5O 9.44 11.21 9.27 12.84 19.73 0.82 3 3 6.69 9.38 9.14
3D2G 18.34 12.61 13.47 9.82 12.30 –0.42 4 3 10.97 16.67 N/A

2HOJ 13.01 12.57 15.65 11.91 11.55 –0.47 5 3 16.34 17.64 N/A

2GDI 17.90 16.68 11.34 12.22 13.71 –0.44 3 3 13.81 19.11 12.90

2GIS 17.43 15.35 17.10 16.80 20.59 –0.01 2 4 19.04 12.33 N/A

1LNG 14.56 18.17 12.57 18.68 18.24 0.22 3 3 17.29 19.18 27.98

2LKR 16.90 21.15 18.28 22.17 17.73 0.17 1 4 15.47 25.42 16.35
1MFQ 10.55 13.71 18.25 15.48 20.40 0.63 1 4 35.28 16.48 27.76

1GID 28.24 29.80 29.86 25.92 25.04 0.42 5 5 N/A 27.13 61.03
# 16 12 10 8 5 22 17 5 3 2
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Fig. S1. RNA graph representations: (A) RNA 2D structures, RAG, and refined RAG representations embedded in 3D space of RNA aptamer
for transcription factor NF-κB (PDB: 1OOA), signal recognition particle (PDB: 1LNG), and RNase P (PDB: 1NBS); (B) RNA 3D structures
and 3D graphs of (a) RNA aptamer for transcription factor NF-κB (PDB: 1OOA), (b) RNase P (PDB: 1NBS), and (c) 70S ribosomal RNA
(PDB: 2J00).
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Fig. S2. Size measures of 3-way junction families – A (perpendicular), B (diagonal), and C (parallel) – and 4-way junction families – H (parallel),
cH (crossed and parallel), π (diagonal), and cL (perpendicular), representing topologies predicted by RNAJAG. The junction distance parameter
s0 denotes the distance between coaxial helices. The distance parameters s1, s2, and s3 measure distances between the non-coaxial helices,
for perpendicular, diagonal, and parallel helices, respectively. We also calculate distance between disconnected perpendicular helices (H2 and
H4) in cL 4-way junction family (denoted as s4).

Fig. S3. Bending and torsion angles of internal loops. Distributions of bend and torsion angles of internal loops with L/R = 0/1, 0/2, 0/3+, and
1/1 are shown with RNA structures. Examples include: 2J00 (residues from G1193 to U1199 and from G1058 to C1063 with L/R = 0/1, as
shown in red, bending = 15.21◦ and torsion = −170.05◦), 1KXK (residues from U4 to C15 and from G57 to A66 with L/R = 0/2, as shown in
orange, bending = 30.17◦ and torsion = −139.18◦), 1U63 (residues from G2 to U16 and from A30 to C48 with L/R = 0/3, as shown in yellow,
bending = 100.17◦ and torsion = −9.73◦), and 3KTW (residues from C199 to C209 and from G214 to G224 with L/R = 1/1, as shown in green,
bending = 22.33◦ and torsion = 172.55◦).

Footline Author PNAS Issue Date Volume Issue Number 9



Fig. S4. Histogram of (A) bending and (B) torsion angles of 27 internal loop families. The 27 subplots correspond to the 27 internal loop
families by L/R = 0/1, 0/2, 0/3, 0/4, 0/5, and 0/6+ (first row); 1/1, 1/2, 1/3, 1/4, 1/5, and 1/6+ (second row); 2/2, 2/3, 2/4, 2/5, and 2/6+(third
row); 3/3, 3/4, 3/5, and 3/6+(fourth row); 4/4, 4/5, and 4/6+ (fifth row); 5/5, and 5/6+ (sixth row); and 6+/6+(seventh row). The L and R
represent the nucleotide lengths of two single strands of internal loops where L is smaller than R.
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Fig. S5. Knowledge-based statistical potential for (A) bend and (B) torsion angles before (green) and after (red) optimization, along each bin
of the discrete angular variable. The 27 subplots correspond to the 27 groups of internal loop defined in the text, respectively L/R = 0/1, 0/2,
0/3, 0/4, 0/5, and 0/6+ (first row); L/R = 1/1, 1/2, 1/3, 1/4, 1/5, and 1/6+ (second row); L/R = 2/2, 2/3, 2/4, 2/5, and 2/6+ (third row); L/R = 3/3,
3/4, 3/5, and 3/6+ (fourth row); L/R = 4/4, 4/5, and 4/6+ (fifth row); 5/5 and 5/6+ (sixth row); L/R = 6+/6+ (seventh row), where L and R are
the nucleotide lengths of the single strands located on each side of the loop, and 6+ means more than or equal to 6.
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Fig. S6. Distribution of RMSD for the representative 30 RNAs using our graph predictions (P1–P3) after MC/SA based on two types of moves
(restricted and random) and other 3D structure prediction programs.

Fig. S7. The convergence of MC scores for 30 RNAs. The trajectories of scores along accepted steps among 104 MC steps after MC/SA based
on restricted moves are shown.
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Fig. S8. The landscapes of MC scores against graph RMSD from native structure of accepted graphs after MC/SA based on restricted moves
(which converge to one region, blue) and random moves (which explore multiple regions, red). Graphs selected by P1, P2, and P3 are indicated
in each plot, as X, green dot, and yellow dot, respectively. (continued on the next page).
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Fig. S8. The landscapes of MC scores against graph RMSD from native structure of accepted graphs after MC/SA based on restricted moves
(which converge to one region, blue) and random moves (which explore multiple regions, red). Graphs selected by P1, P2, and P3 are indicated
in each plot, as X, green dot, and yellow dot, respectively.
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Fig. S9. Graph results for 30 RNAs. The input 2D structure, initial graphs before MC/SA, the lowest RMSD (P1), the lowest-scored (P2), the
lowest representative among 5 clusters (P3) after MC/SA based on random moves, and reference graphs translated from solved structures, and
landscapes are shown. Graphs selected by P1 and P2 based on restricted moves are similar to those by random moves shown here. (continued
on the next page.)
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Fig. S9. Graph results for 30 RNAs. The input 2D structure, initial graphs before MC/SA, the lowest RMSD (P1), the lowest-scored (P2), the
lowest representative among 5 clusters (P3) after MC/SA based on random moves, and reference graphs translated from solved structures, and
landscapes are shown. Graphs selected by P1 and P2 based on restricted moves are similar to those by random moves shown here. (continued
on the next page.)
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Fig. S9. Graph results for 30 RNAs. The input 2D structure, initial graphs before MC/SA, the lowest RMSD (P1), the lowest-scored (P2), the
lowest representative among 5 clusters (P3) after MC/SA based on random moves, and reference graphs translated from solved structures, and
landscapes are shown. Graphs selected by P1 and P2 based on restricted moves are similar to those by random moves shown here. (continued
on the next page.)
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Fig. S9. Graph results for 30 RNAs. The input 2D structure, initial graphs before MC/SA, the lowest RMSD (P1), the lowest-scored (P2), the
lowest representative among 5 clusters (P3) after MC/SA based on random moves, and reference graphs translated from solved structures, and
landscapes are shown. Graphs selected by P1 and P2 based on restricted moves are similar to those by random moves shown here. (continued
on the next page.)
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Fig. S9. Graph results for 30 RNAs. The input 2D structure, initial graphs before MC/SA, the lowest RMSD (P1), the lowest-scored (P2), the
lowest representative among 5 clusters (P3) after MC/SA based on random moves, and reference graphs translated from solved structures, and
landscapes are shown. Graphs selected by P1 and P2 based on restricted moves are similar to those by random moves shown here.
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Fig. S10. Linear regression analysis of graph RMSD with respect to all-atom
RMSD. A highly positive trend between graph and atom RMSD is observed
with a slope value of 0.889.
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