Supporting Information

Zhu et al. 10.1073/pnas.1316569111

SI Materials and Methods

Cultivation of *Acinetobacter baumannii* ATCC19606 and Mutants. Either a defined medium or Luria broth (LB) was used to cultivate the wild-type or the mutants ($\Delta cntA::aacC1$, $\Delta cntB::aacC1$). The defined medium contained NH₄Cl (1 g/L⁻¹), NaCl (0.5 g/L⁻¹), KH₂PO₄ (3 g/L⁻¹), Na₂HPO₄·7H₂O (12.8 g/L⁻¹), MgSO₄·7H₂O (0.5 g/L⁻¹), CaCl₂·2H₂O (0.15 g/L⁻¹), Na₂MoO₄·2H₂O (0.5 mg/L⁻¹), FeCl₃ (50 µM), and a mix of the following vitamins or supplements, including biotin (0.4 mg/L⁻¹), thiamine hydrochloride (1 mg/L⁻¹), riboflavin (1 mg/L⁻¹), nicotinic acid (1 mg/L⁻¹), pantothenic acid (1 mg/L⁻¹), vitamin B₁₂ (20 mg/L⁻¹), 4-aminobenzoic acid (1 mg/L⁻¹), and lipoic acid (1 mg/L⁻¹), and NaCl (5 g/L⁻¹), and the pH was adjusted using NaOH (0.2 µM). Luria agar (LA) was made as LB and agar was added (15 g/L⁻¹).

Growth Curves of A. baumannii and the Mutants on Carnitine or Succinate. To characterize growth of the ATCC 19606 wild-type strain (Salmonella Genetic Stock Centre, University of Calgary, Calgary, Canada) and the mutants, carnitine, or succinate was added to the defined medium to a final concentration of 20 mM as the sole carbon and energy sources. The wild-type strain and the mutants were cultivated in 5 mL LB for 8 h at 37 °C while shaking (200 rpm). The cultures were then diluted 1:50 to inoculate the defined medium containing 20 mM succinate. These cultures were then incubated at 37 °C for 15-16 h and the pellet was collected by centrifugation at $3,000 \times g$ for 10 min. Cell pellets were then washed twice with sterile distilled water and resuspended in 5 mL of water. Finally, 5 mL of the defined medium with either succinate or carnitine was inoculated with 100 µL of washed culture and distributed into eight wells each in a 96-well tissue culture plate (sterile, F-bottom, with lid; Cellstar, Greiner bio-one), which was then incubated at 37 °C and the optical density at 600 nm was recorded every 10 min using a Multiskan GO spectrophotometer (Thermo Scientific).

Cultivation of A. baumannii and the Mutants for the Quantification of Trimethylamine and Carnitine by Ion Chromatography. To quantify the production of trimethylamine (TMA) in the wild-type and the mutants, cultures were set up in triplicate in Corning cell culture flasks (surface area 75 cm²) with 50 mL of the defined medium supplemented with both carnitine (20 mM) and succinate (20 mM). Inoculum was prepared as described above. The flasks were incubated vertically at 37 °C while shaking continuously (200 rpm). A 2-mL sample was taken from each flask at t = 0, 4, 8, 12, and 24 h. Optical density at 600 nm was recorded immediately for every sample at each time point. The samples were then passed through 0.22-µm filters to remove microbial cells and the supernatants were diluted 1:10 in double distilled water, which was then quantified for TMA and carnitine using a cationexchange ion chromatography (Metrohm 881 Compact IC Pro) equipped with a Metrosep C4/250 mm separation column and a conductivity detector (Metrohm).

Marker-Exchange Mutagenesis of *cntA* **and** *cntB***.** To obtain targeted deletion of *cntA* and *cntB* in *A. baumannii* ATCC 19606, we used the mutagenesis strategy developed by van Aartsen and Raja-kumar (1), requiring the creation of a suicide plasmid containing the upstream and the downstream flanking regions of the targeted gene separated by a gentamicin antibiotic cassette, followed by transfer of the construct to *A. baumannii*.

Upstream and downstream flanking regions of cntA or cntB (~1 kb) were amplified from the genomic DNA of ATCC 19606 using primers indicated in Table S5 and the gentamicin-resistant gene cassette (aacC1) was amplified from pUC18R6K-mini-Tn7T-Gm (2). PCR amplification was performed using Phusion High-Fidelity DNA Polymerase (Thermo Scientific) according to manufacturer's specifications. To join upstream and downstream flanking regions with the gentamicin-resistant gene cassette, spliced overlap extension-PCR (SOE-PCR) was performed (3) using KOD Hot Start DNA Polymerase (Merck). Ten nanograms of each flanking region and the gentamicin-resistant gene cassette were mixed and used as the template. SOE-PCR was run without primers for five cycles and then for 30 cycles after the primers were added (PR2768 and PR2771 for cntA; PR2774 and PR2777 for cntB) to generate a ~3-kb PCR product. Both SOE-PCR products and the vector (pJTOOL-3) were digested with NotI (New England Biolabs) for 4 h at 37 °C and the bands were purified from an agarose gel. Ligation was performed using T4 DNA ligase (Promega) using 50 ng of digested vector and 2:1 for cntA or 4:1 for cntB insert:vector molar ratio. Ligation was carried out for 7 h at 15 °C and 10 µL of ligation mix was transformed into chemically competent Escherichia coli CC118\pir, which was selected on LA with 30 μ g/mL⁻¹ chloramphenicol and 15 μ g/mL⁻¹ gentamicin. Plasmids with insert were selected and tested by digestion to confirm the presence and the orientation of the insert. Finally, selected plasmids were transferred to chemically competent *E. coli* S17-1 λ *pir*.

Conjugation was used to efficiently transfer the suicide plasmid to ATCC 19606. The donor E. coli strains and the recipient A. baumannii strain ATCC 19606 were grown overnight in LB and 100 µL were used to inoculate 10 mL LB. Optical density at 600 nm was measured at regular intervals and growth was suspended when OD_{600} reached 0.3 ~ 0.4. Bacterial culture (5 mL) were collected by centrifugation at $3,000 \times g$ for 10 min and washed with 1 mL LB twice and resuspended in 1 mL LB after the final wash. Next, 200 µL of donor strains were mixed with 200 µL of the recipient, centrifuged at $16,000 \times g$ for 2 min, resuspended with 100 µL of 10% (wt/vol) sterile glycerol, spread on LA, and incubated at 37 °C for 24 h. Bacterial cultures were collected in 1 mL of 10% (wt/vol) glycerol, serially diluted, and plated on Simmons citrate agar (Oxoid) with 80 µg/mL⁻¹ gentamicin. Selected colonies were screened using colony-PCR to detect the insertion of the suicide plasmid at either the upstream flanking region or the downstream flanking region. Selection for doublecrossover deletion mutants and the loss of plasmid backbone were carried out by sucrose counter selection because of the presence of a sacB gene. Single crossover mutants were cultivated in LB medium overnight and plated out on LA with 6% sucrose, which was subsequently incubated overnight at 37 °C. Screen for double-crossover deletion mutants was carried out by colony PCR. Primers used for screening are listed in Table S5.

Complementation of the *AcntA* and *AcntB* Mutants of *A. baumannii*. An ~7.8-kb DNA fragment comprising the carnitine oxygenase/ reductase gene cluster (Fig. 1*C*) was amplified from the genomic DNA of strain ATCC 19606 using the primers PR3103/PR3104 (Table S5) with a proofreading DNA polymerase (Phusion High-Fidelity DNA polymerase, Thermo Scientific). The PCR product was A-tailed using the GoTaq Polymerase (Promega), purified and cloned into the pGEM-Teasy cloning vector (Promega). The insert was amplified from vector pGEM-Teasy using the primers PR3120/PR3121 with the Phusion High-Fidelity DNA

Polymerase (Thermo Scientific), and the PCR product (30 µg) was subsequently digested with BamHI-HF (New England Biolabs) and KpnI-HF (New England Biolabs) for 4 h at 37 °C. The digested product was run in a 1% (wt/vol) agarose gel and the ~8-kb band was excised from the gel and purified. The pMQ300 vector (4) was prepared similarly by digesting 5 μ g of the vector followed by gel purification. Thirty-five nanograms of the purified pMQ300 vector were ligated with the gel-purified insert in a 1:1 molar ratio for 6 h at 15 °C using the T4 DNA Ligase (Promega). Ten microliters of the ligation product were chemically transformed into the competent cells of E. coli DH5 α and the colonies were selected on LA supplemented with 140 µg/mL⁻¹ hygromycin. The resulting plasmid pKR706, containing the carnitine oxygenase/reductase gene cluster was transferred to chemically competent E. coli S17-1 λ pir, which was used as the donor for the conjugation with the $\Delta cntA::aacC1$ and the $\Delta cntB::aacC1$ mutant, respectively. Complemented mutants containing pKR706 were selected on LA plates supplemented with 280 μ g/mL⁻ hygromycin and 30 μ g/mL⁻¹ chloramphenicol.

Growth of *E. coli* **SE11 and** *Citrobacter freundii* **M3 on Carnitine.** To characterize the growth of these strains on carnitine, the bacteria were inoculated to the defined medium as described above and carnitine was added as the sole carbon and energy source (final concentration, 5 mM), and the cultures were incubated at 37 °C while shaking continuously (200 rpm). Optical density at 600 nm was recorded and 2-mL samples were withdrawn from the culture at 0, 4, 8, 12, and 24 h. The culture supernatant was collected by passing through 0.22-µm filters before quantification for TMA and carnitine by cation-exchange ion chromatography, as described above.

Heterologous Overexpression of cntA/cntB, Site-Directed Mutagenesis and Characterization of the CntA Mutants. The *cntA* and *cntB* genes were amplified from A. baumannii and inserted into the expression vector pCOLADuet-1 (Novagen) under the BamHI/HindIII sites or the vector pET28a (Novagen) under the Ndel/HindIII sites. Coexpression of cntA/cntB was achieved by insertion into pCOLADuet-1 under the BamHI/HindIII and the NdeI/KpnI sites, respectively. The CntA mutants (E205D, E205A) were chemically synthesized by GenScript and inserted into the expression vector pET28a under the NdeI/HindIII sites. The resulting plasmids were then transformed into the expression host E. coli BLR(DE3) pLysS (Merck Biosciences). For protein overexpression, *E. coli* cells were grown at 37 °C to an OD_{600} of 0.5, and isopropyl β-D-1-thiogalactopyranoside (IPTG) was then added to a final concentration of 0.2 mM and the induction of protein expression was then carried out at 18 °C before harvesting. Proteins were purified by His-tag affinity purification from recombinant E. coli after induction with IPTG according to the manufacturer's protocol (Merck). The activity of the reconstituted enzyme was assayed at room temperature (~22 °C) by quantifying NADH oxidation and carnitine-dependent TMA production. A 1-mL enzyme assay mixture contained 10 mM Hepes buffer (pH 7.6), 60 µg purified CntA and CntB, respectively, 0.25 mM carnitine, and 0.25 mM NADH. To determine TMA formation from crude extract of recombinant E. coli harboring

- van Aartsen JJ, Rajakumar K (2011) An optimized method for suicide vector-based allelic exchange in *Klebsiella pneumoniae*. J Microbiol Methods 86(3):313–319.
- 2. Choi KH, et al. (2005) A Tn7-based broad-range bacterial cloning and expression system. *Nat Methods* 2(6):443–448.
- 3. Choi KH, Schweizer HP (2005) An improved method for rapid generation of unmarked *Pseudomonas aeruginosa* deletion mutants. *BMC Microbiol* 5(30):30–41.
- Kalivoda EJ, et al. (2011) New vector tools with a hygromycin resistance marker for use with opportunistic pathogens. *Mol Biotechnol* 48(1):7–14.
- daCosta KA, Vrbanac JJ, Zeisel SH (1990) The measurement of dimethylamine, trimethylamine, and trimethylamine N-oxide using capillary gas chromatography-mass spectrometry. Anal Biochem 187(2):234–239.

cntA, *cntB* or *cntAB*, 500 μ g of cell-free crude extracts were used. Coupling efficiency was determined as the ratio of the total amount of TMA formed to the amount of NADH consumed.

Substrate Profile of CntAB. To test the substrate specificity of carnitine oxygenase (CntAB), the enzyme was purified from recombinant *E. coli*. Protein concentrations were quantified by the Bradford method using the Quick Start Bradford Protein Assay Kit (Bio-Rad). The following substrates were purchased from Sigma-Aldrich and tested, including D., L-carnitine, γ -butyrobetaine, glycine betaine, choline chloride, trimethylamine hydrochloride, and trimethylamine *N*-oxide. Enzyme activity was assayed at room temperature (~22 °C) by quantifying NADH oxidation. A 1-mL enzyme assay mixture contained 10 mM Hepes buffer (pH 7.6), 60 µg purified CntA and CntB, respectively, 0.25 mM substrate, and 0.25 mM NADH.

Validation of TMA Production from Carnitine by Gas Chromatography-Mass Spectrometry. To further confirm the identity of TMA production from carnitine oxidation by CntAB, the enzyme was purified and the activity was reconstituted in vitro by adding CntA and CntB to the enzyme assay as described above. Controls were set up by using CntA or CntB only. The reaction was initiated by adding NADH. The enzyme assay was then incubated at room temperature (~22 °C) for 30 min. The reaction was terminated by adding 0.8 g KOH, and TMA produced from carnitine oxidation was subsequently extracted by toluene as described previously (5). TMA identification was carried out using an Agilent 6890/5973 gas chromatography-mass spectrometry (GC-MS) platform equipped with an automatic liquid sampler. An aliquot (1 µL) of toluene layer was injected into GC-MS. GC conditions were as follows: column, Agilent HP-5ms capillary column (30 m X 0.25 mm i.d.; film thickness, 0.25 µm); column temperature, 40 °C for 2.5 min, then the temperature was increased at maximum rate up to 230 °C, followed by 2 min at 230 °C; carrier gas, helium; flow rate, 0.2 mL/min⁻¹; split ratio, 10:1.

Characterization of CntA and the CntA Mutants (E205A, E205D) by Circular Dichroism and Native-PAGE. Purified recombinant CntA and the mutants were dialyzed against 200 mM sodium phosphate (pH 7.0) containing 200 mM NaCl. Circular dichroism (CD) spectra were recorded in the range of 195-260 nm using a Jasco J-815 spectrometer (Jasco) using a quartz cuvette of 1-mm path length at room temperature (~22 °C). Spectra were collected eight times per sample. Data were expressed as mean residue ellipticity in degrees $cm^2 dmol^{-1}$. Spectra were deconvoluted using the online program DICHROWEB (http://dichroweb. cryst.bbk.ac.uk/html/home.shtml) (6, 7) and the CDSSTR algorithm was used to estimate the percentages of each secondary structure in CntA and its mutants using the reference protein set 7 (8). Native-PAGE was performed using a NuSep 12% (wt/vol) Tris-glycine precast polyacrylamide gel (NuSep) at a constant voltage (200 V) at 4 °C for 1.5 h with an Invitrogen electrophoresis system. The gels were stained with the Fast Blue reagent (Expedeon). The NativeMark unstained protein standard from Novex was used to estimate the native size of CntA and the mutants.

- Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. *Biopolymers* 89(5):392–400.
- Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287(2):252–260.

Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. *Nucleic Acids Res* 32(Web Server issue):W668–W673.

Fig. S1. (A) Neighbor joining phylogenetic tree of CntB and other closely related reductase proteins (~320 amino acids). The bar represents one substitution per 10 amino acids. (B) Growth of E. coli SE11 and C. freundii M3 on carnitine as the sole carbon source and production of TMA. Error bars represent SD of measurements from three biological replicates.

Fig. S2. (A) SDS/PAGE analysis of purified CntA and CntB from recombinant Escherichia coli. (B) Substrate profile of the purified carnitine oxygenase.

Fig. S3. Ion chromatography quantification (*A*) and GC-MS identification (*B*–*E*) of TMA production from carnitine using purified recombinant CntA alone, CntB alone or CntA+CntB. Mass spectrum of TMA from carnitine oxidation by CntAB were compared with that of authentic TMA standard (shown on *D*, *Right* and *E*, *Right*, respectively).

Fig. 54. Proposed electron transfer pathway in CntAB and the role of glutamate 205 in CntA. TMA: trimethylamine; NADH: nicotinamide adenine dinucleotide, reduced.

Fig. S5. Characterization of CntA and the site-directed mutants by CD (A) and native-PAGE (B).

Table S1. CaiT homologs in sequenced Human Microbiome Project (HMP) reference genomes

Locus tag	Annotation	Organism	
GCWU000182 02944	Choline/carnitine/betaine transport	Abiotrophia defectiva ATCC 49176	
HMPREF0004 3863	Conserved hypothetical protein	Achromobacter piechaudii ATCC 43553	
A60131 010100018802	Putative transporter	Acinetobacter baumannii 6013113	
A6013 010100011600	Putative transporter	Acinetobacter baumannii 6013150	
A6014 010100011000	Putative transporter	Acinetobacter baumannii 6013150	
HMPRFE0010 01347	Betaine/choline/glycine transporter	Acinetobacter baumannii ATCC 19606	
HMPREE0014_03271	Betaine/choline/glycine transporter	Acinetobacter sp. BUH2624	
HMPREF0013 01187	Conserved hypothetical protein	Acinetobacter sp. Konzoza	
HMPREE1705_00723	Osmonrotectant transporter, BCCT family	Anaerobacilum bydrogeniformans	
11WI KEI 1705_00725	osmoprotectant transporter, beer family		
HMPREE1013 04206	OnuD protein	Bacillus sp. 2 \triangle 57 CT2	
HMPREF1013_03192	Hypothetical protein	Bacillus sp. 2 \triangle 57 CT2	
HMPREE1013_00505	Glycine betaine transporter	Bacillus sp. 2 \triangle 57 CT2	
HMPREF1012_02673	OpuD protein	Bacillus sp. 2_A_S7_CT2 Bacillus sp. BT1B CT2	
HMPREE0178_03964	Hypothetical protein	Bilonhila sp. 4 1 30	
HMPRFF0179_03321	BCCT family transporter	Bilophila wadsworthia 3 1 6	
HMPREE0179_00456	BCCT family transporter	Bilophila wadsworthia 3_1_6	
CAMBE0001 1572	-carnitine/v-butyrobetaine antiporter	Campylobacter rectus RM3267 CCUG 20446	
HMPRFF9428 01710	Retaine/carnitine/choline transporter (RCCT) family transporter	Citrobacter freundii 4 7 47CEAA	
HMPREF9428 02735	-carnitine/v-butyrobetaine antiporter	Citrobacter freundii 4 7 47CFAA	
CSAG 01648	Conserved hypothetical protein	Citrobacter sp. 30.2	
CSAG_03337	-carnitine/y-butyrobetaine antiporter	Citrobacter sp. 30 2	
CIT292 00938	Choline/carnitine/betaine transport	Citrobacter voungae ATCC 29220	
CIT292 03024	Choline/carnitine/betaine transport	Citrobacter youngae ATCC 29220	
Cbac1 010100004187	Putative transporter	Clostridiales sp. 1 7 47FAA	
CLOSTASPAR 04953	Choline-glycine betaine transporter	Clostridium asparagiforme DSM 15981	
HMPREF0240 03154	Glycine betaine transporter	Clostridium sp. D5	
HMPREF0240_03223	Putative osmoprotectant transporter, BCCT family	Clostridium sp. D5	
HMPREF0240_01437	Osmoprotectant transporter, BCCT family	Clostridium sp. D5	
HMPREF0322_04106	Transporter, betaine/carnitine/choline family	Desulfitobacterium hafniense DP7	
		(draft 151 contigs)	
HMPREF0322_00857	Transporter, betaine/carnitine/choline family	Desulfitobacterium hafniense DP7	
		(draft 151 contigs)	
HMPREF0322_00862	Transporter, betaine/carnitine/choline family	Desulfitobacterium hafniense DP7	
		(draft 151 contigs)	
HMPREF9457_03501	Hypothetical protein	Dorea formicigenerans 4_6_53AFAA	
DORFOR_00040	Choline/carnitine/betaine transport	Dorea formicigenerans ATCC 27755	
EDWATA_03146	L-carnitine/γ-butyrobetaine antiporter	Edwardsiella tarda ATCC 23685	
EDWATA_03147	L-carnitine/γ-butyrobetaine antiporter	Edwardsiella tarda ATCC 23685	
HMPREF0864_03292	Betaine/carnitine/choline transporter	Enterobacteriaceae bacterium 9_2_54FAA	
HMPREF0358_1653	Possible transporter	Escherichia coli 83972	
HMPREF9345_01358	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 107-1	
HMPREF9345_01115	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 107-1	
HMPREF9540_03296	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 115-1	
HMPREF9540_01454	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 115-1	
HMPREF9541_04721	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 116-1	
HMPREF9541_02156	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 116-1	
HMPREF9346_01791	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 119-7	
HMPREF9346_03001	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 119-7	
HMPREF9347_04517	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 124-1	
HMPREF9347_03685	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 124-1	
HMPREF9348_01357	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 145-7	
HMPREF9348_03244	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 145-7	
HMPREF9543_02303	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 146-1	
HMPREF9543_04874	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 146-1	
HMPREF9547_02514	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 175-1	
HMPREF9547_02765	Iransporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 175-1	
HMPREF9548_02982	Iransporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 182-1	
HMPREF9548_02182	Iransporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 182-1	
HMPREF9549_02457	Iransporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 185-1	
HMPREF9550_00256	Iransporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 187-1	
HMPREF9550_01015	Iransporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 187-1	
HMPREF9551_02675	Transporter, betaine/carnitine/choline transporter family protein	Escherichia coli MS 196-1	

PNAS PNAS

Table S1. Cont.

Locus tag

HMPREF9551 02516 HMPREF9552 04960 HMPREF9553_02651 HMPREF9530 04260 HMPREF9530_03696 HMPREF9531_02296 HMPREF9534 01299 HMPREF9534_05004 HMPREF9535_02410 HMPREF9535_04534 HMPREF9536_03463 HMPREF9536_02737 ECSF_0045 ECSE_0041 ECSE_1975 ESCG_01223 ESAG_04067 E4 010100004119 E4_010100018447 EUBVEN_02747 HMPREF0402_02949 HMPREF0454_04935 HOLDEFILI_01730 HMPREF9333_01454 HMPREF9333_01061 HMPREF0484_3753 HMPREF0485 02497 HMPREF1024_01931 HMPREF9538_04403 HMPREF0490 01850 HMPREF0987 01668 HMPREF0531_2425 HMPREF9371_2432 HMPREF9370_2231 POTG_03408 HMPREF9024_00300 HMPREF0623_1089 HMPREF0693_2800 PROPEN_01218 PROVRETT_04514 HMPREF9373_0457 HMPREF9373_1383 HMPREF7215 2461 ShiD9_010100014456 ShiD9_010100003772 HMPREF9372_1646 HMPREF0782 2136 HMPREF0783 0859 HMPREF0769_10535 HMPREF0774 1421 HMPREF0772_10576 HMPREF0773 0708 Sauraur_010100002150 HMPREF0786_01385

HMPREF0786_01385 HMPREF0789_1995 HMPREF0793_0722 HMPREF0794_1239

Annotation Transporter, betaine/carnitine/choline transporter family protein Putative carnitine transporter Putative carnitine transporter Putative transport protein Choline/carnitine/betaine transporter L-carnitine/γ-butyrobetaine antiporter Putative transporter L-carnitine/γ-butyrobetaine antiporter Choline-glycine betaine transporter Hypothetical protein L-carnitine/γ-butyrobetaine antiporter Choline/carnitine/betaine transport Hypothetical protein Hypothetical protein Conserved hypothetical protein BCCT family betaine/carnitine transporter Betaine/carnitine/choline transporter (BCCT) family transporter Transporter, betaine/carnitine/choline family Hypothetical protein Hypothetical protein BCCT family betaine/carnitine/choline transporter BCCT family osmoprotectant transporter BCCT family osmoprotectant transporter Choline/carnitine/betaine transporter BCCT family betaine/carnitine transporter Glycine betaine/carnitine/choline transporter BCCT family betaine/carnitine/choline transporter Choline/carnitine/betaine transport Choline/carnitine/betaine transport BCCT family betaine transporter BCCT family betaine/carnitine/choline transporter Glycine betaine transporter OpuD L-carnitine/γ-butyrobetaine antiporter Putative transporter BCCT family osmoprotectant transporter BCCT family osmoprotectant transporter BCCT family osmoprotectant transporter BCCT family osmoprotectant transporter Choline transporter BCCT family osmoprotectant transporter Choline transporter BCCT family betaine/carnitine/choline transporter Osmoprotectant transporter, BCCT family BCCT family betaine/carnitine/choline transporter BCCT family betaine/carnitine/choline transporter BCCT family osmoprotectant transporter

Escherichia coli MS 196-1 Escherichia coli MS 198-1 Escherichia coli MS 200-1 Escherichia coli MS 21-1 Escherichia coli MS 21-1 Escherichia coli MS 45-1 Escherichia coli MS 69-1 Escherichia coli MS 69-1 Escherichia coli MS 78-1 Escherichia coli MS 78-1 Escherichia coli MS 84-1 Escherichia coli MS 84-1 Escherichia coli O150:H5 SE15 Escherichia coli SE11 Escherichia coli SE11 Escherichia sp. 1_1_43 Escherichia sp. 3_2_53FAA Escherichia sp. 4_1_40B Escherichia sp. 4_1_40B Eubacterium ventriosum ATCC 27560 Fusobacterium sp. 12_1B Hafnia alvei ATCC 51873 Holdemania filiformis VPI J1-31B-1, DSM 12042 Johnsonella ignava ATCC 51276 Johnsonella ignava ATCC 51276 Klebsiella pneumoniae rhinoscleromatis ATCC 13884 Klebsiella sp. 1_1_55 Klebsiella sp. 4_1_44FAA Klebsiella sp. MS 92-3 Lachnospiraceae bacterium 6_1_37FAA Lachnospiraceae bacterium 9_1_43BFAA Lactobacillus plantarum ATCC 14917 Neisseria shayeganii 871 Neisseria wadsworthii 9715 Paenibacillus sp. D14 Pediococcus acidilactici 7_4 Pediococcus acidilactici DSM 20284 Proteus mirabilis ATCC 29906 Proteus penneri ATCC 35198 Providencia rettgeri DSM 1131 Psychrobacter sp. 1501 Psychrobacter sp. 1501 Pyramidobacter piscolens W5455 Shigella sp. D9 Shigella sp. D9 Sporosarcina newyorkensis 2681 Staphylococcus aureus aureus ATCC 51811 Staphylococcus aureus aureus ATCC BAA-39 Staphylococcus aureus aureus MN8 Staphylococcus aureus aureus TCH130 Staphylococcus aureus aureus TCH60 Staphylococcus aureus aureus TCH70 Staphylococcus aureus aureus USA300 TCH959 Staphylococcus caprae C87 Staphylococcus epidermidis BCM-HMP0060 Staphylococcus epidermidis M23864:W1 Staphylococcus epidermidis M23864:W2(gray)

Organism

Table S1. Cont.

PNAS PNAS

Locus tag	Annotation	Organism
HMPREF0797_0715	Transporter, betaine/carnitine/choline transporter (BCCT) family protein	Staphylococcus epidermidis SK135
HMPREF0791_2152	BCCT family betaine/carnitine/choline transporter	Staphylococcus epidermidis W23144
HMPREF0798_01170	Osmoprotectant transporter, BCCT family	Staphylococcus hominis hominis C80
STAHO0001_0325	Choline-glycine betaine transporter	Staphylococcus hominis SK119
HMPREF0790_1708	BCCT family osmoprotectant transporter	Staphylococcus lugdunensis M23590
STAWA0001_0151	Osmoprotectant transporter, bcct family	Staphylococcus warneri L37603, SK66

In the JGI/IMG-HMP database as of February 2013, 754 HMP reference genomes were available; 122 CaiT homologs were found (E \leq -50) in 91 unique genomes.

Table S2. Putative cntA gene in sequenced HMP reference genomes

Locus tag	Annotation	Organism	Sources of isolation
HMPREF0004_3864	Conserved hypothetical protein	Achromobacter piechaudii ATCC 43553	Nose wound, <i>Homo sapiens</i> , France
A60131_010100018812	Rieske [2Fe-2S] domain protein	Acinetobacter baumannii 6013113	Human skin
A6013_010100011610	Rieske [2Fe-2S] domain protein	Acinetobacter baumannii 6013150	Human skin
A6014_010100011010	Rieske [2Fe-2S] domain protein	Acinetobacter baumannii 6014059	Human skin
HMPREF0010_01349	Dioxygenase α -subunit	Acinetobacter baumannii ATCC 19606	Human urine
HMPREF0014_03273	Dioxygenase α -subunit	Acinetobacter sp. RUH2624	Human skin
HMPREF0013_01185	Conserved hypothetical protein	Acinetobacter sp. SH024	Human skin
HMPREF9428_01711	Putative dioxygenase subunit α yeaW	Citrobacter freundii 4_7_47CFAA	Human sigmoid colon
CSAG_01649	Rieske domain-containing protein	Citrobacter sp. 30_2	Human feces
CIT292_03025	Ring-hydroxylating dioxygenases, large terminal subunit	Citrobacter youngae ATCC 29220	Human feces
HMPREF9345_01357	Rieske [2Fe-2S] domain protein	Escherichia coli MS 107-1	Human gastrointestinal tract
HMPREF9540_01453	Rieske [2Fe-2S] domain protein	Escherichia coli MS 115-1	Human intestinal tract
HMPREF9541_04722	Rieske [2Fe-2S] domain protein	Escherichia coli MS 116-1	Human gastrointestinal tract
HMPREF9346_03000	Rieske [2Fe-2S] domain protein	Escherichia coli MS 119-7	Human gastrointestinal tract
HMPREF9347_04518	Rieske [2Fe-2S] domain protein	Escherichia coli MS 124-1	Human gastrointestinal tract
HMPREF9348_01358	Rieske [2Fe-2S] domain protein	Escherichia coli MS 145-7	Human gastrointestinal tract
HMPREF9543_02302	Rieske [2Fe-2S] domain protein	Escherichia coli MS 146-1	Human gastrointestinal tract
HMPREF9547_02513	Rieske [2Fe-2S] domain protein	Escherichia coli MS 175-1	Human gastrointestinal tract
HMPREF9548_02983	Rieske [2Fe-2S] domain protein	Escherichia coli MS 182-1	Human gastrointestinal tract
HMPREF9550_00257	Rieske [2Fe-2S] domain protein	Escherichia coli MS 187-1	Human gastrointestinal tract
HMPREF9551_02674	Rieske [2Fe-2S] domain protein	Escherichia coli MS 196-1	Human gastrointestinal tract
HMPREF9552_03168	Rieske [2Fe-2S] domain protein	Escherichia coli MS 198-1	Human gastrointestinal tract
HMPREF9530_03695	Rieske [2Fe-2S] domain protein	Escherichia coli MS 21-1	Human gastrointestinal tract
HMPREF9534_05005	Rieske [2Fe-2S] domain protein	Escherichia coli MS 69-1	Human gastrointestinal tract
HMPREF9535_02411	Rieske [2Fe-2S] domain protein	Escherichia coli MS 78-1	Human gastrointestinal tract
HMPREF9536_02738	Rieske [2Fe-2S] domain protein	Escherichia coli MS 84-1	Human gastrointestinal tract
ECSE_1976	Putative dioxygenase α subunit	Escherichia coli SE11	Human gastrointestinal tract
E4_010100004114	Predicted 2Fe-2S containing protein	Escherichia sp. 4_1_40B	Human gastrointestinal tract
HMPREF0484_3754	Conserved hypothetical protein	Klebsiella pneumoniae rhinoscleromatis ATCC 13884	Human airways sample
HMPREF0485_02496	Dioxygenase subunit α yeaW	Klebsiella sp. 1_1_55	Human gastrointestinal tract
HMPREF1024_01930	Hypothetical protein	Klebsiella sp. 4_1_44FAA	Human gastrointestinal tract
HMPREF9538_04404	Rieske [2Fe-2S] domain protein	Klebsiella sp. MS 92-3	Human gastrointestinal tract
PROVRETT_04639	Ring-hydroxylating dioxygenases, large terminal subunit	Providencia rettgeri DSM 1131	Human feces
PstuA_020100020983	Dioxygenase, α-subunit	Providencia stuartii ATCC 25827	Human gastrointestinal tract
SBO_1286	Hypothetical protein	Shigella boydii Sb227	Epidemic in China in 1950s
SDY_1706	Hypothetical protein	Shigella dysenteriae Sd197	Epidemic in China in 1950s
SSON_1359	Hypothetical protein	Shigella sonnei Ss046	Epidemic in China in 1950s
ShiD9_010100003767	Predicted 2Fe-2S containing protein	Shigella sp. D9	Human gastrointestinal tract
HMPREF9372_1747	Rieske [2Fe-2S] domain protein	Sporosarcina newyorkensis 2681	Human blood

In the JGI/IMG-HMP database as of February 2013, 754 HMP reference genomes were available; 39 CntA homologs ($E \le -50$, query sequence: CntA of *A. baumannii* ATCC19606) were found in 39 unique genomes.

Table S3. Rieske-type proteins used in CntA phylogenetic analyses

GenBank or PDB accession no.	Gene	Enzyme	Organism
M64747	xvIX	Toluate 1.2-dioxygenase	Pseudomonas putida
AF071556	antA	Anthranilate dioxygenase	Acinetobacter sp. ADP1
AF119621	ditA	Abietane diterpenoids oxygenase	Pseudomonas abietaniphila
AJ223220	dxnA	Dioxin dioxygenase	Sphingomonas sp. RW1
2B1X	nahAc	Naphthalene 1,2-dioxygenase	Rhodococcus sp. NCIMB12038
2XR8	bhpAE	Biphenyl dioxygenase	Burkholderia xenovorans Lb400
1WQL	cumA	Cumene dioxygenase	Pseudomonas fluorescens Ip01
3EN1	todC1	Toluene 2,3-dioxygenase	Pseudomonas putida
2GBW	bphA	Biphenyl 2,3-dioxygenase	Sphingomonas yanoikuyae B1
2CKF	, pahAc	PAH dioxygenase	Sphingomonas sp. Chy-1
2BMO	nbzAC	Nitrobenzene dioxygenase	Comamonas sp. JS765
107W	nahAc	Naphthalene 1,2-dioxygenase	Pseudomonas putida
2ZYL	kshA	3-ketosteroid-9-α-hydroxylase	Mycobacterium tuberculosis
1Z02	oxoO	2-oxoquinoline 8-monooxygenase	Pseudomonas putida
1WW9	carA	Carbazole 1, 9 a-dioxygenase	Janthinobacterium sp. J3
3GKE	dmo	Dicamba monooxygenase	Stenotrophomonas maltophilia
Q44256	cbaA	3-chlorobenzoate-3,4-dioxygenase	Comamonas testosteroni
3VCP	stc2	Dimethylproline demethylase	Sinorhizobium meliloti RM2011
AAG08795	<i>qbcA</i>	Glycine betaine demethylase	Pseudomonas aeruginosa
U85780	сто	Choline monooxygenase	Spinacia oleracea
AB303389	сто	Choline monooxygenase	Amaranthus tricolor
CAE17671	сто	Choline monooxygenase	Oryza sativa

Table S4. Bacterial strains and plasmids used in this study

PNAS PNAS

Strains and plasmids	Description, genotype, relevant characteristics	Source
Acinetobacter baumannii		
ATCC 19606		University of Leicester laboratory collection
∆cntA::aacC1	ATCC 19606 derivative with cntA deletion	Present study
∆cntB::aacC1	ATCC 19606 derivative with cntB deletion	Present study
Escherichia coli		
JM109	General cloning	Promega
BLR(DE3)pLysS	Heterologous expression of cntA/cntB under the T7 promoter	Novagen
CC118 <i>\pir</i>	Δ (ara-leu) araD _lacX74 galE galK phoA thi-1 rpsE rpoB argE(Am) recA1; lysogenized with λpir phage	Simon et al. (1)
S17-1 λpir	hsdR recA pro RP4-2 (Tc::Mu; K _m ::Tn7)(λpir)	Simon et al. (1)
Plasmids		
pET28a	For overexpression of <i>cntA</i> and its mutants (E205D, E205A)	Novagen
pCOLADuet-1	For coexpression of cntA and cntB	Novagen
pJTOOL-3	Suicide vector for <i>Acinetobacter baumannii</i> , R6K ori mobRP4 sacB; Cm ^R	van Aartsen and Rajakumar (2)
pUC18R6K-mini-Tn7T-Gm	Source of gentamicin cassette	Choi et al. (3)
pKR609	pJTOOL-3::∆ <i>cntA</i> -GM 5	Present study
pKR612	pJTOOL-3::∆ <i>cntB</i> -GM 22	Present study
pMQ300	For complementation of $\triangle cntA$ and $\triangle cntB$ mutants; Hph ^R ; pBBR1 <i>ori</i> , <i>oriT</i> , URA3 marker	Kalivoda et al. (4)
pKR706	The 7.8 kb carnitine oxygenase gene cluster cloned into the BamHI/KpnI sites of pMQ300	Present study

1. Simon R, Prifer U, Pühler A (1983) A broad host range mobilization system for *in vivo* genetic engineering: Transposon mutagenesis in gram negative bacteria. *Bio/Technology* 1(9):784–791.

2. van Aartsen JJ, Rajakumar K (2011) An optimized method for suicide vector-based allelic exchange in Klebsiella pneumoniae. J Microbiol Methods 86(3):313-319.

3. Choi KH, et al. (2005) A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2(6):443-448.

4. Kalivoda EJ, et al. (2011) New vector tools with a hygromycin resistance marker for use with opportunistic pathogens. Mol Biotechnol 48(1):7-14.

Table S5. Primers used in this study

PNAS PNAS

Primer	Sequence (5′–3′)	Note
cntAF	GGATCCGATGAGTGCAGTTGAAAAATTACCTGAAGA	Overexpression of CntA
cntAR	ATGATGAAAGCTTTTATTGATGGTACTGCGCCACAAGAT	
cntBF	GGATCCGATGGCGAGTCATTATGAAATGTT	Overexpression of CntB
cntBR	AAGCTTTTTAAAGATCTAATATCAATTTTTTGCC	
cntBF_Co	CATATGGCGAGTCATTATGAAATGTT	Coexpression of CntA and CntB in pCOLADuet-1
cntBR_Co	GGTACCTTAAAGATCTAATATCAATTTTTTGCC	
PR351	CGAATTAGCTTCAAAAGCGCTCTGA	Amplification of the gentamicin cassette (aacC1)
PR2773	AATTGGGGATCTTGAAGTTCCT	
PR2768	GCGCGGCCGCGCAGCATTTATTCACCAGCA	Amplification of cntA upstream flanking region
PR2769	TCAGAGCGCTTTTGAAGCTAATTCGTTCAACTGCACTCATGTTTTTACTCC	
PR2770	AGGAACTTCAAGATCCCCAATTGCGCAGTACCATCAATAAAAAC	Amplification of cntA downstream flanking region
PR2771	GCGCGGCCGCACAGGTCTGGCCTGCATTAC	
PR2774	GCGCGGCCGCGCTTGCAGAAAAGGCAGGTAA	Amplification of cntB upstream flanking region
PR2775	TCAGAGCGCTTTTGAAGCTAATTCGATGACTCGCCATATTAGAATC	
PR2776	AGGAACTTCAAGATCCCCAATTTTGGTATTAGATCTTTAATATA	Amplification of cntB downstream flanking region
PR2777	GCGCGGCCGCCGAAATGTGGCTTTCCAAGT	
PR2767	TGCAAGCTCAATCAAACTGG	Detection of crossover at cntA upstream flanking region
PR319	CTCCGAACTCACGACCGA	
PR2772	GCCAATTTGTACGCCATCTT	Detection of crossover at cntA downstream flanking region
PR318	GACATAAGCCTGTTCGGTT	
PR2778	CGAAGAAGGCAAGCGTATTT	Detection of crossover at cntB upstream flanking region
PR319	CTCCGAACTCACGACCGA	
PR2764	TTTCCGGCAATTTATTCAGC	Detection of crossover at cntB downstream flanking region
PR318	GACATAAGCCTGTTCGGTT	
PR3103	TGCCATCTTCTGTCAGGCTA	Amplification of the 7.8 kb carnitine oxygenase gene
PR3104	TATGCCCACCAAATGAACAA	cluster from ATCC 19606
PR3120	CGGCGGTACCTGTAAAACGACGGCCAGT	Amplification of the carnitine oxygenase gene cluster
PR3121	CGGCGGATCCATTTAGGTGACACTATAGAAT	from pGEM-Teasy