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Side-by-side view of segmentation result on the DCellIQ image sequence (3D). Quantitative 

results are provided in Table 1. 

 

Movie S2. Segmentation result on the Mitocheck image sequence. 

Side-by-side view of segmentation result on the Mitocheck image sequence (2D). Quantitative 

results are provided in Table 1. 

 

Movie S3. Segmentation result on a 3D MK dataset. 

Side-by-side view of segmentation result on the MK volume (MK-1). Quantitative results are 

provided in Table 2. 

 

Movie S4. Segmentation result on a 3D NS dataset. 

Side-by-side view of segmentation result on the NS volume (NS-4). Quantitative results are 

provided in Table 2. This result shows the robustness of MINS against strong background. 

 

Movie S5. Segmentation result on a 3D NS dataset. 

Side-to-side view of segmentation result on the NS volume (NS-5). Quantitative results are 

provided in Table 2. This result shows the robustness of MINS against strong background. 
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SUPPLEMENTAL DATA 

 

 

 

 

Figure S1. MINS application in the detection of cell division and apoptosis. 

2D laser scanning confocal images acquired as z-stacks and 3D renderings from CAG:H2B-

GFP reporter-expressing embryos, followed MINS segmentation of these data. Yellow 

arrowhead depicts condensed chromosomes (and increased fluorescence intensity) 

representing a cell in mitosis detected by MINS (ID #88). Red arrowhead depicts the nuclear 

debris associated with an apoptotic nucleus. These features have a significantly lower volume 

than a normal interphase nucleus (ID #4). White arrowhead depicts a nucleus of expected 

interphase (elipsoid) shape for this stage of embryo (ID #31). Scale bar: 20µm. 

 

 

  



 

-4- 

Table S1.  MINS segmentation accuracy on 2D data. 

 

Data  Size NTrue NSeg  NTP  NFP  NFN Precision Recall F-score 
DCellIQ (No. 1) 512 × 672 59 

DCellIQ (No. 2) 512 × 672 72 

DCellIQ (No. 3) 512 × 672 95 

DCellIQ (No. 4) 512 × 672 113 

DCellIQ (No. 5) 512 × 672 145 

59 59 0 0 

71 70 1 2 

94 93 1 2 

114 112 2 1 

148 143 5 2 

100.0 100.0 100.0 

98.6 97.2 97.9 

98.9 97.9 98.4 

98.2 99.1 98.7 

96.6 98.6 97.6 

Mitocheck (No. 1) 1024 × 1344 119 

Mitocheck (No. 2) 1024 × 1344 157 

Mitocheck (No. 3) 1024 × 1344 241 

Mitocheck (No. 4) 1024 × 1344 306 

Mitocheck (No. 5) 1024 × 1344 460 

121 117 4 2 

161 155 6 2 

239 237 2 4 

308 304 4 2 

460 455 5 5 

96.7 98.3 97.5 

96.3 98.7 97.5 

99.2 98.3 98.8 

98.7 99.3 99.0 

98.9 98.9 98.9 
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Table S2.  MINS segmentation accuracy on 3D data. 

 

Data  Size NTrue NSeg  NTP  NFP  NFN Precision Recall F-score 

NS (No. 1) 512 × 512 × 54 63 

NS (No. 2) 512 × 512 × 59 83 

NS (No. 3) 512 × 512 × 72 86 

NS (No. 4) 512 × 512 × 63 81 

NS (No. 5) 512 × 512 × 60 98 

60 59 1 4 

78 78 0 5 

81 79 2 7 

79 79 0 2 

98 96 2 2 

98.3 93.7 95.9 

100.0 94.0 96.9 

97.5 91.9 94.6 

100.0 97.5 98.8 

98.0 98.0 98.0 

PX (No. 1) 512 × 512 × 89 83 

PX (No. 2) 512 × 512 × 111 84 

PX (No. 3) 512 × 512 × 106 86 

PX (No. 4) 512 × 512 × 74 80 

PX (No. 5) 512 × 512 × 85 67 

83 81 2 2 

81 79 2 5 

84 83 1 3 

76 74 2 6 

67 67 0 0 

97.6 97.6 97.6 

97.5 94.0 95.8 

98.8 96.5 97.6 

97.4 92.5 94.9 

100.0 100.0 100.0 

MK (No. 1) 512 × 512 × 28 123 

MK (No. 2) 512 × 512 × 28 129 

M K  (No. 3) 512 × 512 × 28 128 

MK (No. 4) 512 × 512 × 28 127 

MK (No. 5) 512 × 512 × 28 132 

MK (No. 6) 512 × 512 × 28 122 

MK (No. 7) 512 × 512 × 28 116 

MK (No. 8) 512 × 512 × 28 121 

123 122 1 1 

130 127 3 2 

130 128 2 0 

125 124 1 3 

129 129 0 3 

120 120 0 2 

114 112 2 4 

121 118 3 3 

99.2 99.2 99.2 

97.7 98.4 98.1 

98.5 100.0 99.2 

99.2 97.6 98.4 

100.0 97.7 98.9 

100.0 98.4 99.2 

98.2 96.6 97.4 

97.5 97.5 97.5 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Cell cultures and live imaging. 

XEN cell media is high glucose Dulbecco’s modified Eagle’s media (D-MEM, Gibco) 

supplemented with 20% fetal bovine serum (FBS), 0.1 mM 2-mercaptoethanol, 1 mM non-

essential amino acids, 1 mM sodium pyruvate, 2 mM glutamine, 100 units/mL penicillin and 100 

µg/mL streptomycin. ES cell media are the same as XEN cell media bit supplemented with 

recombinant leukemia inhibitory factor (LIF) (Mereau et al., 1993). XEN cells were cultured on 

gelatin-coated plates and ES Cells were cultured in the presence of mouse embryonic fibroblast 

(MEF) feeders at 37oC in 5% CO2. For live imaging, cells were plated on a gelatin-coated glass 

bottom dishes (MatTek) and maintained in an environmental chamber (Solent Scientific), as 

previously described (Kang et al., 2013). 

 

Embryo collection, in vitro embryo culture and staining. 

Mice were maintained under a 12-hour light/dark cycle. Embryos were recovered in M2 media 

(Millipore). For live imaging, embryos were cultured in KSOM media (Milipore) under mineral oil 

(Sigma) on agarose-coated glass-bottom dishes (MatTek) in an environmental chamber (Solent 

Scientific) maintaining 37°C and 5% CO2, 5% O2 and 90% N2. Embryos were fixed in 4% 

paraformaldehyde (PFA) in PBS for 10 minutes at room temperature or overnight at 4°C, 

permeabilised in 0.5% Triton X-100 in PBS for 20 minutes and blocked in 2% horse serum in 

PBS for 1 hour at 4°C. Immunostaining was performed using various protocols as previously 

described (Artus et al., 2010; Nichols et al., 2009; Plusa et al., 2008). DNA was stained and 

visualized using Hoechst 33342 (5 μg/ml, Invitrogen). 

 

Image data acquisition. 

Laser scanning confocal images were acquired as z-stacks of optical sections on a Zeiss 

LSM510META (static 3D, time-lapse 3D) or LSM700 (time-lapse 3D). Fluorescence was excited 

with a 405-nm laser diode (Hoechst), a 488-nm Argon laser (GFP), a 543-nm HeNe laser 

(Alexa-Fluor-543/555) and a 633-nm HeNe laser (Alexa-Fluor-633/647). Images were acquired 

using a Plan-apochromat 20x/NA 0.75, Paln-Neofluar 40x/1.30 or Plan-apochromat 63x/1.40 

with optical section thickness of 0.5-2 μm. For 3D rendering, raw data were processed using 

Zeiss AIM/ZEN software (Carl Zeiss Microsystems) or IMARIS 7.2.2 software (Bitplane AG). 
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Algorithmic components of MINS. 

 

1. Detection 

The detection of nuclei, based on the assumption that cells are generally bright, blob-like 

objects, resembles a well-studied computer vision problem - blob detection (Forsyth and Ponce, 

2002). The performance of the detection procedure is determined by the degree of overlap 

between proximate nuclei, the variability of size, and the irregularity of shape and texture.  

 For the detection of nuclei within samples we apply the Hessian eigenvalue thresholding 

method introduced previously (Lou et al., 2012). As shown in Figure 2, we first convolve the 

image with a Gaussian kernel to smooth out noise and weaken local texture. We then compute 

the Hessian representation and threshold its eigenvalues to extract the foreground, followed by 

a connected component analysis to extract each nucleus. Finally, this procedure is repeated 

with a wider Gaussian kernel, and only pixels that are consistently segmented as foreground 

across all scales are preserved. 

 Intuitively, Gaussian smoothing aggregates mass from the neighborhood and “pushes” 

up the central regions of the blobs, which become local maxima.  Hessian representation is then 

used to identify the local maxima because a local maximum has all negative Hessian 

eigenvalues, while a stationary point (e.g. a saddle point) does not (Gonzales and Woods, 

2008).  Therefore, simple thresholding of the eigenvalues can extract the foreground (nuclei).  

This procedure is repeated at different scales, because a large Gaussian kernel strongly 

suppresses noise, but yields merge error (i.e. under-segmentation, because mass is aggregated 

from a larger range), while a small Gaussian kernel is sensitive to noise, but better preserves 

the boundary. Specifically, small smoothing kernel reveal fine structures of the image (i.e. each 

and every nucleus) well, but are susceptible to noise which eventually leads to false positives 

(e.g. those in the middle of Figure 2Ci). By contrast, a large smoothing kernel can suppress 

noise, but is suboptimal in separating nuclei (see merged nuclei in Figure 2Ciii). The results at 

different scales are complementary to each other, and combining them produces fewer false 

positives and merge errors. 

 In practice, users only need to provide a rough estimate of the average radius of nuclei 

within the sample imaged, and the MINS program automatically converts this input into 

parameters. Should the estimate of radius be too small, Gaussian kernel is subject to local 

texture and prone to split error, resulting in over-segmentation. This can be corrected by 

increasing the estimation of radius. By contrast, if the radius estimate is too large, proximate 
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nuclei may be merged, resulting in under-segmentation, and users need to adjust the input 

parameters by reducing the estimation of radius.  

 

 

 

2. Segmentation 

 

The results from detection are then input into the segmentation routine, which is addressed as a 

seeded multi-label image segmentation problem. 

 

Geodesic Image Segmentation and Fast Marching. A large number of segmentation 

algorithms are available. For our purposes, and in particular for its runtime consideration, we 

choose geodesic image segmentation as our base algorithm (Bai and Sapiro, 2007; Couprie et 

al., 2010; Criminisi et al., 2008). Geodesic image segmentation applies a geodesic distance 

transform over a grid graph that represents the image. In particular, geodesic distance between 

two nodes is the shortest path over a grid graph where the edges are weighted according to the 

continuity of neighboring pixels. Therefore, geodesic image segmentation is also referred to as 

a shortest path segmentation.  Intuitively, given seeds, a new pixel will be assigned with the 

label of the “closest” seed.  

 

Parallel Geodesic Segmentation. In a multi-label segmentation task, we first assign a unique 

label to each detected nucleus. A straightforward extension to multi-label segmentation is to 

transform the problem into a series of binary segmentation tasks: let label i be foreground and 

the rest background, perform binary geodesic segmentation, and repeat this procedure for each 

label i.  Given an image of m cell nuclei, this gives overall complexity O(m nlog(n)), where 

O(nlog(n)) is the complexity of a single geodesic segmentation run using the fast marching 

method (Hassouna and Farag, 2007; Sethian, 1996), and m is the number of seeds (viz. nuclei).  

Unfortunately, this one-versus-rest strategy is highly expensive, because in practice m can be 

large. 

 To accelerate multi-label geodesic segmentation, we expect to be able to simultaneously 

propagate multiple labels without causing under-segmentation when those labels are well 
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scattered and background seeds exist between them. Therefore, we propose the following 

accelerated multi-label geodesic segmentation: 

0. Perform the detection step (Figure 3B) on the raw image (Figure 3A). 

1. Extract the centers of each uniquely labeled nucleus and perform a Delaunay 

triangulation on the resulting center cloud. This yields an adjacency graph that encodes 

neighborhood information of all nuclei (Figure 3C). 

2. Perform graph coloring (Brelaz, 1979) on the adjacency graph, which deterministically 

assigns different colors to neighboring vertices using as few colors as possible (Figure 3D). 3. 

Randomly sample pixels below certain intensity threshold as fixed background seeds.  

4. Select a color. Let all vertices (viz. labels) having the selected color be foreground and 

the rest be background in addition to those sampled background seeds, perform a binary 

geodesic segmentation. Repeat this module for all colors (Figure 3E). 

5. Re-label the resulting foreground pixels (contain multiple nuclei) by nearest neighbor 

search with respect to the original detection (Figure 3F). 

6. Repeat steps 4–5 for each color. 

This procedure is illustrated in Figure 3 on three types of input images. Given raw image and 

detection results, the first two-step yield clusters of cell nuclei and each cluster contain well 

scattered nuclei. Binary geodesic segmentation accurately extracts the boundaries of nuclei 

colored yellow, and the foreground pixels are relabeled with their original label from the 

detection. After iterating through all colors, the final segmentation is obtained by combining the 

result from each individual run.  

 

Complexity Analysis. Our accelerated multi-label geodesic segmentation algorithm has a 

complexity of O(k nlog(n)) where k is the number of colors used by the graph coloring. It should 

be noted that this provides a significant runtime improvement over the naive approach detailed 

above, because k « m. More importantly, k does not scale as much as m does (linearly).  In 

detail, the four color theorem states that every planar graph is four-colorable (Appel and Haken, 

1989), which means that k ≤ 4 for 2D segmentation and suggests O(n log(n)) for our multi-label 

segmentation algorithm in 2D. This property does not transfer to the 3D case – in theory the 

maximum number of colors needed depends on the surface’s Euler characteristic (Ringel and 

Youngs, 1968). However, in practice we found that k is usually less than 8 and m is usually 

between 60 and 100, which normally brings a speed up by a factor of 8 to 10. 



3. Classification 

 

Multiple Embryo Separation. To extract multiple embryos present within the same image, we 

follow a clustering based approach. This problem becomes difficult when false detections 

emerge from background structures. This prevents us from using methods such as k-means or 

normalized-cut because of their sensitivity to noise. This stems from the pre-fixed number of 

clusters required by those methods. Noise will just “pull” clusters towards them, yields untidy 

clusters or split of true clusters (viz. embryos). In other words, false detections may “drag” the 

separation hyperplanes towards them and subsequently split true embryos. 

 Instead, we use mean-shift. The key is noticing that the kernel width of mean-shift 

naturally corresponds to the embryo size. This allows one to encode embryo shape into mean-

shift, which yields a density map where each mode directly corresponds to a clean embryo or a 

clear pack of false detection.  By tracing the modes, mean-shift can identify all embryos and 

packs of false detections, if any. Given expected number of embryos K, we accept the top K 

strongest modes as embryo, and the rest should be noise. This is reasonable since usually only 

embryos exhibit an oval shape that leads to strong mode in the resulting density map. 

 Note that seeds for mode tracing are randomly chosen in mean-shift. This leads to a 

mild degree of instability, particularly at the vicinity of two close embryos. For better robustness, 

we improve mean-shift clustering using the spirit of ensemble learning. Briefly, we run mean-

shift multiple times and take the majority vote to decide whether two nuclei belong to the same 

cluster (viz. embryo). 

 

Outlier Removal. Outlier removal is performed per embryo. To do this, we use a robust shape-

fitting approach, using ellipse as the underlying shape model. Robust fitting is necessary 

because false detections that survived the mean-shift embryo extraction will significantly distort 

the estimation of embryo outline.  Our approach consists of two components: RANdom SAmple 

Consensus (RANSAC) and 2D/3D ellipse fitting. 

 RANSAC  is a robust model estimation framework that can discard outliers by iteratively 

refining the set of “inlier” detections. Briefly, RANSAC starts by assuming a set of “inliers” using 

random sampling from all data points. In our case, data points are the coordinates of foreground 

pixels. It then fits the model (a 2D or 3D ellipsoid) to this set of “inliers” and uses the estimated 

model parameter to improve the set of “inliers” by filtering out data points in the assumed set of 

“inliers” that appear incompatible with the estimated model and by adding new ones from the 

rest that are compatible. This procedure is repeated until convergence. Given a percentage of 
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outliers in the data and an expected probability of final success, one can theoretically estimate 

the upper bound on the number of iterations required. Given a robust model estimation 

procedure as RANSAC, we are left with finding an algorithm to fit ellipses to 2D/3D data points. 

We use the method described in (Fitzgibbon et al., 1999), extended to handle 3D data. 

 

ICM versus TE Cell Classification. ICM/TE cell classification relies on the same approach 

used in the outlier removal step. Essentially, we attempt to fit an ellipse model to the data and 

this ellipse model describes the border of the embryo. After model estimation, we extract iso-

surface at threshold T and consider all cell nuclei that are enclosed by this iso-surface as ICM 

cells and the rest of the nuclei represent TE cells. It should be noted, that T = 1 exactly 

corresponds to the surface of an ellipse. But in practice we choose T < 1 (e.g. 0.98, surface of a 

shrunk ellipse) for better robustness. 
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4. MINS Key Parameters by Module 

 

Module Key Parameters 

Module #2: Enhance Image 

 

1. Maximum Intensity Cutoff:  

Set this parameter to perform a 

nonlinear intensity transformation if 

your image is too dark. In detail, all 

pixels’ intensity is bounded to the 

given cutoff value and the result is 

remapped to range [0, 255].  

Module #2: Detect Nuclei 

 

1. Nucleus diameter (in pixels): 

Set this parameter to a roughly 

estimate diameter in pixels of all 

nuclei in your image. 

2. Image noise level: 

This parameter controls the trade-

off between sensitivity and 

specificity. If you have a relative 

noisy image, use a hard level (=3), 

otherwise, use moderate (=2) or 

soft (=1) accordingly. 

3. Z to X-Y relative resolution: 

This is the resolution of the Z-axis 

divided by the resolution of the X-Y 

axis. Normally (for example with 

laser scanning confocal data) the Z 

resolution is lower, so this value 

should be between 0 and 1. You 

should know this information from 

the experimental settings used to 

acquire your image data. 
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Module #3: Segment Nuclei 

 

1. Image smoothing kernel: 

This parameter controls the level 

smoothness. Using 1.2 works well 

in practice for most mouse embryo 

and ES cell data. 

2. Z to X-Y relative resolution: 

This value lies between 0 and 1. In 

most cases, the Z-resolution will be 

lower than the X-Y resolution. If so, 

set this parameter to the value of 

{resolution of X-Y panel}/{resolution 

of Z axis}. For example, if your data 

is generated with 50 µm resolution 

in the X-Y, and 200 µm resolution 

along the Z axis, this parameter will 

be 50/200=0.25. 

Module #4: Classify Nuclei 

 

1. Number of embryos to detect: 

To separate multiple embryos, first 

specify the number of embryos 

existing in your image. 

2. Average radius of embryos: 

Also specify the average radius of 

embryos. Use a rough estimate.  

3. Detect and remove outliers: 

Check this will incur outer removal. 

4. Classify TE/ICM for each 

embryo: 

Check this will incur TE/ICM 

classification for each detected 

embryo. 
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