
Supplementary Material 

Supplementary Figures 

 

Supplementary Figure1. Flow cytometry data gating and processing. (a) A gate based on the forward 

and side scatter is first used to select single cell events. (b) The gated population is projected for dsRed 

and zsGreen. The particular case is a population of H293 cells without any fluorescence. Subsequently, 

we gated the constitutive protein positive events (e.g. dsRed for the negative feedback) at the threshold of 

negative cells. (c) The particular case is a population is the negative feedback. ■ 

 

 

 



  

Supplementary Figure 2. Doxycycline titrations for the negative feedback loop and the control 

architecture. The zsGreen protein in green diamonds and the dsRed in red squares. Error bars show the 

standard deviation of triplicate experiments. (a) Absolute change of mean fluorescent levels of dsRed and 

zsGreen for the NFL. (b) Absolute change of mean fluorescent levels of dsRed and zsGreen for the 

control architecture.■ 

 

 



 

Supplementary Figure 3. Coefficient of variation versus IPTG concentration for the negative feedback 

loop for various concentrations of doxycycline. ■ 

 

 

 

 

 

 

 



 

 

Supplementary Figure 4. IPTG Titrations for the negative feedback loop. The high Doxycycline 

case. DsRed positive cells are illustrated and the corresponding histograms for each output are also 

presented. ■ 

 

 

Supplementary Figure 5. IPTG Titrations for the negative feedback loop. The low Doxycycline case. 

DsRed positive cells are illustrated and the corresponding histograms for each output are also presented. 



 

Supplementary Figure 6. IPTG Titrations for the cascade. The high Doxycycline case. DsRed 

positive cells are illustrated and the corresponding histograms for each output are also presented.  ■ 

 

 

Supplementary Figure 7. IPTG Titrations for the cascade. The low Doxycycline case. DsRed positive 

cells are illustrated and the corresponding histograms for each output are also presented.  ■ 

 

 

 



 

 Supplementary Figure 8. Comparison of mean fluorescence and coefficient of variation between the 

main paper simple regulation clone and another simple regulation transgene.■ 

 

 



 

Supplementary Figure 9. Coefficient of variation for the control architecture.  Local, global and total 

noise in gene expression of the control architecture. (a) Coefficient of variation of dsRed protein for low 

DOX, (b) Coefficient of variation of zsGreen protein for low DOX.■ 



 

Supplementary Figure 10. Effect of forward scattering vs. side scatter gate on the extrinsic noise. The 

top panels (a and b) correspond to the original gate (SSC ~20k-120k and FSC ~20k-120k gate, 

supplementary figure 1) while panels c and d were prepared using smaller gate (SSC ~40k-50k and FSC 

~70k-80k gate).■ 

 



 

Supplementary Figure 11. Comparison of mean fluorescence and coefficient of variation between the 

main paper negative feedback clone and two different negative feedback transgenes.■ 

 

  



 

Supplementary Figure 12. Determination of PCR amplification efficiencies for DsRED and BRCA1 

gene targets. The dilution curves (DsRED and BRCA1) were plotted as log2(DNA amount, ng) versus Ct. 

The PCR amplification efficiency E was calculated as: 2
(-1/slope of the dilution curve)

-1. EDsRED was determined as 

1.07, and EBRCA1 as 0.98.■ 

 

 

Supplementary Figure 13. Simulations where the intrinsic and extrinsic noise change separately. (a) We 

vary the strength of transcription of a single bidirectional promoter coding for two fluorescent proteins, 



leading to perfectly correlated fluorescence quantities. (b) We vary the strength of transcription of two 

fluorescent genes independently.■ 

 

Supplementary Figure 14. Simulations where the intrinsic and extrinsic noise change simultaneously.■ 

 

 

 

 

 

 

 

 

 

 

 

 

 



Transgene copy number 

Real-time quantitative PCR has been used as an alternative to Southern blot or fluorescence in situ 

hybridization for detection of gene copy numbers
1
. Various studies demonstrated that this method is 

accurate enough compared to Southern blot. For example, in Table 2 from “Determination of Cytochrome 

P450 2D6 (CYP2D6) gene copy number by real-time quantitative PCR”
2
, the estimations of CYP2D6 

gene copies from real-time quantitative PCR match with those from Southern blotting. The average copy 

numbers of DsRED of all stable clones were estimated by the delta delta Ct method as follows: 2
-ΔΔCt

 = 

((1 + EDsRED)
-ΔCt,DsRED

) /((1+EBRCA1)
-ΔCt,BRCA1

), where EDsRED is the PCR amplification efficiency for 

DsRED and EBRCA1 for BRCA1 (endogenous reference gene)
3
.  

 The PCR primers are: DsRED forward primer: 5’- ctccaccacggtgtagtcct-3’; DsRED reverse 

primer: 5’- agaccgtgtacaaggccaag-3’; BRCA1 forward primer: 5’- gagcgtcccctcacaaataa-3’; and BRCA1 

reverse primer: 5’- tgctccgtttggttagttcc-3’. The control stable HEK293 cell line was generated by Flp-In 

system (Invitrogen) and contains one copy of DsRED transgene
4
. All genomic DNA samples were 

extracted using DNeasy Blood and Tissue kit (Qiagen). To determine the PCR amplification efficiency, 

genomic DNAs from the control cell line were used to generate the dilution curve of log2(DNA amount, 

ng) vs. Ct. EDsRED was calculated as 1.07, and EBRCA1 as 0.98. The PCR conditions were as: 95 degree for 3 

minutes, followed by 40 cycles of 95 degree for 15 seconds and 60 degree for 30 seconds. For each stable 

clone, triplicates (50 ng of genomic DNA) were performed and the average copy numbers were calculated 

as the mean ± SD. For statistical analysis, z scores were calculated against estimated integer copy 

numbers, and -1.96<z<1.96 was determined as no statistical difference (corresponding to 95% confidence 

interval). 

 

Determination of PCR amplification efficiency: 80 ng, 40 ng, 20 ng, 10 ng, 5 ng and 2.5 ng of genomic 

DNAs were extracted from the control cell line using DNeasy Blood and Tissue kit (Qiagen). The PCR 

primers are: DsRED forward primer: 5’- ctccaccacggtgtagtcct-3’; DsRED reverse primer: 5’- 



agaccgtgtacaaggccaag-3’; BRCA1 forward primer: 5’- gagcgtcccctcacaaataa-3’; and BRCA1 reverse 

primer: 5’- tgctccgtttggttagttcc-3’. The PCR conditions were as: 95 degree for 3 minutes, followed by 40 

cycles of 95 degree for 15 seconds and 60 degree for 30 seconds. The dilution curves were plotted 

(Supplement Fig. 12) as log2(DNA amount, ng) vs. Ct. The PCR amplification efficiency E was 

calculated as: 2
(-1/slope of the dilution curve)

-1. 

Supplementary Table I.  Transgene clones and the resulting number of integrations. 

Clone Gene Copy Average Standard Deviation 

Negative Feedback 

(NF Clone I: L6.89.14) 
1.026716891 0.205356713 

Simple Negative Regulation 

(SNR Clone I: V2.42.1) 
1.986616106 0.063272704 

Single integration clone 1.005016457 0.127722277 

Simple Negative Regulation 

(SNR Clone II: V2.52.2) 

1.024331368 0.09450017 

 

Supplementary Table II: The values for alpha obtained for the manuscript clones. 

IPTG 
(μM) 

Negative 

Feedback 

High Dox 

Negative 

Feedback 

Low Dox 

Simple Negative 

Regulation 

High Dox 

Simple Negative 

Regulation 

Low Dox 

50 1 1.22 1.11 1.28 

25 1.046293 1.280207 1.170337 1.332335 

12.5 0.986329 1.211581 1.232468 1.230991 

6.25 0.961434 1.195583 1.064725 1.084425 

3.125 0.847654 1.111019 0.868676 0.861535 

1.6 0.692237 0.864742 0.684977 0.626666 

0.8 0.64337 0.749677 0.548974 0.431871 

0.4 0.605457 0.677382 0.389802 0.303799 

0.2 0.568188 0.649937 0.323275 0.265747 

0 0.5828 0.630114 0.337724 0.23634 

 

 

 



Theory 

Stochastic events which govern the concentration of a single protein, such as the synthesis and 

degradation of that protein, are referred to as “intrinsic” or “local” noise. Such random fluctuations can 

propagate along regulation pathways, with the consequence that protein distributions along a pathway 

appear correlated
5, 6

. However, even proteins from different regulation pathways show correlation
5, 7

. This 

arises from stochastic variations in quantities which affect the regulation of all genes
5, 6

, such as in 

polymerase copies or cell cycle phase. As a consequence, a strongly expressing constitutive promoter is 

expected to have little intrinsic noise, while a weak promoter will have high intrinsic noise
8, 9

. In addition, 

two identical, independently regulated promoters are expected to have the same extrinsic noise, which 

arises through global effects
5, 7

. 

 The total noise observed in a fluorescent reporter distribution arises through the combination of 

these “global” or “extrinsic” fluctuations together with the fluctuations in that protein’s local regulation 

machinery (“intrinsic” noise)
5
. The intrinsic noise and extrinsic noise squared, sum to the CV-squared of 

the fluorescent reporter
5
. Using this notation, let angle brackets indicate that an average is taken with 

extrinsic variables held fixed, and let an overbar indicate an average where intrinsic variables are fixed. 

Then the three noises, intrinsic, extrinsic, and total, can be written in terms of P, the observed distribution 

of reporter protein: 
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 For intrinsic noise, the authors of
5
 take the variance of the intrinsic variables, 〈  〉  〈 〉 , then 

estimate the expected value of this variance, denoted by the overbar, and subsequently divide by the mean 

squared of P. For extrinsic noise, the authors take the expected value of P with respect to intrinsic 

variables, then the variance of 〈 〉, and finally divide by the mean squared of P. For the total noise (CV-

squared), the variance of P is divided by the mean squared. 

Note that with a single reporter, the noises can’t be estimated unless both the intrinsic and 

extrinsic variables are observed. However, in the standard two-reporter experiment, the extrinsic noise 

becomes the normalized covariance of two reporters that are independently regulated and identically 

distributed. The reason
5
 is that in a single cell, the extrinsic variable is fixed, so the quantity 〈 〉 ̅̅ ̅̅ ̅̅  can be 

calculated as the average product of the two reporters 〈        〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, then since 〈    〉̅̅ ̅̅ ̅̅ ̅̅  〈    〉̅̅ ̅̅ ̅̅ ̅̅  the extrinsic 

noise becomes the normalized covariance of the two reporters: 
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and the intrinsic noise becomes the normalized RMS difference from           , so that the sum of 

intrinsic and extrinsic is twice the CV of one reporter. 

In this paper we examine more complicated regulatory mechanisms where it is not feasible to 

construct two identically-regulated reporters (or impossible to obtain identical reporter statistics). We 

define a new formulation and we will obtain the previous results as a special case, where the extrinsic 

noise is the normalized covariance and the components sum to the total noise.  

Let X be the observed reporter protein, and A and B are the intrinsic and extrinsic variables; if we 

assume a multiplicative model and that the variables are independently distributed, we can derive the 

following intrinsic/extrinsic noise breakdown: 
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 Such a multiplicative model can be motivated as follows. Suppose gene X is activated by two 

factors; one (A) is an intrinsic variable such as a transcription factor, and the other (B) is an extrinsic 

variable, such as RNA polymerase. Suppose both factors must be present for transcription, in the complex 

ABX. We have four reaction equations: 

       

       

         

         

This results in the following algebraic equations at steady-state: 
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For the gene activity, we take the ratio of active complex ABX to total gene copies: 
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This simplifies to an expression in terms of A and B (we drop most of the constants): 
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Which, for small, unsaturated concentrations of A and B, looks like: 
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 Intuitively, in this multiplicative approximation, a polymerase fluctuation of 10% is expected to 

change gene activity by 10% (with an unsaturated promoter). Compare this to an additive noise model: 

now, the same polymerase fluctuation of 1000 molecules is expected to change gene output by 1000 

molecules, regardless of whether the output is currently regulated at 10000 molecules or at 100 

molecules. Thus the multiplicative model makes physical sense for positive variables, where a reporter 

with 100 molecules cannot have an uncertainty of 1000 molecules. 

 We generalize this multiplicative model and assume the observed random variable is a function of 

its independent component sources (A and B, the intrinsic and extrinsic variables) of the following 

general form:  

       

i.e. where a and b are not necessarily both equal to 1. These sensitivity coefficients must appear as powers 

because multiplied coefficients fall out as a single constant in the next step. It is convenient to convert this 

to a linear model (for ease of calculation), by taking the logarithm: 

                         

 For ease of notation, we drop the log functions and just use the original variable names. 

          

 Here we need to calculate the contributions of A (intrinsic) and B (extrinsic) to the total observed 

noise of X. In general, summing two independent random variables A and B with variance        and 

       results in the following variance:  



                                                           

 The last equality holds because the intrinsic and extrinsic components have been defined to have 

no covariance term: any fluctuation which affects two identical reporters is an extrinsic variable, and all 

remaining noise observed is intrinsic. The variances of logarithms returned by this method are 

approximately the normalized variances (CV-squares) of the original quantities; we discuss this point 

later. 

 Elowitz et al.
7
 argues that two identically regulated reporters with the same mean and variance 

should have the same extrinsic noise, and uses this fact to calculate the noise components. We introduce 

the following modification to extend the intrinsic/extrinsic breakdown to cases where one reporter is not 

constitutive, and hence may not obey the Elowitz et al. assumptions. For a regulated reporter, noise may 

propagate along the regulatory pathway, changing the reporter’s susceptibility to global fluctuations 

(supposing that this reporter is in the same cell as a constitutive reporter). We capture this asymmetric 

effect by adding a sensitivity coefficient to the regulated reporter for a two-reporter noise breakdown. 

 Let Y be the constitutive reporter and X a regulated reporter (controlled by an inducer, in our case 

IPTG). A is a function of all extrinsic variables, B and C are the intrinsic variables for each promoter, and 

  is a coefficient which is 1 for two constitutive promoters with identical reporter statistics (as in Elowitz 

et al.) but varies depending on the regulation of X.   represents an aggregated susceptibility to fluctuating 

variables which affect both reporters, similar to the quantity H used in Paulsson
10

 to denote the 

logarithmic gain of an interaction: 

      

     

 With   placed as a power of A, we have defined          〈       〉         〈     〉   , 

the logarithmic gain of fluctuations in A (extrinsic noise sources) transmitted to X, which we assume is 



independent of the value of B and of the size of the fluctuation. Selecting     results in the same noise 

breakdown as Elowitz et al.
7
, where the extrinsic noise is the normalized covariance of both reporters, and 

the intrinsic noise is the total CV-squared minus the extrinsic noise.  

 Intuitively, the inverse tangent of   is the slope of the data on a log-log plot that lies along the 45-

degree diagonal in the special case     but does not if the two reporters experience different fluctuation 

magnitudes from extrinsic sources due to the presence of noise-changing regulatory components.  

 We take the logarithm to convert to a linear model to find the components.  

                       

                     

Once more dropping the log notation for simplicity, 

       

      

 Taking the covariance of the logarithms of the reporters (this can be done directly with cytometry 

data – gate as in figure S1, take the log of the raw reporter values, and calculate the covariance): 

                       

                                       

Because A, B, and C are defined as uncorrelated, 

                            

We take the variances of the logarithms of X and Y, which are the experimentally determined total noises, 

                       



                     

Next, we replace the variance of A with the experimental covariance term, 

                         

                         

 Our goal is to compute    (where           ranges over possible inducer concentrations), 

       ,        , and        , from the knowledge of           ,        , and         Here, the 

covariance terms correspond to the effects of the extrinsic noise, and the B and C terms are intrinsic 

noises. So far we have 2N equations (the expressions for         and        ) in 3N unknowns (   and 

the variances of B and C for each well), but we also know that the inducer of the regulated protein (in our 

case IPTG) has no effect on the global fluctuations that contribute to noise in the constitutive reporter. 

This means the extrinsic noise term in (I),              , (and directly         and         also) should 

be the same for all inducer conditions, that is, we have     additional equations 
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for all    . Finally,      for the unregulated control experiment (in our case fully induced with IPTG), 

so both constitutively produced reporters have the same extrinsic noise, as in Elowitz et al 
7
.  

 The choice of      sets the noise components for the fully induced well, but we need to 

calculate    for the other wells. For wells without full IPTG induction, it follows from (II) that we can set 

   equal to 
             

           
, i.e. the ratio of the covariance of the current well to the extrinsic noise of the 

unregulated control experiment. This forces the extrinsic noise of the constitutive reporter (           

  ) to the same value               for all wells. The computed    are then used to calculate the 

(II) 

(I) 



extrinsic noise of the regulated protein              for each well, and by subtraction we then obtain the 

intrinsic components. 

 All of these terms            are unbiased estimates of the sample covariance computed as 

follows, for cytometry data where each individual well   has   cells recorded with reporter measurements 
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 We note that in some experiments the two reporters in the fully induced well do not have the 

identical statistics required by the dual reporter theory of Elowitz et al. We attribute this to the difficulty 

in finding statistically identical genes and promoters, and also to measurement related issues. For these 

experiments, instead of assuming the both reporters have the same intrinsic and extrinsic noise, we may 

assume that they are proportionally the same. For example, if one reporter’s CV-square is 1.2 times the 

other’s we can assume its intrinsic and extrinsic CV-squares are also 1.2 times as large. Hence for the 

computation, instead of assuming      for the fully induced well, we would assume    is the ratio of 

the CVs of the reporters. Otherwise the calculation proceeds the same way. 

 In summary, this is how we define the noise components, using as data      
  and      

 , the 

experimentally determined CV-squares of reporters X and Y (which, as described below, we approximate 

with the variances of the logs of X and Y) and the covariance of the logarithms of X and Y, also 

determined experimentally (inducer concentrations are indexed          , where well   is fully 

induced): 

   
      

     
  

   
             

           
     



     
                

     
       

       
  

     
                

     
       

       
  

 As mentioned earlier, we have calculated the variances of the logarithms of the reporters instead 

of the CV-squared. This argument relies on a linearized approximation: the standard deviations of the log-

scale variables are approximately the relative standard deviations of the original variables. Indeed, for 

small values of               : 
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 Thus, our computed quantities are approximations of the squared coefficient of variation, which 

is a standard measure of noise
7
. Note that this strategy replaces the data normalization performed in 

Elowitz et al. but performs a similar function. This approximation is very close for tight distributions, but 

gets worse for broad distributions (i.e., the approximation is worse for larger values of                ).  

 We can verify the approximation by calculating the standard deviation of the logarithm of the 

data and comparing it to the RSD of the original data. We improve the approximation by trimming the 

largest values of                by dropping all values more than 2.5 standard deviations from the mean 

of the log of the data (these points are not dropped from the direct RSD verification, and the cutoff was 

obtained by trying several values).  

Verification and decomposition of simulated noise 

In our noise decomposition, we expect random quantities which affect the expression of both genes to 

show up as extrinsic noise, while we expect random quantities which affect only a single gene to show up 



as intrinsic. We address the case where one reporter may be less sensitive to extrinsic noise sources due to 

noise-reducing regulatory pathways. To see this, first take the simplest case of a two-color experiment: 

suppose we have a plasmid with a constitutive bidirectional promoter P coding for reporters X and Y, and 

let the only source of uncertainty be the plasmid copy number. Then we have production rates of each 

reporter: 

  

  
         

  

  
         

At steady-state, we have the relations 
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And we want to find the extrinsic noise, the normalized covariance, which we have defined 

approximately by taking the covariance of the logarithm of the data: 

    
                      

    (   (
  

  
)             (

  

  
)         ) 

    (   (
  

  
)     (

  

  
))     (   (

  

  
)         )     (           (

  

  
))

                      

    
                                   

To calculate intrinsic noise we need the total noise of each reporter: 
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Which shows that in this example there is no intrinsic noise; hence a common promoter for two reporters 

is an extrinsic source of noise: 

     
       

      
    

     
       

      
    

Suppose instead that there were two different plasmids with promoters P1 and P2 coding for reporters X 

and Y, and let their copy number be independent random variables. Setting up the problem the same way, 

  

  
          

  

  
          

At steady-state, 
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Calculating the extrinsic noise, 
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For the total noise, 

     
               

     
               

     
       

      
               

     
       

      
               

Hence in this case, where the random variable independently affects the two reporters, the extrinsic noise 

is zero, making these intrinsic noise sources.  

 Notice that the strength of our approach is when the two reporters are not identically regulated 

with identical statistics. We extend the applicability by assigning different extrinsic noise quantities to 

each reporter, so that now instead of there being a single extrinsic noise, each reporter has its own set of 

intrinsic and extrinsic contributions. The following example shows what can happen to extrinsic noise in 

the case of negative feedback. Suppose we have the extrinsic promoter case, but reporter X has negative 

feedback (and      ): 

  

  
    

 

     
     

   

   
     

  

  
         

At steady-state, 
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Calculating the extrinsic noise, 
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For the total noise, 
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If we calculate the intrinsic noise using the Elowitz et al. approach, we find that the extrinsic noise 

exceeds the total noise for reporter X. However, for this simplified example, we know the only noise 

source is an extrinsic variable, and thus the intrinsic noise should turn out to be zero. This allows us to 

infer that  , as described in the previous section, has a value of ½, representing the fact that reporter X 

experiences half as much noise from the variable plasmid copy number as Y does. 



     
  

 

 
            

 

 
            

     
  

 

  
                        

     
       

    

 Recall that in the experiments, we must first estimate   in a case where the Elowitz et. al. 

assumptions hold, i.e., the reporters are identically regulated.  

 To confirm our analysis we used simulations to test the decomposition on noise for two extreme 

cases, where we control the levels of intrinsic and extrinsic noise. As illustrated in Supplementary Fig. 

13a we first we vary the strength of transcription of a single bidirectional promoter coding for two 

fluorescent proteins, leading to perfectly correlated fluorescence quantities, which our decomposition 

shows to have only extrinsic noise and no intrinsic noise.  Next, in Supplementary Fig. 13b we vary the 

strength of transcription of two fluorescent genes independently, which leads to uncorrelated fluorescence 

quantities; our method returns only intrinsic noise and no extrinsic noise. 

 Furthermore, in Supplementary Fig. 14, we simulated mixtures of both noise types, generated by 

varying the strength of transcription of two different reporter genes as in the intrinsic noise case in the 

previous figure, but also by varying the amount of a transcription factor which regulates both genes. For 

panel a, the noise breakdown gives an intrinsic noise of 0.22 and an extrinsic noise of 0.16 for both 

proteins. For panel b, where we give the common transcription factor extra variability, it raises the 

extrinsic noise substantially (but not the intrinsic noise; the common transcription factor is an "extrinsic 

variable"). The intrinsic noise changes slightly to 0.21 and the extrinsic noise jumps to 0.23. 
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