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Figure S1. Phosphorylation kinetics after stimulation. Luminex
measurements of HCT116 (upper row) and HT29 (lower row) treated for 5-60 min with
the indicated ligands demonstrate for the relevant outputs that TGFα(red) as well as
IGF (green) signalling is near post treatment steady state after about 30 min (dashed
vertical line). The lines indicate the medium log2 fold change to the average control
measurements at t=0 (black circles). (n >= 3).
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Figure S2. Model reduction example. Stepwise reduction of the model and the
corresponding identifiable parameter combinations exemplified by the cell line HT29.
First column denotes the network structure with dashed lines indicating removed links.
Second column depicts the parameterization (natural logarithm) after fitting the model
to the structure. Thereby the first parameter values are taken from the best fit of 10000
random initializations. For all further reduced models the best inital fit is given as
starting point (except for the removed link which is kept at zero). the last two columns
show the chi-squared value and the number of identifiable parameters respectively.
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Figure S2. (continued) Model reduction example.
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Figure S3. Growth curves for different concentrations of IKK inhibitor
BMS34554. Xcelligence measurements of HCT116 cell growth in response to 3
different concentrations of BMS345541 or its solvent control DMSO (grey) at time 0
(arrow) grown in full serum. Shown is the maximal range of n >= 3 independent wells
along with the mean (thick line). Note that for concentration of 10µM cells even reach a
lower cell index than at time 0 indicating cell death.
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Figure S4. Parameter robustness. Bulk parameter distribution for originally 100
data sets simulated from the original data by adding random noise taking either the
starting network structure (left) or the reduced structure (right). Red numbers indicate
the median value and the blue arrow on the right boxplot indicates the parameter
estimation from the original model. The networks contain the percentage of non-zero
links found in the starting network simulations if less than 100%. The correlation for
removed links (dashed lines) and lower confidence is high. Outliers corresponding to fits
with chi-squared values higher than 10 times the median chi-sqared value were removed.
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Figure S4. (continued) Parameter robustness.
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Figure S5. Altered parameters for prediction of selected inhibitor
combinations. A Data (black bars) used to determine the parameters for inhibitors
against RAF, EGFR and MEK and PI3K. RAF (Sorafenib) and EGFR (Gefitinib)
inihibitors where newly introduced to the model and fitted (blue bars). Additionally
AZD6244 and PI3K were re-fitted, see also FIG. 6A in the main manuscript. Fitting
was done by determining the maximum likelihood fit for the four parameters, leaving all
other parameters unchanged. To obtain confidence intervals for the fitted parameters,
we used the fitted values of these parameters for all model fits obtained from data with
simulated noise (see also Fig. S6). The standard deviation for the fitted values is
indicated with error bars. For the data, the average of two replicates is shown together
with error bars indicating the standard deviation calculated by the error model from
these replicate measurements. B Log-2 parameters for the inhibitors against MEK,
RAF, EGFR and PI3K obtained by the fit discribed in A used to predict double
perturbations. Distribution was derived by starting with the parameters derived for the
initial screen that were 100 times noised.
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Figure S6. Body weigth of DLD-1 xenograft animal models during drug
treatment. Body weight of DLD-1 xenografted nude mice treated with the indicated
drugs (described in Fig. 6 in the main manuscript). Mice show no body weight loss
during the treatment, however during combinatorial treatment no weight gain can be
observed.
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1 Modeling perturbation of signaling networks with
MRA

To model the effect of a perturbation at one node on the other nodes in the network, we
apply the methodology of Modular Response Analysis (MRA). In the following we briefly
review this methodology, and introduce extensions that are required to apply it in the
context of our study. To illustrate the derived equations and approaches, we consider
three relatively simple networks, depicted in Fig. S7-S9, and in addition to general
derivations, we derive explicit equations for those. Readers that are interested in the
detailed derivation of MRA may refer to the work of Boris Kholodenko and coworkers
[1, 2] and our previous work [3]. An illustration of the parameters and their identifiable
combinations for the networks describing HT29 cells can be found in Fig. S5.

Definition and Derivation

MRA is an analysis of the steady-state responses to parameter perturbations that con-
siders the first, linear terms in the Taylor expansion of the dependence of steady states
on parameter. In the following, the vector x describes the steady-state of variables of
an ODE system, with each of them depending on a subset of paramters stored in the
parameter vector p. If we now choose the subset of parameters such that each xi depends
only on the parameter pi directly, then we can choose for simplicity a parameterisation
such that pj

xi

∂xi
∂pj

= δij. Once a single parameter is perturbed by an infinitesimal amount,
the response of the network can be calculated by:

pj
xi

dxi

dpj
=

pj
xi

∂xi

∂pj
+
�

k �=i

xk

xi

∂xi

∂xk

pj
xk

dxk

dpj
. (1)

Since per definition pj
xi

∂xi
∂pj

= δij, one can rewrite this equation as:

−δij = −pj
xi

dxi

dpj
+
�

k �=i

xk

xi

∂xi

∂xk

pj
xk

dxk

dpj
(2)

MRA provides interpretation and names for the scaled derivatives. First, the total deriva-
tives are called global response coefficents,

Rk
j =

pj
xk

dxk

dpj
. (3)

These coefficients describe the response of the entire network to a particular perturbation,
when the network is allowed to relax into a new steady state. The entries of Rk

j relate
to measurable quantities, such as log fold-changes of expression or activity of the steady
state after perturbation. Second, MRA defines local response coefficients. In contrast to
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the global response matrix, it provides information about the direct interactions between
variables. These can typically not be measured and need to be inferred. It is defined as

rik =

� xk
xi

∂xi
∂xk

for i �= k
−1 otherwise

, (4)

and can be interpreted as the normalized Jacobian matrix of the underlying ODE system.
Using these definitions, one can rewrite equation 2 as:

�

k

rikR
k
j = −δij . (5)

Thus, the rows of the matrix r and the columns of R are orthogonal for i �= j, and we
can write this down in a matrix formalism as:

rR = −I , (6)

By inverting matrix r, this can be rewritten as:

R = −r−1 (7)

If one perturbs the system at a single or several nodes, one can define a perturbation
vector, ∆p, which contains non-zero entries only at nodes that are directly perturbed.
The reaction (in terms of logarithmic fold-change) of all nodes in the network to this
perturbation can then be calculated by multiplying the global response matrix R or the
inverse of the local response matrix −r−1 with this perturbation vector. Thus, the global
response of node k to a perturbation in node j is defined as:

Rk
j = (−r−1)kj ∆pj (8)

In Figure S7 the relationship of local and global response matrix is exemplified on a
three-tiered network with a feedback from node C to A. This feedback now causes the
global response matrix to be fully connected although only three non-zero entries are
present in the local response matrix. This means when perturbing any node the steady
state of all nodes will be changed. Since only the global response matrix but not the local
response matrix can be measured, an intuitive derivation of the direct links will be hardly
possible when feedbacks structures occur.
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Figure S7. Visualizing the basic principles of MRA. (A) The left graph shows a
linear network consisting of three nodes. In the middle the weights of the network are
represented in the local response matrix r with the ingoing node indicated in the column
and the outgoing node indexed in the row. On the right the observable response of the
network called global response matrix is shown. In this simple network only the effect of
a perturbation in A* on C is not executed directly and the intuitive derivation of the
underlying local response matrix is possible (i.e. multiply along the path). Asteris
denote directly perturbed nodes. (B) Shows how the local and global response matrix
changes when a feedback from C to A is added to the network from (A). Although the
local response matrix is still sparse the global response matrix, which represents the
actual measurement results is completely filled. Thus addition of a feedback makes an
intuitive deduction of the underlying network extremly difficult. Note when only
perturbing at node A (as indicated in the network) only the first column of R can be
measured (marked in yellow). To obtain the complete matrix every node has to be
perturbed systematically and the response of all nodes measured. Note that
perturbation strength was set to 1 and such omitted in these examples.

Integration of different perturbation types

We now consider the effect of two principle perturbation types commonly applied on
signaling pathways: ligand-driven stimulation and small-molecule inhibitor-mediated in-
hibition.

Stimulation of node j by a ligand can be simulated by encoding the strength in ∆pj
as in equation 8. However, for our further analysis it proved crucial to keep perturbation
vectors binary and to transfer any non binary information to the local response matrix.
Consequently, we use local response coefficients for the ligands, set the perturbation to 1,
and fit the corresponding values in r to yield an estimate of the induced fold change at
the receptor level (see Fig. S8).

To be able to include inhibition by small-molecule inhibitors, two effects have to be
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considered: (i) the inhibition negatively affects the innate signal sent out by the targeted
molecule and (ii) it reduces the ability of the inhibited node to relay upstream signals
to downstream nodes. The first effect is modelled by a negative perturbation of the
targeted node m specified in a seperate perturbation vector ∆pinh with ∆pinhm ∈ (−∞, 0]
. The other effect, the reduced relay of the incoming signal, is modeled by multiplying
an inhibitory term im ∈ [0..1] to all outgoing local response coefficients. This yields a
modified matrix r̃. The strength of im can be calculated from the corresponding entry
in ∆pinh. Since ∆pinhm is defined as the logarithm of the inhibitor-induced fold change on
downstream pathways, the relationship of these two coupled inhibitor effects is defined as

im = exp(∆pinhm ) . (9)

The response of node k to a combined perturbation consisting of a stimulus at node j
and an inbibition at node m can thus be modeled by

Rk
j,m = (r̃−1)kj ∆pj + (r−1)km ∆pinhm . (10)

Thereby the coefficient im included in r̃ dampens the stimulation and ∆pinhm reduces the
basal activity of the node or, in the case of an negative effect on a downstream node,
relieves the basal repression (Fig. S8). Note that not all repressed nodes exhibit basal
activity ,e.g. receptors are usually inactive when not externally stimulated. For this case
the second term in equation 10 is zero.

!

"

#

!

Figure S8. Integration of simultaneous stimulation and inhibition in MRA.
LEFT: The network from Fig. S7A with the additional feature that node B is inhibited
(marked in red). MIDDLE: Local response matrix and the inhibitory perturbation
vector. Note that we have now introduced a new node S whose coefficient rAS contains
the perturbation strength of stimulus S and therefore the corresponding stimulatory
perturbation vector entry is set to 1. RIGHT: First column of the global response
matrix for simultaneous stimulation and inhibition. The global response from stimulus S
to node C is now a sum of the stimulatory pathway damped by the inhibitor and the
reduction of the basal activity of rCB is realized by multiplication of iB.
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Removing non-identifiable parameters

For each perturbation and for each measured node, the model prediction (in terms of log-
fold change of the unperturbed steady state) can be written as a function of the negative
inverse of the matrix r and the parameters for inhibition. As already apparent from the
examples in Fig S7 and S8, the equations for the response of the network typically contains
products of entries of r along paths in the network (see also [4]). We call these products
the path strengths P and define them as

Pl =
�

(j,k) edges in path l

rkj . (11)

Depending on the experimental design (i.e. which nodes are perturbed, which nodes are
measured etc), it is often the case that some rk’s only occur in combination in these paths,
never alone.

For example in the network in Fig S9 the node B is not measured and signals down
to two nodes. Therefore rBA occurs only in combination as can be seen at the entries of
the measured entries in the global response matrix. Since more parameters than entries
in R have to be fitted, an infinite number of parameter realizations can be found. This
might prolong fitting procedures and can in some cases even lead to suboptimal parameter
values. In addition the fitted values of those non-identifiable parameters are themselves
meaningless as they can be only interpreted in combination. One intuitive of several
(mathematically equaly valid) solutions to circumvent this, would be to re-define a new
module consisting of A+B with one ingoing and outgoing node thereby effectively fitting
the identifiable parameter combinations rBAr

C
B and rBAr

D
B .

In the course of our modeling procedure nodes of the network were automatically re-
moved. Thereby structural non-identifiabilities will be occuring and disappearing urged

!

"

#$

!

%&'()&*+,-.'/-,

Figure S9. Structural non-identifiability. LEFT: 4-node network stimulated at A.
Nodes with a yellow background indicate measured nodes. RIGHT: Global responses to
the stimulus S∗ with the stimulus strength included as a response coefficient. Note that
due to the response of node B not being measured the 4 parameters have to be fitted
from 3 entries introducing non-identifiabilities.
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us to find a means to detect those structures and to fit only identifiable parameter combi-
nations. We therefore developed a methodology to systematically reduce these so-called
structural non-identifiables. For this, we first re-parameterized the equation for the re-
sponse in terms of the path strengths:

Rk
j = f(P )kj ∆pj . (12)

Then, we expressed the path strength of each Pl as sums of r’s by taking the logarithm:

logPl =
�

j,k

akj log r
k
j . (13)

With akj standing for the exponent of rkj for path Pl (usually 0 if the path does not go from
edge j tp k, and 1 otherwise). This is a set of linear equations, which can be represented
in matrix form:

0 = [A,−I]× (log r1, . . . log rM , logP1, . . . logPN)
T , (14)

where A contains the akj ’s and I is the identity matrix whose size equals the total number
of paths. By applying the Gaussian elimination to [A,−I], one arrives at the reduced row
echelon form. The resulting matrix can be separated into 4 parts:

G =

�
A� G1

0 G2

�
. (15)

The number of rows in A� equals the number of independent parameters. Together with
G1 it provides rules how to construct them, and G2 identifies shared or equal paths.

For the simple example given in Fig. S9. we can define A from the global response to
stimulus S as

A =





rAS rBA rCB rDB
P1 1 0 0 0
P2 1 1 1 0
P3 1 1 0 1



 . (16)

After applying the Gaussian elimination algorithm one arrives at:

G =




1 0 0 0 −1 0 0
0 1 0 1 1 0 −1
0 0 1 −1 0 −1 1



 . (17)

Since in this example the rank of A is equal to its number of rows, the resulting G
contains only the upper two parts A� and G1. A� suggests to reparameterize the response
coefficients into 3 combinations k:

k1 = rAS = P1

k2 = rBAr
B
D =

P3

P1

k3 =
rCB
rBD

=
P2

P3
.
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For the fitting procedure the paths will now be taken as parameters to fit the global
response matrix to the experimental data. After the fitting procedure is finished the best
fitting paths can then be used to reconstruct the identifiable combination of local response
coefficients ri from the paths.

As long as the entries in the global response matrix consist of pure products Rk
j = Pl

as shown in the example in Fig. S9. However through feedbacks (Fig. S7B), inhibitors
acting downstream of a stimulus (Fig. S8) or branching paths that are converging again,
sums are introduced which will result in one Rk

j being represented by more than one
Pl. The experiments should therefore be designed such, that all paths are identifiable.
Next to combinations of perturbations always the effect of single perturbations should
be measured and feedback structures and branch-merge patters should be broken by
perturbations within. Following these rules, non-identifiable paths will not occur during
the fitting procedure.

As long as links of the network are only removed and not added as in our work, this
approach is valid if the rules were applicable for the starting network. However if one plans
to randomy add links an introduction of non-identifiable paths is likely to occur. One can
simply extend our methodology to even this approach by applying an additional non-
identifiability analysis on the path level with respect to the measured global responses.
An example of identifiabile parameter combinations for the models describing the HT29
cells during model prooning is shown in Fig. S5.

Parameter estimation

After reducing the number of parameters such that the model becomes structurally iden-
tifiable, we could set up a strategy to estimate these parameters from the data. For the
fitting procedure, we used a maximum likelihood approach. For each measurement, the
logarithm of the likelihood for given P and ∆p is (without prefactors):

L(P,∆p|R) ≈ −χ2 =
N�

i=1

�
Rk

j − f(P )kj ∆pj
�kj

�2

(18)

Thereby entries of P can only be estimated numerically using the above defined log-
likelihood function.

Until this point, we have assumed that the network structure is known, i.e. which
of the entries of r are zero. This is typically the case for very well studied signaling
pathways. However, if the network structure is unclear or may require estimation, one
can iteratively modify the structure. In this study we started with an detailed literature
model which was then reduced. Alterations of the network structure was judged based
on whether they contributed to the fit or not. More specificially, when removing links, it
is assumed that the fit in terms of the likelihood worsens due to the removed complexity
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of the model. Thus, a test was chosen that quantifies whether the observed change in
likelihood is because the less complex model (i) is not able to fit the data, or (ii) can
be termed as minimal model that is required for explaining the data. While there are
criteria that penalize model complexity based on information theory, we decided to use
the likelihood ratio test that provides a p-value for each model refinement.

In order to avoid local minima, we tried to obtain an estimate near the global optimi-
mum (Monte Carlo 10000 realisations) for the starting network. Subsequently we applied
local error minimization by the Levenberg-Marquard algorithm to all networks reduced by
one link starting with the parameter set derived from the initial Monte Carlo simulation.
The links were then reduced in a greedy hill climbing algorithm until the network can not
be further reduced (see Fig. S10). Finally, after the final network structure was derived,
identifiable response coeficients and combinations thereof where calculated from the fitted
path parameters using the relationship derived from the Gaussian elimination matrix G.
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Figure S10. Parameter fitting procedure. After deciding for a suitable starting
network the non-identifiable parameters are thoroughly searched for an optimum in a
Monte Carlo simulation (iterations=104). The likelihood of the best fit Lold is then
compared to the best fit of all network realizations containing one node less. Thereby
the new fit starts with the old parameter setting and is allowed to alter it to the best
nearby optimum. If the difference is below the threshold (p = 0.05 with χ2 distribution
under consideration of the number of dfs (usually 1)) the reduced network is taken as
the new starting network that is compared to models with yet another link removed.
This parameter reduction by the so called greedy hill climbing procedure is continued
until all Li − Lold > χcrit . For all parameter estimations the Levenberg-Marquardt
algorithm was employed.
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Error model derivation

The standard deviations of the data used for model fitting were taken from an error model
that we trained on replicate measurements.

In particular, we used an error model consiting of additive and multiplicative error.
The muliplicative error was calculated by averaging the Coefficients of Variations (CV)
of replicate measurements, and the additive component was taken from background mea-
surements. Subsequently, we generated for each antibody k and each cell line one error
model:

errork = backgroundk + CVk · signalk (19)

In case signals were below twice the background, they were discarded in estimating the
CV. If less than two different replicate measurements remained to calculate the CV we
set the CV to a value of 30%. To prevent overfitting the lower threshold of the CV was
set to 10%.
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2 Detection and annotation of Single Nucleotide Vari-
ations(SNVs)

For SNV detection we performed variant calling by the IonTorrent Suite, Version 2.1
Variant Caller (Life Technologies). Heterozygous positions with minor allele frequencies
below 10% were assumed as homozygous. Accordingly the minor allele was removed
from further consideration. In addition we also removed SNVs in non-coding regions,
synonymous SNVs, as the evidence for the SNVs to be true or evidence for an impact on
cancer development was reasonably low. A non-natural SNV was defined as having impact
on cancer, if the mutation was predicted to be deleterious by at least three predictors:
SIFT [5], PolyPhen [6], LRT [7], Mutation-Taster [8] or predicted to cause a Nonsense
Mediated mRNA Decay [9]. A SNV was defined as natural variant if the allele was found
in the 1000 Genome Project [10].

The vcf-files and a list of SNVs with an extended annotation of the SNV are available
ST1. Mutation patterns were compared to verified mutations as published by the Cancer
Genome Project (http://www.sanger.ac.uk/genetics/CGP/). The annotations were
obtained from UCSC [11], HGNC [12], COSMIC v.55 [13], dbSNP v.135 [14], Uniprot
release 2011 05 [15]) and OMIN (http://omim.org/). Pathway annotations were ob-
tained from GO-Ontology [16], KEGG [17], Pathway Interaction Database [18] and Re-
actome [19], as available by December 2010. Natural allele frequencies were taken from
the 1000 Genomes Project [10], while the number of tumor-patients caring the respective
mutations was obtained from publicly availably sequencing data available from The Can-
cer Genome Atlas (TCGA; http://cancergenome.nih.gov/). Prediction of the impact
of a SNV on protein function is based on precompiled data from dbNSFP [20]. Non-
sense Mediated mRNA Decay was predicted according to criteria proposed by Nagy and
Maquat [9].
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