TheranosticAuCubicNano-aggregatesasPotentialPhotoacoustic Contrast and Photothermal Therapeutic Agents

Juan Hu, Xianglong Zhu, Hui Li, Zhenghuan Zhao, Xiaoqin Chi, Guoming Huang, Dengtong Huang, Gang Liu, Xiaomin Wang, and Jinhao Gao*

Supporting Information

Calculation of the molar extinction coefficient of Au-80 CNAs:

We assumed the Au CNAs as hollow nanocubes.

The volume of the nanoparticles (NPs): $D^3 - d^3 = 1.69 \times 10^5 nm^3$, where D represents the outer edge length and d represents the inner edge length.

The number of Au atoms per nanoparticle is: $\frac{\rho V}{M} \times N_A = 9.97 \times 10^6$, where ρ is the density of the Au, V is the volume of the NPs, M is the molar mass of Au, N_A is the Avogadro constant.

The mass of per particle: $9.97 \times 10^6 \times 197 = 1.97 \times 10^9$.

The concentration of Au atoms determined by ICP-AES: catom.

The concentration of nanoparticles: $c_{NPS=}\frac{c_{atom}}{\frac{\rho V}{M} \times N_A} = 3.82 \times 10^{-11} M.$ According to the Beer–Lambert law: $A = \varepsilon bc$,

The extinction coefficient: $\varepsilon = \frac{A}{bc} = 2.19 \times 10^{10} M^{-1} \cdot cm^{-1}$.

51205.					
0.02 M	0.05 M	molar ratio	0.1 M	0.5 M	Size
$CuSO_4$	mPEG-NH ₂	(CuSO ₄ :mPEG-NH ₂)	AA	NaOH	(nm)
(mL)	(µL)		(mL)	(mL)	
2	500	8:5	1	3	~700
2	300	8:3	1	3	~400
2	200	4:1	1	3	~300
2	100	8:1	1	3	~170
2	80	10:1	1	3	~120
2	50	16:1	1	3	~70

Table S1. Different reaction conditions for synthesizing Cu₂O nanocubes with tunable sizes.

Figure S1. SEM images of Cu_2O-300 (A), Cu_2O-400 (C), Cu_2O-700 (E) and corresponding Au-330 CNAs (B), Au-435 CNAs (D), and Au-750 CNAs (F), respectively. All images share the same scar bar.

Figure S2. The SEM image of Cu_2O -70 nanocubes (A) and Au CNAs (B-F) by varying the molar ratio of HAuCl₄ to Cu_2O nanocubes. All images share the same scar bar.

Figure S3. Size distributions of Cu₂O-70 nanocubes (A) with 70.03 ± 4.09 nm and Au-80 CNAs (B) with 80.90 ± 5.04 nm in diameter, respectively.

	Element	Weight (%)	Atomic (%)
	Si	93.12	98.96
	Au	6.88	1.04
)	
 5	10	15	20

Figure S4. Elemental analysis of Au-80 CNAs on silicon wafer using energy dispersive X-ray spectrometry (EDS).

Figure S5. DLS shows hydrodynamic diameter of Au-80 CNAs.

Figure S6. (A) Absorption spectra of Au-80 CNAs aqueous solutions with different concentrations. (B) A linear relationship for the absorbance at the wavelength of 808 nm as a function of the concentration.

Figure S7. The TEM images of the Au CNAs in an aqueous solution before (A) and after (B) twice irradiation by the 808 nm laser at a power density of 2 W/cm² for 10 min.

Figure S8. Cell vitality of Hep G2 cells after incubated with Au-80 CNAs nanoparticles with different Au concentrations at 37 °C for 24 h.

Figure S9. Representative Hematoxylin and eosin (H&E) staining histology images of tumor tissues from the mice after different treatments. (A) blank (no treatment); (B): laser only (exposed to 808 nm laser at 1 W/cm² for 5 min,); (C) Au-80 CNAs only (intratumorally injected with 120 μ L of 200 μ g/mL Au-80 CNAs); (D) Au-80 CNAs and laser co-treatment (intratumorally injected with 120 μ L of 200 μ g/mL Au-80 CNAs); CNAs and then immediately exposed to 808 nm laser at 1 W/cm² for 5 min).

Figure S10. The digital photographs of S180 tumor-bearing mice taken at 0 day before treatments, 4 days and 14 days after treatments of different groups. Treatments: blank (no treatment); laser only (exposed to 808 nm laser at 1 W/cm² for 5 min,); Au-80 CNAs only (intratumorally injected with 120 μ L of 200 μ g/mL Au-80 CNAs); Au-80 CNAs + laser (intratumorally injected with 120 μ L of 200 μ g/mL Au-80 CNAs and then immediately exposed to 808 nm laser at 1 W/cm² for 5 min).