SUPPORTING INFORMATION

HADDOCK_{2P2I}: A biophysical model for predicting the binding affinity of protein-protein interaction inhibitors

Panagiotis L. Kastritis, João P.G.L.M. Rodrigues, Alexandre M. J. J. Bonvin*

Bijvoet Center for Biomolecular Research, Faculty of Science/Chemistry, Utrecht University, Utrecht, 3584CH, The Netherlands.

Corresponding Author

* Prof. Dr. Alexandre M. J. J. Bonvin, Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science – Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, E-mail: a.m.j.j.bonvin@uu.nl. Telephone: +31302533859.
Fax: +31302537623. Table S1. Binding affinity dataset of protein-protein interaction inhibitors

Interaction	Biological role	PDB	K_d (complex) (<i>M</i>)
	D 10.1	(complex)	a (ar =1
BclXL/Bak	Programmed Cell Death	lbxl	3.40E-7 [*]
Modulator (common name)	Formula	PDB	$K_i \parallel K_d \pmod{d}$
		(complex)	(<i>M</i>)
N3B	$C_{27}H_{22}FN_{3}O_{5}S_{2}$	1ysi	$1.2E-7^2$
ABT-737	$C_{42}H_{45}CIN_6O_5S_2$	2yxj	$5.0E-10^2$
4FC (4'-fluoro-1,1'-biphenyl-4-	$C_{13}H_9FO_2$		
carboxyl acid)		1ysg	$3.0E-5^2$
TN1 (5,6,7,8-tetrahydronaphthalen-	$C_{10}H_{12}O$		
1-ol)	10 12	1ysg	$4.3E-3^{2}$
acyl-sulfonamide-based ligand	$C_{30}H_{36}N_4O_5S_2$	2022	$6.7E-8^{3}$
W1191542	$C_{42}H_{46}N_6O_5S_2$	3inq	$1.1E-8^4$
Interaction	Biological role	PDB	K_{d} (complex) (M)
	8	(complex)	u (I / (/
MDM2/p53	Transcription	1ycr	6.00E-7 ⁵
-	regulation	U	
Modulator (common name)	Formula	PDB	$K_i \parallel K_d$ (modulator)
Ň,		(complex)	(M)
HDM2	$C_{23}H_{15}Cl_2IN_2O_4$	1t4e	8.0E-8 ⁶
WK23	$C_{25}H_{17}Cl_2N_3O_2$	3lbk	$9.2E-7^{7}$
MI-63	$C_{29}H_{35}Cl_2FN_4O_3$	3lbl	3.6E-8 ⁷
Tuto un otto u	Riological role	PDR	K (complex) (M)
Interaction	Diological fole	IDD	\mathbf{R}_{d} (complex) (<i>m</i>)
Interaction	Biological fole	(complex)	\mathbf{K}_{d} (complex) (<i>W</i>)
Interaction XIAP-BIR3/CASPASE-9	Programmed Cell Death	(complex) 1nw9	2.0E-8 ⁸
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name)	Programmed Cell Death Formula	(complex) 1nw9 PDB	2.0E-8⁸ $K_i \parallel K_d \text{ (modulator)}$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name)	Programmed Cell Death Formula	(complex) 1nw9 PDB (complex)	$\mathbf{X}_{d} \text{ (complex) (} M \text{)}$ $\mathbf{2.0E-8^{8}}$ $K_{i} \parallel K_{d} \text{ (modulator)}$ (M)
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998	Programmed Cell Death Formula C ₂₅ H ₃₈ N ₄ O ₃	(complex) 1nw9 PDB (complex) 1tfq	2.0E-8⁸ $K_i \parallel K_d \text{ (modulator)}$ (M) $1.2E-8^9$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997	Programmed CellDeathFormula $C_{25}H_{38}N_4O_3$ $C_{31}H_{42}N_4O_4$	(complex) 1nw9 PDB (complex) 1tfq 1tfq 1tft	2.0E-8⁸ $K_i \parallel K_d \text{ (modulator)}$ (M) 1.2E-8 ⁹ 5.0E-9 ⁹
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ	Biological foleProgrammed CellDeathFormula $C_{25}H_{38}N_4O_3$ $C_{31}H_{42}N_4O_4$ $C_{28}H_{38}N_6O_3$	IDD(complex)Inw9PDB(complex)1tfq1tft3h15	2.0E-8⁸ $K_i \parallel K_d \text{ (modulator)}$ (M) 1.2E-8 ⁹ 5.0E-9 ⁹ 3.4E-5 ¹⁰
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction	Biological foleProgrammed CellDeathFormula $C_{25}H_{38}N_4O_3$ $C_{31}H_{42}N_4O_4$ $C_{28}H_{38}N_6O_3$ Biological role	I DD(complex)Inw9PDB(complex)1tfq1tfq1tft3hl5PDB	2.0E-8⁸ $K_i \parallel K_d \text{ (modulator)}$ (M) 1.2E-8 ⁹ 5.0E-9 ⁹ 3.4E-5 ¹⁰ $K_d \text{ (complex)} (M)$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction	Biological foleProgrammed CellDeathFormula $C_{25}H_{38}N_4O_3$ $C_{31}H_{42}N_4O_4$ $C_{28}H_{38}N_6O_3$ Biological role	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)	K_d (complex) (M) $2.0E-8^8$ $K_i \parallel K_d$ (modulator) (M) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ K_d (complex) (M)
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC	Biological foleProgrammed CellDeathFormula $C_{25}H_{38}N_4O_3$ $C_{25}H_{38}N_4O_3$ $C_{25}H_{38}N_4O_3$ $C_{28}H_{38}N_6O_3$ Biological roleProgrammed Cell	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73	K_d (complex) (M) $2.0E-8^8$ $K_i \parallel K_d$ (modulator) (M) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ K_d (complex) (M) $4.2E-7^8$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC	Programmed Cell Death Formula C25H38N4O3 C31H42N4O4 C28H38N6O3 Biological role Programmed Cell Death	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73	K_d (complex) (M) $2.0E-8^8$ $K_i \parallel K_d$ (modulator) (M) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ K_d (complex) (M) $4.2E-7^8$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name)	Programmed Cell Death Formula C ₂₅ H ₃₈ N ₄ O ₃ C ₃₁ H ₄₂ N ₄ O ₄ C ₂₈ H ₃₈ N ₆ O ₃ Biological role Programmed Cell Death Formula	(complex) 1nw9 PDB (complex) 1tfq 1tft 3h15 PDB (complex) 1g73 PDB	K_d (complex) (M) $2.0E-8^8$ $K_i \parallel K_d$ (modulator) (M) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ K_d (complex) (M) $4.2E-7^8$ $K_i \parallel K_d$ (modulator)
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name)	Programmed Cell Death Formula C25H38N4O3 C31H42N4O4 C28H38N6O3 Biological role Programmed Cell Death Formula	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73PDB(complex)	\mathbf{K}_{d} (complex) (<i>W</i>) $\mathbf{2.0E-8^8}$ $\mathbf{K}_{i} \parallel \mathbf{K}_{d}$ (modulator) (<i>M</i>) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ \mathbf{K}_{d} (complex) (<i>M</i>) $\mathbf{4.2E-7^8}$ $\mathbf{K}_{i} \parallel \mathbf{K}_{d}$ (modulator) (<i>M</i>)
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name) BI6	Biological foleProgrammed CellDeathFormula $C_{25}H_{38}N_4O_3$ $C_{31}H_{42}N_4O_4$ $C_{28}H_{38}N_6O_3$ Biological roleProgrammed CellDeathFormula $C_{29}H_{34}N_4O_3$	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73PDB(complex)2jk7	\mathbf{K}_{d} (complex) (<i>M</i>) $\mathbf{2.0E-8^8}$ $\mathbf{K}_{i} \parallel \mathbf{K}_{d}$ (modulator) (<i>M</i>) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ \mathbf{K}_{d} (complex) (<i>M</i>) $\mathbf{4.2E-7^8}$ $\mathbf{K}_{i} \parallel \mathbf{K}_{d}$ (modulator) (<i>M</i>) $\mathbf{6.7E-8^{11}}$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name) BI6 AoxSPW	$\begin{array}{c} \textbf{Biological fole}\\ \textbf{Programmed Cell}\\ \textbf{Death}\\ Formula\\ \hline\\ C_{25}H_{38}N_4O_3\\ C_{31}H_{42}N_4O_4\\ C_{28}H_{38}N_6O_3\\ \hline\\ \textbf{Biological role}\\ \hline\\ \textbf{Programmed Cell}\\ \hline\\ \textbf{Death}\\ Formula\\ \hline\\ C_{29}H_{34}N_4O_3\\ C_{22}H_{25}N_5O_5\\ \hline\end{array}$	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73PDB(complex)2jk72opy	\mathbf{K}_{d} (complex) (<i>W</i>) $2.0E-8^{8}$ $\mathbf{K}_{i} \parallel \mathbf{K}_{d}$ (modulator) (<i>M</i>) $1.2E-8^{9}$ $5.0E-9^{9}$ $3.4E-5^{10}$ \mathbf{K}_{d} (complex) (<i>M</i>) $4.2E-7^{8}$ $\mathbf{K}_{i} \parallel \mathbf{K}_{d}$ (modulator) (<i>M</i>) $6.7E-8^{11}$ $3.0E-5^{12}$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name) BI6 AoxSPW Smac005	Biological foleProgrammed CellDeathFormula $C_{25}H_{38}N_4O_3$ $C_{31}H_{42}N_4O_4$ $C_{28}H_{38}N_6O_3$ Biological roleProgrammed CellDeathFormula $C_{29}H_{34}N_4O_3$ $C_{22}H_{25}N_5O_5$ $C_{28}H_{36}N_4O_4$	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73PDB(complex)2jk72opy3clx	K_d (complex) (M) $2.0E-8^8$ $K_i \parallel K_d$ (modulator) (M) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ K_d (complex) (M) $4.2E-7^8$ $K_i \parallel K_d$ (modulator) (M) $6.7E-8^{11}$ $3.0E-5^{12}$ $1.2E-7^{13}$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name) BI6 AoxSPW Smac005 Smac005	Biological fole Programmed Cell Death Formula $C_{25}H_{38}N_4O_3$ $C_{31}H_{42}N_4O_4$ $C_{28}H_{38}N_6O_3$ Biological role Programmed Cell Death Formula $C_{29}H_{34}N_4O_3$ $C_{22}H_{25}N_5O_5$ $C_{28}H_{36}N_4O_4$ $C_{28}H_{36}N_4O_4$	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73PDB(complex)2jk72opy3clx3cm7	\mathbf{K}_{d} (complex) (M) $\mathbf{2.0E-8^8}$ $\mathbf{K}_{i} \parallel \mathbf{K}_{d}$ (modulator) (M) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ \mathbf{K}_{d} (complex) (M) $\mathbf{4.2E-7^8}$ $\mathbf{K}_{i} \parallel \mathbf{K}_{d}$ (modulator) (M) $6.7E-8^{11}$ $3.0E-5^{12}$ $1.2E-7^{13}$ $1.2E-7^{13}$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name) BI6 AoxSPW Smac005 Smac005 Smac010	$\begin{tabular}{l}{llllllllllllllllllllllllllllllll$	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73PDB(complex)2jk72opy3clx3cm73cm2	2.0E-8 ⁸ $K_i \parallel K_d \text{ (modulator)}$ (M) 1.2E-8 ⁹ 5.0E-9 ⁹ 3.4E-5 ¹⁰ $K_d \text{ (complex)} (M)$ 4.2E-7 ⁸ $K_i \parallel K_d \text{ (modulator)}$ (M) 6 .7E-8 ¹¹ 3.0E-5 ¹² 1.2E-7 ¹³ 1.2E-7 ¹³ 4.2E-7 ¹³
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name) BI6 AoxSPW Smac005 Smac005 Smac010 Smac037	Biological fole Programmed Cell Death Formula $C_{25}H_{38}N_4O_3$ $C_{31}H_{42}N_4O_4$ $C_{28}H_{38}N_6O_3$ Biological role Programmed Cell Death Formula $C_{29}H_{34}N_4O_3$ $C_{22}H_{25}N_5O_5$ $C_{28}H_{36}N_4O_4$ $C_{28}H_{36}N_4O_4$ $C_{28}H_{37}N_5O_3$ $C_{29}H_{39}N_5O_3$	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73PDB(complex)2jk72opy3clx3cm73cm23ey1	K_d (complex) (M) $2.0E-8^8$ $K_i \parallel K_d$ (modulator) (M) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ K_d (complex) (M) $4.2E-7^8$ $K_i \parallel K_d$ (modulator) (M) $6.7E-8^{11}$ $3.0E-5^{12}$ $1.2E-7^{13}$ $1.2E-7^{13}$ $4.2E-7^{13}$ $2.2E-7^{14}$
Interaction XIAP-BIR3/CASPASE-9 Modulator (common name) 998 997 9JZ Interaction XIAP-BIR3/SMAC Modulator (common name) BI6 AoxSPW Smac005 Smac005 Smac010 Smac037 CZ3	$\begin{tabular}{l}{llllllllllllllllllllllllllllllll$	I DD(complex)Inw9PDB(complex)1tfq1tft3h15PDB(complex)1g73PDB(complex)2jk72opy3clx3cm73cm23eyl3g76	\mathbf{K}_d (complex) (<i>M</i>) $\mathbf{2.0E-8^8}$ $\mathbf{K}_i \parallel \mathbf{K}_d$ (modulator) (<i>M</i>) $1.2E-8^9$ $5.0E-9^9$ $3.4E-5^{10}$ \mathbf{K}_d (complex) (<i>M</i>) $\mathbf{4.2E-7^8}$ $\mathbf{K}_i \parallel \mathbf{K}_d$ (modulator) (<i>M</i>) $6.7E-8^{11}$ $3.0E-5^{12}$ $1.2E-7^{13}$ $1.2E-7^{13}$ $2.2E-7^{13}$ $2.2E-7^{14}$ $2.3E-7^{15}$

		(complex)	
ZipA/FtsZ	Cell Cycle Regulation / Cellular structure	1f47	2.0E-5 ¹⁶
Modulator (common name)	Formula	PDB	$K_i \parallel K_d \pmod{d}{d}$
		(complex)	(M)
WAI	$C_{22}H_{26}ClN_7$	1y2f	$1.2E-5^{17}$
CL3	$C_{22}H_{26}ClN_7$	1y2g	$8.3E-5^{17}$
Interaction	Biological role	PDB	K_d (complex) (M)
		(complex)	
HPV-E2/E1	Viral infection	1tue	n/d
Modulator (common name)	Formula	PDB	$K_i \parallel K_d \pmod{d}$
		(complex)	(M)
BILH 434	$C_{29}H_{19}Cl_2N_3O_6S$	1r6n	$4.0E-8^{18}$
Interaction	Biological role	PDB	K_d (complex) (M)
		(complex)	
IL-2/IL-2R	Immune system	1z92	1.0E-8 ¹⁹
	regulation		
Modulator (common name)	Formula	PDB	$K_i \parallel K_d \pmod{d}$
		(complex)	(M)
FRG	$C_{26}H_{30}N_4O_3$	1m48	$2.2E-5^{20}$
FRB	$C_{25}H_{33}Cl_2N_7O_2$	1pw6	$7.0E-6^{21}$
SP-1985	$C_{30}H_{35}N_5O_6$	1m49	$7.5E-6^{22}$
FRH	$C_{30}H_{37}Cl_2N_7O_6$	1py2	$1.0E-7^{23}$
SP-4160	$C_{33}H_{42}Cl_2N_8O_4$	1qvn	$1.4E-6^{21}$

Table S2. Different weighting and optimization schemes for binding affinity prediction of PPIs

using the HADDOCK score

REGRESSION COEFFICIENTS ^a FOR MODELS using PRODRG parameters								
MODEL	НСр	VDW ^c	ELEC ^d	DESOLV ^e	BSA^{f}	CONST ^g	TRAINING	CV-set ^h
Ν	115	(β_1)	(β_2)	(β_3)	(β_4)	(c_i)	SET (r^2)	$(4 fold) (r^2)$
1	-0.05	0	0	0	0	3.72	0.40	0.31
2	0	-0.11	0	0	0	2.82	0.37	0.35
3	0	0	-0.007	0	0	5.6	0.07	0.00
4	0	0	0	-0.05	0	6.22	0.13	0.01
5	0	0	0	0	0.006	2.2	0.50	0.48
6	0	0.047	0	0	0.008	2.3	0.52	0.44
7	0	0	-0.0055	0	0.006	1.74	0.55	0.53
8	0	0	0	-0.01	0.005	2.4	0.52	0.45
9	-0.02	0	0	0	0.004	2.15	0.55	0.50
10	0	0.06	-0.006	0	0.008	1.82	0.58	0.52
11	0	0.04	0	-0.008	0.007	2.4	0.52	0.38
12	0	0	-0.006	-0.018	0.005	1.99	0.57	0.53
13	0	0.05	-0.006	-0.013	0.007	2	0.58	0.49
14	0	-0.09	-0.006	-0.034	0	2.74	0.46	0.38
15	0	-0.11	-0.005	0	0	2.47	0.41	0.36
16	0	-0.1	0	-0.028	0	3.11	0.42	0.32
REGRESSIO	N COEFF	ICIENTS ^a	FOR MOD	ELS using A	СРҮРЕ р	arameters		
MODEL	usp	VDW ^c	ELEC ^d	DESOLV ^e	BSA ^f	CONST ^g	TRAINING	CV-set ^h
Ν	115	(β_1)	(β_2)	(β_3)	(β_4)	(c_i)	SET (r^2)	$(4 fold) (r^2)$
1	-0.04	0	0	0	0	4.18	0.40	0.37
2	0	-0.09	0	0	0	2.48	0.53	0.50
3	0	0	-0.007	0	0	5.86	0.04	0.00
4	0	0	0	-0.03	0	6.43	0.07	0.00
5	0	0	0	0	0.005	2.17	0.50	0.49
6	0	-0.07	0	0	0.001	2.35	0.53	0.49
7	0	0	0.003	0	0.005	2.15	0.52	0.48
8	0	0	0	-0.004	0.005	2.26	0.52	0.42
9	-0.003	0	0	0	0.005	2.24	0.50	0.50
10						• • •	0.50	0.40
10	0	-0.074	0.004	0	0.0013	2.34	0.53	0.48
10	0 0	-0.074 -0.08	0.004 0	0 -0.01	0.0013 0.0005	2.34 2.59	0.53	0.48 0.45
10 11 12	0 0 0	-0.074 -0.08 0	0.004 0 0.003	0 -0.01 -0.0006	0.0013 0.0005 0.005	2.34 2.59 2.17	0.53 0.53 0.52	0.48 0.45 0.40
10 11 12 13	0 0 0 0	-0.074 -0.08 0 -0.08	0.004 0 0.003 0.003	0 -0.01 -0.0006 -0.007	0.0013 0.0005 0.005 0.0008	2.34 2.59 2.17 2.5	0.53 0.53 0.52 0.55	0.48 0.45 0.40 0.40
10 11 12 13 14	0 0 0 0 0	-0.074 -0.08 0 -0.08 -0.1	0.004 0 0.003 0.003 -0.003	0 -0.01 -0.0006 -0.007 -0.008	0.0013 0.0005 0.005 0.0008 0	2.34 2.59 2.17 2.5 2.6	0.53 0.53 0.52 0.55 0.53	0.48 0.45 0.40 0.40 0.45
10 11 12 13 14 15	0 0 0 0 0 0	-0.074 -0.08 0 -0.08 -0.1 -0.1	0.004 0 0.003 0.003 -0.003 0.004	0 -0.01 -0.0006 -0.007 -0.008 0	0.0013 0.0005 0.005 0.0008 0 0	2.34 2.59 2.17 2.5 2.6 2.47	0.53 0.53 0.52 0.55 0.53 0.53	0.48 0.45 0.40 0.40 0.45 0.52

(a) A zero indicates that the respective term was not included in lest-squares fitting. (b) Haddock score. (c) van der Waals component of Haddock score (d) Electrostatic interaction energy (e) Desolvation energy (f) Buried surface area (g) a constant term. Bold entry indicates best performing model overall (HADDOCK_{2P2I}). (h) CV-set: Cross-validation set.

 Table S3. Small molecule compounds with two or more associated IC50 data, extracted from iPPI-DB.

Compound iPPI-DB AC	Protein A	Protein B	Method 1	pIC50	Method 2	pIC50
1603	BRD2	H4	FP	6.10	FRET	7.49
1605	BRD2	H4	FP	5.00	TR-FRET	5.70
1612	BRD2	H4	FP	5.00	TR-FRET	5.60
1634	BRD2	H4	FP	5.20	TR-FRET	5.80
1606	BRD2	H4	FP	5.30	TR-FRET	5.80
1639	BRD2	H4	FP	4.50	TR-FRET	5.00
1623	BRD2	H4	FP	4.90	TR-FRET	5.30
1607	BRD2	H4	FP	5.40	TR-FRET	5.70
1647	BRD2	H4	FP	5.50	TR-FRET	5.80
1615	BRD2	H4	FP	5.30	TR-FRET	5.60
1603	BRD3	H4	FP	6.40	FRET	7.37
1605	BRD3	H4	FP	5.20	TR-FRET	5.60
1612	BRD3	H4	FP	5.40	TR-FRET	5.70
1615	BRD3	H4	FP	5.40	TR-FRET	5.70
1606	BRD3	H4	FP	5.70	TR-FRET	6.00
1639	BRD3	H4	FP	5.00	TR-FRET	5.20
1634	BRD3	H4	FP	5.80	TR-FRET	6.00
1607	BRD3	H4	FP	5.80	TR-FRET	5.90
1623	BRD3	H4	FP	5.30	TR-FRET	5.40
1647	BRD3	H4	FP	6.00	TR-FRET	5.90
1604 ^a	BRD4	H4	FP	6.10	MLL-fusion leukaemic proliferation	7.59
1603 ^b	BRD4	H4	LPS-stimulated IL6 production	5.80	FRET	7.44
1602	BRD4	H4	alpha_screen	7.11	cellular viability	8.40
1605	BRD4	H4	LPS-stimulated IL6 production	4.90	TR-FRET	5.70
1606 ^c	BRD4	H4	FP	5.70	TR-FRET	6.00
1634 ^d	BRD4	H4	FP	5.50	TR-FRET	5.80
1623	BRD4	H4	FP	4.90	TR-FRET	5.20
1639 ^e	BRD4	H4	FP	4.70	TR-FRET	5.00
1615	BRD4	H4	FP	5.30	TR-FRET	5.50
1612 ^f	BRD4	H4	FP	5.20	TR-FRET	5.30
1647 ^g	BRD4	H4	FP	5.50	TR-FRET	5.60
1607 ^h	BRD4	H4	FP	5.50	TR-FRET	5.50
20	IL2	IL2R	SPR	6.70	ELISA	6.70
cmpnd5 ⁱ	LFA-1	ICAM	HUVEC	8.60	MLR	7.20
cmpnd2 ⁱ	LFA-1	ICAM	HUVEC	8.00	MLR	6.70
cmpnd1 ⁱ	LFA-1	ICAM	HUVEC	7.70	MLR	6.60
cmpnd4 ⁱ	LFA-1	ICAM	HUVEC	7.90	MLR	6.85
cmpnd3 ⁱ	LFA-1	ICAM	HUVEC	8.00	MLR	7.10
1278 ^j	MDM2	P53	FP	4.71	FP	6.72
1449 ^k	MDM2	P53	FP	7.55	proliferation assav	4.85
1143	MDM2	P53	ELISA	5.00	proliferation assav	6.8
1282 ¹	MDM2	P53	proliferation assav	4.98	proliferation assav	6.11
945 ^m	MDM2	P53	FP	6.43	proliferation assav	4.78
595 ⁿ	MDM2	P53	FP	5.69	proliferation assav	4.40
541	MDM2	P53	ELISA	5.00	proliferation assay	6.20

682°	MDM2	P53	proliferation assay	4.51	proliferation assay	4.77
392 ^p	MDM2	P53	proliferation assay	4.51	proliferation assay	5.13
1091 ^q	MDM2	P53	ELISA	7.52	proliferation assay	8.00
1249 ^r	MDM2	P53	ELISA	6.00	proliferation assay	6.70
989	MDM2	P53	ELISA	7.00	proliferation assay	8.00
706^{s}	MDM2	P53	FP	5.23	proliferation assay	4.76
149	MDM2	P53	ELISA	7.00	proliferation assay	7.70
872	MDM2	P53	ELISA	6.52	proliferation assay	7.20
1548	MDM2	P53	ELISA	6.52	proliferation assay	7.20
1534	MDM2	P53	ELISA	7.00	proliferation assay	7.60
255	MDM2	P53	ELISA	5.52	proliferation assay	6.04
1357	MDM2	P53	ELISA	5.00	proliferation assay	5.49
994	MDM2	P53	ELISA	5.52	proliferation assay	5.15
1465	MDM2	P53	ELISA	6.00	proliferation assay	5.64
1161	MDM2	P53	ELISA	6.52	proliferation assay	6.80
888	MDM2	P53	ELISA	5.00	proliferation assay	5.19
295	MDM2	P53	ELISA	5.52	proliferation assay	5.36
1475	MDM2	P53	ELISA	6.00	proliferation assay	5.85
1539	MDM2	P53	ELISA	5.52	proliferation assay	5.66
433	MDM2	P53	ELISA	5.52	proliferation assay	5.50
1182	MDM2	P53	ELISA	5.52	proliferation assay	5.50
701	MDM2	P53	ELISA	4.84	ELISA	4.85
414	MDM2	P53	ELISA	7.00	proliferation assay	7.00
985	MDM2	P53	ELISA	4.79	ELISA	4.79
1150	MDM2	P53	ELISA	5.28	ELISA	5.28
472	XIAP	SMAC	FP	6.01	proliferation assay	5.22
1179	XIAP	SMAC	FP	6.63	FP	6.48

MLL-fusion leukaemic ^aalso: MLL-AF9-fusion leukaemic proliferation;6.24 MLL-ENL-fusion leukaemic proliferation;6.38 proliferation; 6.92 MLL-fusion leukaemic proliferation; 6.05 MLL-fusion leukaemic proliferation;4.6 LPS-stimulated IL6 production;6.8 MLL-fusion leukaemic proliferation;6 LPS-stimulated IL6 production;5.9 MLL-fusion leukaemic proliferation;7.82 MLL-fusion leukaemic proliferation;6.72 LPS-stimulated IL6 production;5.9. ^balso: LPS-stimulated IL6 production;6.2 LPS-stimulated IL6 production;6.7 ^calso: LPS-stimulated IL6 production;5.5 ^dalso:LPS-stimulated IL6 production;5.6 ^ealso:LPS-stimulated IL6 production;4.8 falso:LPS-stimulated IL6 production;5.1 ^galso:LPS-stimulated IL6 production;5.5 ^halso:LPS-stimulated IL6 production;5.5 ⁱaffinity data retrieved from Pubmed id: 20405922 ^jalso:TR-FRET;7.82 ^kalso:proliferation assay;6.3 ¹also:proliferation assay;5.85 FP;6.66 ^malso:proliferation assay;5.42 proliferation assay;5.76 ⁿalso:proliferation assay;5.37 °also:proliferation assay;5.68 ^palso:proliferation assay;5.54 ^qalso:ELISA;7 ELISA;7.52 ralso:ELISA;7 ^salso:proliferation assay;5.44 proliferation assay;5.49

SUPPORTING REFERENCES

- Muchmore, S. W.; Sattler, M.; Liang, H.; Meadows, R. P.; Harlan, J. E.; Yoon, H. S.; Nettesheim, D.; Chang, B. S.; Thompson, C. B.; Wong, S. L.; Ng, S. L.; Fesik, S. W. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. *Nature* 1996, *381*, 335-341.
- (2) Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed, J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.; Wang, B.; Wendt, M. D.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. *Nature* 2005, 435, 677-681.
- (3) Bruncko, M.; Oost, T. K.; Belli, B. A.; Ding, H.; Joseph, M. K.; Kunzer, A.; Martineau, D.; McClellan, W. J.; Mitten, M.; Ng, S. C.; Nimmer, P. M.; Oltersdorf, T.; Park, C. M.; Petros, A. M.; Shoemaker, A. R.; Song, X.; Wang, X.; Wendt, M. D.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H.; Elmore, S. W. Studies leading to potent, dual inhibitors of Bcl-2 and BclxL. J. Med. Chem. 2007, 50, 641-662.
- (4) Lee, E. F.; Czabotar, P. E.; Yang, H.; Sleebs, B. E.; Lessene, G.; Colman, P. M.; Smith, B. J.; Fairlie, W. D. Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. *J. Biol. Chem.* 2009, 284, 30508-30517.
- (5) Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A. J.; Pavletich, N. P. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. *Science* **1996**, 274, 948-953.
- (6) Grasberger, B. L.; Lu, T.; Schubert, C.; Parks, D. J.; Carver, T. E.; Koblish, H. K.; Cummings, M. D.; LaFrance, L. V.; Milkiewicz, K. L.; Calvo, R. R.; Maguire, D.; Lattanze, J.; Franks, C. F.; Zhao, S.; Ramachandren, K.; Bylebyl, G. R.; Zhang, M.; Manthey, C. L.; Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J. C.; Maroney, A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. *J. Med. Chem.* 2005, *48*, 909-912.
- (7) Popowicz, G. M.; Czarna, A.; Wolf, S.; Wang, K.; Wang, W.; Domling, A.; Holak, T. A. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. *Cell Cycle* **2010**, *9*, 1104-1111.
- (8) Wu, G.; Chai, J.; Suber, T. L.; Wu, J. W.; Du, C.; Wang, X.; Shi, Y. Structural basis of IAP recognition by Smac/DIABLO. *Nature* **2000**, *408*, 1008-1012.
- (9) Oost, T. K.; Sun, C.; Armstrong, R. C.; Al-Assaad, A. S.; Betz, S. F.; Deckwerth, T. L.; Ding, H.; Elmore, S. W.; Meadows, R. P.; Olejniczak, E. T.; Oleksijew, A.; Oltersdorf, T.; Rosenberg, S. H.; Shoemaker, A. R.; Tomaselli, K. J.; Zou, H.; Fesik, S. W. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. *J. Med. Chem.* **2004**, *47*, 4417-4426.
- (10) Ndubaku, C.; Varfolomeev, E.; Wang, L.; Zobel, K.; Lau, K.; Elliott, L. O.; Maurer, B.; Fedorova, A. V.; Dynek, J. N.; Koehler, M.; Hymowitz, S. G.; Tsui, V.; Deshayes, K.; Fairbrother, W. J.; Flygare, J. A.; Vucic, D. Antagonism of c-IAP and XIAP proteins is

required for efficient induction of cell death by small-molecule IAP antagonists. *ACS Chem. Biol.* **2009**, *4*, 557-566.

- (11) Sun, H.; Stuckey, J. A.; Nikolovska-Coleska, Z.; Qin, D.; Meagher, J. L.; Qiu, S.; Lu, J.; Yang, C. Y.; Saito, N. G.; Wang, S. Structure-based design, synthesis, evaluation, and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J. Med. Chem. 2008, 51, 7169-7180.
- (12) Wist, A. D.; Gu, L.; Riedl, S. J.; Shi, Y.; McLendon, G. L. Structure-activity based study of the Smac-binding pocket within the BIR3 domain of XIAP. *Bioorg. Med. Chem.* 2007, 15, 2935-2943.
- (13) Mastrangelo, E.; Cossu, F.; Milani, M.; Sorrentino, G.; Lecis, D.; Delia, D.; Manzoni, L.; Drago, C.; Seneci, P.; Scolastico, C.; Rizzo, V.; Bolognesi, M. Targeting the X-linked inhibitor of apoptosis protein through 4-substituted azabicyclo[5.3.0]alkane smac mimetics. Structure, activity, and recognition principles. J. Mol. Biol. 2008, 384, 673-689.
- (14) Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N. G.; Stuckey, J. A.; Wang, S. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. *Anal. Biochem.* 2004, 332, 261-273.
- (15)Cossu, F.; Milani, M.; Mastrangelo, E.; Vachette, P.; Servida, F.; Lecis, D.; Canevari, G.; Delia, D.; Drago, C.; Rizzo, V.; Manzoni, L.; Seneci, P.; Scolastico, C.; Bolognesi, M. Structural basis for bivalent Smac-mimetics recognition in the IAP protein family. *J. Mol. Biol.* 2009, *392*, 630-644.
- (16) Moy, F. J.; Glasfeld, E.; Mosyak, L.; Powers, R. Solution structure of ZipA, a crucial component of Escherichia coli cell division. *Biochemistry* **2000**, *39*, 9146-9156.
- (17) Rush, T. S., 3rd; Grant, J. A.; Mosyak, L.; Nicholls, A. A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. *J. Med. Chem.* **2005**, *48*, 1489-1495.
- (18) Wang, Y.; Coulombe, R.; Cameron, D. R.; Thauvette, L.; Massariol, M. J.; Amon, L. M.; Fink, D.; Titolo, S.; Welchner, E.; Yoakim, C.; Archambault, J.; White, P. W. Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor. *J. Biol. Chem.* **2004**, *279*, 6976-6985.
- (19) Rickert, M.; Wang, X.; Boulanger, M. J.; Goriatcheva, N.; Garcia, K. C. The structure of interleukin-2 complexed with its alpha receptor. *Science* **2005**, *308*, 1477-1480.
- (20) Arkin, M. R.; Randal, M.; DeLano, W. L.; Hyde, J.; Luong, T. N.; Oslob, J. D.; Raphael, D. R.; Taylor, L.; Wang, J.; McDowell, R. S.; Wells, J. A.; Braisted, A. C. Binding of small molecules to an adaptive protein-protein interface. *Proc. Natl. Acad. Sci. U S A* 2003, *100*, 1603-1608.
- (21) Raimundo, B. C.; Oslob, J. D.; Braisted, A. C.; Hyde, J.; McDowell, R. S.; Randal, M.; Waal, N. D.; Wilkinson, J.; Yu, C. H.; Arkin, M. R. Integrating fragment assembly and biophysical methods in the chemical advancement of small-molecule antagonists of IL-2: an approach for inhibiting protein-protein interactions. *J. Med. Chem.* 2004, 47, 3111-3130.
- (22) Arkin, M.; Lear, J. D. A new data analysis method to determine binding constants of small molecules to proteins using equilibrium analytical ultracentrifugation with absorption optics. *Anal. Biochem.* **2001**, *299*, 98-107.

(23) Braisted, A. C.; Oslob, J. D.; Delano, W. L.; Hyde, J.; McDowell, R. S.; Waal, N.; Yu, C.; Arkin, M. R.; Raimundo, B. C. Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. *J. Am. Chem. Soc.* **2003**, *125*, 3714-3715.