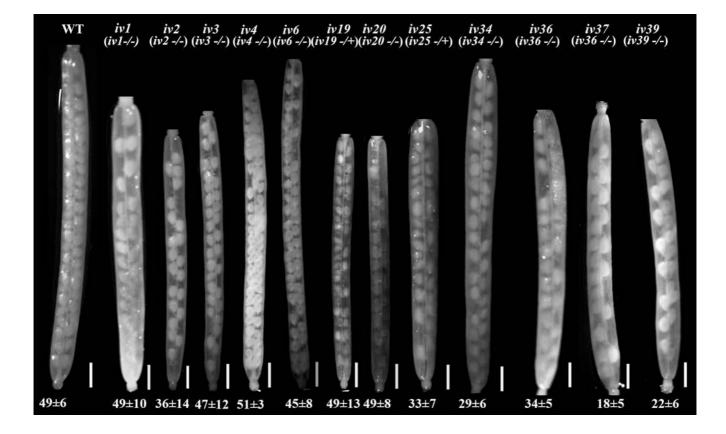
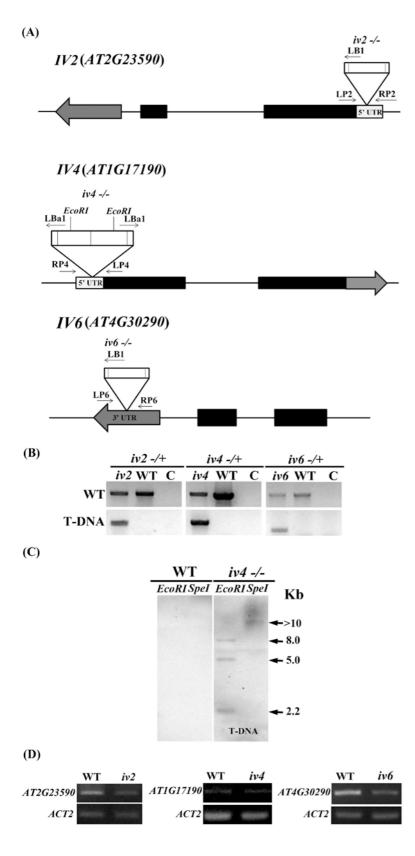

Supplemental Figure 1. Scheme for extraction of polysome-mRNA from *in vitro* germinated pollen (*in vitro*), pollinated (*in vivo* stage, ST14 and ST15a) and non-pollinated (Bud stage, ST10-12) floral buds.

The crude extracts were fractionated by 20% to 60% (w/v) sucrose density gradients and the UV absorbance (260 nm) was recorded. The polysomal fractions were passed through FLAG agarose beads to isolate the FLAG-RPL18 containing polysome-mRNA complex. The actively translated mRNAs isolated from affinity-purified polysomes were used for microarray analyses.


Supplemental Figure 2. Three Venn diagram comparisons.

(A) Comparison of highly-enriched *in vivo* pollen tube polysomal mRNAs (probe pair sets) to semi-*in vivo* (SIV) enriched mRNAs (Qin et al., 2009). (B) Comparison between highly-enriched *in vivo* pollen tube polysomal mRNA (probe pair sets) pollen-pistil interaction upregulated mRNAs (Boavida et al., 2011). (C) Comparison of semi-*in vivo* (SIV) enriched mRNAs to pollen-pistil interaction upregulated mRNAs.


Supplemental Figure 3. Comparison of fold change data generated with GeneSpring and SLR data generated with R program.

Fold change data and SLR data indicate consistent up-regulation of the 41 transcripts in IPIVV/IPBUD (A) and IPIVV/IPIVT (B) comparisons.

Supplemental Figure 4. The silique phenotypes and seed number per silique of several self-pollinated *iv* mutants.

iv1, *iv2*, *iv3*, *iv4*, *iv6*, *iv20*, *iv34*, *iv36*, *iv37* and *iv39* are homozygous mutants; *iv19* and *iv25* are heterozygous mutants. The number under each silique represents the average seed number per silique and more over 10 siliques were used for the statistic analysis. WT, wild type silique.

Supplemental Figure 5. T-DNA insertion patterns and investigation of *iv2*, *iv4*, and *iv6* specific mRNAs detected in flowers of corresponding homozygous mutants.

(A) T-DNA inserted mutation (triangles) of *iv2*, *iv4*, and *iv6* mutants. LB1, the left border primer of SAIL line mutant. LP2 and RP2, the primers for *IV2* gene. LBa1, the left border primer of SALK line mutant. LP4 and RP4, the primers for *IV4* gene. LP6 and RP6, the primers for *IV6* gene. (B) PCR analysis of iv2 (iv2-/+), iv4 (iv4-/+), and iv6(*iv6-/+*) heterozygous plants. *iv2*, *iv2* heterozygous genomic DNA. iv4, iv4 heterozygous genomic DNA. iv6, iv6 heterozygous genomic DNA. WT, wild type genomic DNA. C, the water used as template for PCR control. (C) Southern blot analysis of *iv4* (*iv4* -/-) homozygous plant. Genomic DNA was digested with EcoRI and SpeI two restriction enzymes, respectively; *EcoRI* is a restricted site on the T-DNA of *iv4* mutant, but SpeI is not. WT, wild type genomic DNA. (D) Investigation of *iv2*, *iv4*, and *iv6* specific mRNA. mRNAs were detected in flowers of corresponding homozygous mutants. WT, mRNA was from wild type. ACT2, the transcripts used as total RNA loading control.

Supplemental Table 1. Number of the flowers used for the polysome-mRNA extraction of the Bud stage, *in vivo* stage, and *in vitro* germinated pollen in each of three biological replicate samples.

Sample ID	Elawara NO	RNA Conc.	aRNA Conc.
	Flowers NO.	(ng/µl)	(ng/µl)
Bud	800-900	8.761	198.1
in vivo	500-700	0.455	1159.1
in vitro	7200	2.897	1036.4

aRNA: antisense RNA synthesized

Mutant	AGI number	Genotype	<i>in vitro</i> pollen germination	Seeds abortion	Publicly mutant name	Predicted gene function
Col-0			Normal	No		
IV 1	AT4G18425	Homozygous	Normal	Yes	SALK_063946C	Hypothetical protein
<i>IV 2</i>	AT2G23590	Homozygous	Normal	Yes	SAIL_270_A07	Methyl esterase 8
<i>IV</i> 3	AT1G64405	Homozygous	Normal	Yes	SAIL_198_G04.V1	Expressed protein
IV 4	AT1G17190	Homozygous	Normal	Yes	SALK_047724C	Glutathione S-transferase TAU26
IV 6	AT4G30290	Homozygous	Normal	Yes	SAIL_62_A10	Xyloglucan endotransglucosylase/hydrolase
IV 19	AT1G70090	Heterozygous	Abnormal	Yes	SAIL_510_E07	Galacturonosyl transferase-like 9
IV 20	AT1G70090	Homozygous	Abnormal	Yes	SAIL_510_E07	Galacturonosyl transferase-like 9
IV25	AT1G29430	Heterozygous	Abnormal	Yes	CS804061	Putative auxin-induced protein
IV 34	AT2G27500	Homozygous	Abnormal	Yes	SALK_068499C	Glycosyl hydrolase superfamily protein
IV 36	AT5G48540	Homozygous	Abnormal	Yes	CS809476	Receptor-like protein kinase-related family protein
IV 37	AT2G01080	Homozygous	Normal	Yes	CS806210	LEA hydroxyproline-rich glycoprotein family
IV 39	AT4G38950	Homozygous	Abnormal	Yes	SALK_080688	ATP binding microtubule motor family protein

Supplemental Table 2. Investigation of pollen viability and seeds abortion pattern of selected *IV* mutants

Primers	Sequence 5'→ 3'	
Genotyping		
RP2	TCCATAGCTATGACCCACGAG	
LP2	TGTAGTTGTGAACTATTAATGTGCAGTC	
RP4	TTTTTGTCGATGAATTCAGCC	
LP4	AACCGATGCATCTTGATTAGC	
RP6	TCAAAAACTCGATTCGAATGG	
LP6	GAATCTTGGACCAGTACGTG	
LB1	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC	
Lba1	TGGTTCACGTAGTGGGCCATCG	
RT-PCR		
AT1G17190	CCCCCCAAAACCGCAACCTCTA	
	AGCCAATGCCTTGACCACACTCT	
AT4G30290	CTCTTTGCAGCACAATCTATCAGCG	
	CGGTGAAAGGAGCTTTTGACCAATC	
AT2G23590	CGCGTGGTGCTGGTACAAGGTGAA	
	ACGGTGCTTCGTGAACTCAGCG	
ACTIN2	CATCAGGAAGGACTTGTACGG	
	GATGGACCTGACTCGTCATAC	
Q-PCR		
AT1G17190	TGGCGAACGACCAAGTGATT	
	CATCTTCGTCCTCATCCCGAA	
AT2G02650	AACGAAATCACTCGCCTCACTG	
	AGTGGCAATGACAGAAAATGCC	
AT5G55590	GCAAAGAGATATGGCGCGATC	
	ACCCGGTATCTTCAGTCTCCGA	
AT2G32690	AGTCGCTGAATTTTCGTTCGG	
	TGTAAATGCCATGCTTGTGGAG	
AT4G02050	CAGCGAACATGGTTAATTACGG	
	AAGAAATACCCGCCAAGCGT	
AT2G23590	CTTTCATGCCCGACACCAAA	
	GGTGTCATGGTGCTTGCAAAC	
AT2G27500	ACCGGTTGGCCTTCT AAAGGA	
	CCCATTATACAAAGCCGCGTT	
AT3G60290	CTCACGTGCCTACCCGTTACAT	
•	CGAGCATTGGTCGTTGTGAAG	
AT4G18425	CTTTCCATCACCGTCAGCAGA	

Supplemental Table 3. Primer pairs used in this study.

	AGAAAACACCCCTACGCCTACC
AT4G30290	TATGAATGCCGAGTCACGTGG
	TCCCCTTGTAGCCCAATGCTCT
AT5G13580	TAGAAACGCGGCGAATACG
	GAGATTCCACGGTGTCCTTCA
AT2G17845	TGGAGTCGCATACGCTTGTT
	CCTGGTGCGATCGAATTCA
AT1G66120	ACCTGCCATGTACGAGATGCA
	GGTTAAGTACGGCTCCGGTCAT
AT1G70090	TCTGCCGTTTTAGCGTTTGC
	AAAGCCATTTCCGACGGTG
AT1G64405	AAGAAGAGCGTGTCCTGGTTCC
	ACTCAAGCTCACTAGCCGTCGA
AT1G66540	ATGCGGCTGATCATTTACCG
	CTTTACCCGCCTCTCGAAATC
AT3G53300	TTCCGCGAGTGCGATTACA
	TCTGTCTCTTGCACCAGCTCTT
AT4G18425	TACCAACAGGAACCGTTCTCG
	ATCGCATTGACCGCCATT
AT2G20595	ATGTTCTCAGCCTTGTCGCAGT
	GGACCACCGCATTCGATTT
AT3G55870	GATGAAGTTCGCGGAAGGTTCT
	ATGGTGTGACGAAGCGGAA
AT5G22970	GGATGTGGTTCGTTTTGTACGA
	GGCAAAAATGGAACACGAGTCT
GAPDH	TTACAGTTCCCGTGTGGTCGA
	GCTTAGGCCTTTGACATGTGGA
Actin2	GGCTCCTCTTCTTAACCCAAAGGC
	CACACCATCACCAGAATCCAGC
FLAG-RPL18 QF	TATGCGAGACGCCTATGATCG
QR AP1 QF	CGTGCACAACAGAATTGAAAGC TACTCTTACGCCGAAAGACAGC
QR	TGTATTGACGTCGGACTCAGGT
CRP1 QF	AGGTGCGAACAAGAGGTGTCAC
QR	GCAAGCCTTGTTCCCATCATT
SHP1 QF	GTACCTGCGAGCAAAGATAGCC
QR	TCACACTCGATTCCTGCTGGTC
SR1 QF	TGATATCTGGTGTGGGCGCTTG
QR	TGGTTCAGCGGCTATAATCCG
VGD1 QF	GTTAAACTCAGCCCTGGAACCA
OR	AACCTGGACTGTGCCACTAAGG
PLIM2 (CRP1) QF	GACTTGCTTCAGGTGCACACAC
QR	AGGACGCCATTAAGAGAAGCG
QR	AGGACGCCATTAAGAGAAGCG

SUPPLEMENTAL METHODS:

Analysis for T-DNA Mutants

SALK and SAIL lines were obtained from the ABRC and they were analyzed the genotype according to the primers offered from T-DNA express website (http://signal.salk.edu/tdnaprimers.2.html).

Genomic DNA Extraction and Southern Blot Analysis

Genomic DNA was extracted from the wild type and *iv4* homozygous plants. About 1g plant sample was grinded with liquid nitrogen briefly and then grinded with 5 mL extraction buffer (0.1 M Tris HCl pH8.5, 50 mM EDTA, 0.1 M NaCl, 2% Sodium dodecyl sulfate). The crude extract was poured into a 50 mL centrifuge tube and added proteinase K (0.1 mg/ mL) for degrading protein in 1hour at room temperature. The 5 mL of phenol/chloroform/isoamyl alcohol (12:12:1) was added into crud extract and mixed gently, and then separated the phases by centrifuge at 4000g, 5 min at room temperature. Supernatant was transferred into new tube and repeated the phenol/chloroform/isoamyl alcohol purification. Genomic DNA was precipitated with 3M sodium acetate (1mL, pH 5.5) and 100% ethanol (10 mL) from the supernatant. After centrifugation (12000rpm, 20 min, 4°C), the pellet was suspended in 0.2-0.3 mL Tris-EDTA (TE) buffer (pH 7.0). Genomic DNA for Southern blot was digested with *EcoR1* and *Spe1* restriction enzymes, respectively. The probe designed and detail steps for Southern blot were followed the protocol of DIG-High Prime DNA Labeling and Detection Starter Kit II (Roche, Mannheim, Germany). The primers for DNA probe preparation are Southern SALKF (5'ATCGGGGAAATTCGAGCTCGGTACC 3') and Southern SALKR (5'CCCACTGAATCAAAGGCCATGG 3').

RT-PCR analysis of RNA

Total RNA was extracted by use of the RNeasy mini kit (Qiagen). For RT-PCR, 92 ng of total RNA was treated with DNaseI (Invitrogen Life Technologies, Carlsbad, CA, USA) for 30 min and first-strand cDNA was synthesized with 10 μ M oligo dT primer and MMLV reverse transcriptase (Invitrogen Life Technologies, Carlsbad, CA, USA). The PCR mix contained 1.5 mM MgCl2 0.2 mM dNTPs, 0.5 μ M each of sense and antisense primers, 2.5 U of Taq polymerase (MDBio, Taipei, Taiwan) and 1 × PCR buffer supplied with the Taq polymerase. The PCR program was conducted at 94°C for 5 min, 25–35 cycles at 94°C for 1 min, annealing at 55–59°C for 1 min, 72°C for 1–3 min, final elongation at 72°C for 7 min with use of a Biometra® T3 Thermocycler (Whatman Biometra, Gottingen, Germany). PCR products were analyzed on a 1% (w/v) agarose gel containing 0.01% (w/v) ethidium bromide. *ACTIN 2 (ACT2*; AT3G18780) was used as a positive control for monitor cDNA synthesized in PCR amplification, and a 761 bp fragment was obtained by use of the primer sets listed in Supplemental Table 3 online.

- Boavida, L.C., Borges, F., Becker, J.D., and Feijó, J.A. (2011). Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in *Arabidopsis*. Plant Physiol. 155, 2066-2080.
- Qin, Y., Leydon, A.R., Manziello, A., Pandey, R., Mount, D., Denic, S., Vasic, B., Johnson, M.A., and Palanivelu, R. (2009). Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 5, e1000621.