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Text S4 Recombining genomes

In contrast to the asexual populations in the previous sections, relatively few methods exist for predicting
the evolution of recombining genomes. The primary di�culty stems from the fact that recombination
requires explicit haplotype information: the fitness of a recombinant o↵spring depends not only on the
fitness of each parent, but also on the precise location of the mutations within each parental genome. As
a result, we no longer have a clean separation of scales between the mesoscopic dynamics of fitness evolu-
tion and the microscopic dynamics of sequence evolution that proved so useful in the analysis of asexual
populations. Rather, both e↵ects must be modeled simultaneously. For similar reasons, forward-time sim-
ulations of recombining genomes are significantly more time-consuming than their asexual counterparts,
even when we are only interested in evolution at the fitness level.

Recombination in the background selection regime

Because of these di�culties, most earlier work on recombining genomes falls back on the independent-
sites assumption described in the main text. This avoids the haplotype problem by assuming that (on
evolutionary timescales) the frequencies of individual mutations are in linkage equilibrium with each
other, where they evolve with some e↵ective population size N

e

. In the simple model studied here, the
e↵ective population size can be calculated in the background selection limit, which yields the well-known
formula N

e

= Ne�2U/(2s+R) from Eq. (6). This prediction is valid in the limit that Nse�2U/(2s+R) ! 1
with NU/Ns and NR/Ns fixed, which is similar to what we found in the asexual case. In this limit, the
linkage disequilibrium between two sites separated by a fixed map length �R scales as

LD ⇠ 1/(N
e

�R) , (ST4.1)

which self-consistently vanishes in agreement with the independent-sites assumption above.
However, for finite N

e

s it is known that selection causes distortions in neutral allele frequencies
similar those observed in asexual populations, although the dependence on the underlying parameters
is somewhat di↵erent. A structured coalescent description has only recently been derived in this limit
[42, 61], and its analytical implications are still being explored [38]. A cursory reading of Ref. [61] could
give the impression that the recombining structured coalescent avoids the interference issues that plagued
its asexual counterpart, but we have shown in Figure S1 that this is not the case. We see that while the
structured coalescent captures much of the distortion when Nse�2U/(2s+R) � 1, it also rapidly diverges
from simulation results near its maximum predicted deviation from neutrality, similar to the asexual case
above. This leaves a broad “interference selection regime” in recombining populations as well, even when
the ratio of mutation and recombination rates is not too large.

Interference and the linkage block ansatz

In order to predict the diversity in this interference selection regime, the most direct approach would
be to the extend the coarse-graining in Text S3 to the recombining structured coalescent. However,
this direct approach is more di�cult than it appears because of the tight coupling between genetic
diversity and fitness evolution in recombining genomes. Even if the interference selection limit still
exists in recombining genomes (for fixed NR), we can no longer predict the variance in fitness within
these populations without first characterizing the deleterious diversity along the chromosome. In asexual
populations, this calculation was crucial for connecting the interference selection regime to the proper
coarse-grained model. Moreover, even if the direct approach was successful, the recombining structured
coalescent is su�ciently complicated that it would provide little insight into the influence of recombination
rate in these populations. This is arguably the most important goal of any theoretical analysis.

For these reasons, we eschew the direct approach here in favor of a simple heuristic argument, which
trades some mathematical rigor for enhanced qualitative insight — and ultimately, better quantitative
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predictions. Like the ordinary independent sites assumption, our heuristic approach is based on the fact
that distant parts of the genome are e↵ectively independent of each other. Yet this intuition cannot apply
all the way down to the single-site level. Rather, evolution on su�ciently short length scales will resemble
an asexual genome, where interference builds up more rapidly than recombination can act to remove it.
To the extent that this transition is sharp, the evolution of a recombining genome can be viewed as a set
of freely recombining linkage blocks, within which evolution is e↵ectively asexual.

We argued in the text that the length of these blocks, L
b

/L, must scale as

L
b

L
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c/T
2

R for T
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R ! 1,

1 for T
2

R ! 0,
(ST4.2)

where c is some O(1) constant. The motivation for this scaling is simply that (up to logarithmic correc-
tions) T

2

is relevant timescale over which genetic and phenotypic diversity is accumulated, and that blocks
of size L

b

experience ⇠ O(1) recombination events over this time period. Previous work has also shown
that L

b

/L corresponds to the extent of linkage disequilibrium in the background selection regime [42].
For concreteness, we choose the functional form

L
b

L
=

✓

1 +
T
2

R
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◆�1

, (ST4.3)

which satisfies the scaling in Eq. (ST4.2) and seems to yield good results in practice. Given this definition,
we partition the genome into asexual blocks of size L

b

which evolve independently of each other, and
whose behavior can be predicted with the asexual methods described above. In the interference selection
regime, this implies that:

1. The coalescent timescale T
2

is set not by the total variance in fitness within the population, but
rather by the fraction �2 · (L

b

/L) that accumulates within a single linkage block.

2. The functional relationship between T
2

and �2 · (L
b

/L) is given by the asexual formula Eq. (ST4.2)
derived in Text S3.

3. The fractional variance �2 · (L
b

/L) can be predicted from the asexual formula in Eq. (ST4.19), but
with an e↵ective mutation rate U

e↵

= U · (L
b

/L).

We verify these predictions in Figures ST4.1 and ST4.2 using the same forward-time simulations from
Figure 4 in the main text. We see that our simple approximation is surprisingly accurate: U · (L

b

/L)
determines �2 · (L

b

/L), and �2 · (L
b

/L) in turn determines T
2

. Since L
b

/L is itself a function of T
2

, we
obtain a closed system of equations and a self consistency condition for the linkage scale:

L
b

L
=

1

1 + NR

4
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�

, Ns
�� , (ST4.4)

where T
2

/N is given by Eq. (ST4.2) and N�(NU,Ns) is given by Eq. (ST4.19). In the limit that T
2

R � 1
and �2 ⌧ Us, this simplifies to
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◆

· (Ns)2 , (ST4.5)

where N�
0,e↵

=
p

NU(Ns)2 (L
b

/L) is the e↵ective control parameter for the interference selection regime
on the linkage block. This implies that any two populations with the same value of U/R · h(Ns)2i should
possess the same patterns of synonymous diversity, on average. This quantity has a natural interpretation
as the fitness variance within the typical LD scale that would be obtained if fitness was not a selected
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Figure ST4.1. The reduction in synonymous diversity in the presence of recombination.
Colored points are measured from forward-time simulations of our simple purifying selection scenario
for NR = 10 (right triangles) and NR = 100 (left triangles). Other parameters are Ns 2 (10�3, 103)
and NU = 10, 30, 100, 300, 103, 3⇥ 103. In the left panel, these results are plotted as a function of the
background selection parameter �

e↵

= 2U/(2s+R), and the prediction from Eq. (6) is given by the
dashed line. The right panel shows the same set of results plotted as a function of the variance in fitness
per linkage block, where both N� and �R/R = (1 + T

2

R/4)�1 are measured from the simulations. The
solid red line gives the (asexual) prediction from Eq. (ST4.2).

Figure ST4.2. The variance in fitness in recombining populations, as a function of the
e↵ective mutation rate U

e↵

= U(�R/R). Symbols denote the same set of forward-time simulations
as Figure ST4.1, where N� and �R/R are again measured from the simulations. The red lines show
the (asexual) predictions from Eq. (ST4.19). Deviations from the master curve denote the transition to
the deterministic limit �2

det

= Us.
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trait. When N�
0,e↵

� 1, we can employ the asymptotic formulae in Eqs. (ST4.17) and (S4.6) to simplify
these expressions even further. Up to logarithmic corrections, we find that

L
b

L
⇠

r

Uhs2i
R3

, (ST4.6a)

T
2

⇠
p

R/(Uhs2i) , (ST4.6b)

�2 ⇠
p

RUhs2i , (ST4.6c)

which are only weakly dependent on N . This gives some intuition for the scaling behavior, but many
biologically relevant parameters lie outside this asymptotic regime and therefore require a numerical
solution of Eq. (ST4.4) to calculate L

b

/L (see Methods). Once L
b

/L is determined, we can generate pre-
dictions for the site frequency spectrum by applying our asexual coarse-grained model for the parameters
NU · (L

b

/L) and Ns. As a side benefit, our calculation of �2 gives a novel prediction for the rate of
Muller’s ratchet in sexual populations,

R
ratchet

=
�2

s
� U , (ST4.7)

which has important implications for the evolution of sex and genome architecture [87].
While the accuracy of the linkage block approximation is encouraging, some small systematic errors

remain. These are already apparent from Figure 4, where each value of NR appears to collapse to a
slightly di↵erent curve, despite the fact that the collapse within each value of NR is quite good. These
errors are likely caused by a crucial factor we neglected in our original analysis: distant regions of
the genome may be independent, but they still influence each other’s evolution through a reduction in
the e↵ective population size [46, 67, 71, 72]. Fitness variation at a distant locus represents e↵ectively
non-heritable variance in o↵spring number when the time T

r

between successive recombination events
satisfies T

r

⌧ T
MRCA

, which would occur if the loci were located on di↵erent linkage blocks. Existing
studies have focused on these e↵ects at the level of individual sites, but extending this intuition to the
linkage blocks, we might expect corrections to N

e

which depend on products of the form

�2
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, (ST4.8)

where n represents the distance measured in the number of linkage blocks. The power-law decay with n
suggests that even relatively distant blocks contribute to the reduction in N

e

, similar to the background
selection limit. This is consistent with the qualitative observation that longer genomes (i.e., larger values
of NR) have a shallower “distortion vs diversity curve” in Figure 4, since they have more linkage blocks
to contribute to the reduction in N

e

, and therefore, the reduction in ⇡/⇡
0

. Unfortunately, quantitative
predictions of N

e

are di�cult, since the transition between the e↵ectively asexual and e↵ectively unlinked
regimes is not su�ciently sharp to apply existing theory. A more detailed analysis of distant linkage
blocks remains an important avenue for future work.


