Supplementary Information

Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria

Jie Zhou, Haifeng Zhang, Hengkai Meng, Yan Zhu, Guanhui Bao, Yanping Zhang, Yin Li^{*}, Yanhe Ma

Table of Contents

- I. **Table S1**. Transcription factor binding sites located in upstream of the initiation codon of *cpcB*gene.
- II. Table S2. Strains and plasmids used in this study.
- III. Table S3. Primers used in this study.
- IV. Fig. S1. Synechocystiscodon optimized version of tergene from T. denticola.
- V. Fig. S2. RT-PCR confirmation of transcription of *ter*gene from P_{cpc374} and P_{cpc560}.
- VI. Fig. S3. Schematic diagram of construction of expression vectors.

 Table S1 Transcription factor binding sites located in upstream of the initiation codon of cpcB

 gene.

TFBS (Species)	Start Position	End Position	Score	Sequence
igB (N14) <i>Bacillus subtilis</i> (strain 168)	381	412	13.3	CGTGTTTCTCCCTGGATTTATTTAGGTAATAT
H-NS <i>Escherichia coli</i> (strain K12)	393	402	5.56	TGGATTTATT
Crp <i>Escherichia coli</i> (strain K12)	402	423	6.52	TTAGGTAATATCTCTCATAAAT
YhiX <i>Escherichia coli</i> (strain K12)	402	419	6.29	TTAGGTAATATCTCTCAT
SigE (-35) <i>Bacillus subtilis</i> (strain 168)	405	415	3.42	GGTAATATCTC
NarL <i>Pseudomonas aeruginosa</i> (strain ATCC 15692 / PAO1)	410	416	5.28	ТАТСТСТ
PvdS <i>Pseudomonas aeruginosa</i> (strain ATCC 15692 / PAO1)	417	425	6.22	САТАААТСС
Fur <i>Pseudomonas aeruginosa</i> (strain ATCC 15692 / PAO1)	443	461	8.73	GTTAATGGAGATCAGTAAC
IHF / <i>Escherichia coli</i> (strain K12)	473	488	5.95	GGTCATTACTTTGGAC
PucR / Bacillus subtilis (strain 168)	478	488	3.59	TTACTTTGGAC
SigB (-10) <i>Bacillus subtilis</i> (strain 168)	503	514	5.78	CGGGGGAATTGT
SigH (-10) <i>Bacillus subtilis</i> (strain 168)	505	514	7.15	GGGGAATTGT
OxyR <i>Escherichia coli</i> (strain K12)	516	526	2.9	TTTAAGAAAAT
SigH (-35) <i>Bacillus subtilis</i> (strain 168)	545	556	7.88	GTAGGAGATTAA

Strains and plasmids	Relevant characteristics	Reference
Strains		
<i>E.coll</i> /DH5	Commercial transformation host for cloning	Takara Co., Ltd.
Cyanobacteria		
<i>S</i> . 6803	Synechocystissp. PCC 6803 wild-type	D.J. Shi
Δpta	pta::Km ^r	This study
$\Delta pta::P_{cpc560}ter$	pta::P _{cpc560} terT _{rbcL} ::Km ^r	This study
∆pta::P _{cpc374} ter	pta::P _{cpc374} terT _{rbcL} ::Km ^r	This study
∆pta::DldhE	pta::Km ^r ::P _{cpc560} DldhET _{rbcL}	This study
Plasmids		
pSM2	pMD18-T derivate, Amp ^r Km ^r , containing <i>pta</i> knockout	1
	cassette	
pSM2-P _{cpc560} ter	pMD18-T derivate, Amp ^r Km ^r , containing <i>pta</i> knockout	This study
	cassette and $P_{cpc560} ter T_{rbcL}$ expression cassette	
pSM2-P _{cpc374} ter	pMD18-T derivate, Amp ^r Km ^r , containing <i>pta</i> knockout	This study
	cassette and $P_{cpc374} ter T_{rbcL}$ expression cassette	
pSM2- P _{cpc560} DldhE	pMD18-T derivate, Amp ^r Km ^r , containing <i>pta</i> knockout	This study
	cassette and $P_{cpc560}DIdhET_{rbcL}$ expression cassette	

Table S2 Strains and plasmids used in this study.

Abbreviations: Amp^r, ampicillin resistance; Km^r, kanamycin resistance.

Ref. 1. Zhou J., et. al. Designing and creating a modularized synthetic pathway in cyanobacterium *Synechocystis* enables production of acetone from carbon dioxide. *Metab Eng* **14**, 394-400 (2012).

Table S3 Primers used in this study.

Primers	Sequence (5 - 3)	Used for plasmid
P _{cpc560} F(Xhol)	CTGACTCTCGAGACCTGTAGAGAAGAGTCCCTGAA	pSM2-P _{cpc560} ter, pSM2-P _{cpc560} DldhE
PcpcR(ter)	GAACGCTTTG ATCGCATTTA A	pSM2-P _{cpc560} ter
	TGAATTAATCTCCTACTTGACTTTATG	
TrbcF1		pSM2-P _{cpc560} ter, pSM2-P _{cpc560} DIdhE
TrbcR1(Xhol)	ACCGGIGIIIGGAIIGICGG	pSM2-P _{cpc560} ter, pSM2-P _{cpc560} DIdhE
	CTGACT CTCGAG GCTGTCGAAGTTGAACATCAG	pSM2-P _{cpc374} ter
Ierr	ATGATTGTGAAACCCATGGT	nSM2-Pter
TerR(Trbc)	CCGACAATCCAAACACCGGTTTAAATGCGATCAAAGCGTTC	
Pcpc374F(Xhol)	CTGACTCTCGAGTCTTCCCTTCCCAATCCAG	pSM2-P _{cpc560} ter
DIdhEF	ΑΤΟΑΑΑΟΤΟΟΟΟΤΤΤΑΤΑΟΟΑ	pSM2-P _{cpc374} ter
DIdhFR(Trbc)	ATGAAACTCGCCGTTTATAGCA	pSM2-P _{cpc560} DldhE
	CCGACAATCCAAACACCGGTTTAAACCAGTTCGTTCGGGC	pSM2-P _{cpc560} DldhE
PCPCR(Diane) T	TGCTATAAACGGCGAGTTTCAT	nSM2-P = coDldbF
	TGAATTAATCTCCTACTTGACTTTATG	
		pSIM2-P _{cpc560} DIdhE

Introduced restriction sites are in bold.

ATGATTGTGAAACCCATGGTGCGCAACAACATTTGTTTGAACGCCCACCCCCAAGGCTGTAAAAA AGGCGTGGAAGATCAAATTGAATACACCAAAAAACGCATTACCGCCGAAGTGAAAGCCGGCGCCAAAGCCC CCAAAAACGTGTTGGTGTTGGGCTGTTCCAACGGCTACGGCTTGGCCTCCCGCATTACCGCCGCCTTTGGC TACGGCGCCGCCACCATTGGCGTGTCCTTTGAAAAAGCCGGCTCCGAAACCAAATACGGCACCCCGGCTG GTACAACAACTTGGCCTTTGATGAAGCCGCCAAACGCGAAGGCTTGTACTCCGTGACCATTGATGGCGATG GTGTACTCCTTGGCCTCCCCGTGCGCACCGATCCCGATACCGGCATTATGCACAAATCCGTGTTGAAACC CCGCCAACGATGAAGAAGCCGCCGCCACCGTGAAAGTGATGGGCCGCCGAAGATTGGGAACGCTGGATTAAA CAATTGTCCAAAGAAGGCTTGTTGGAAGAAGGCTGTATTACCTTGGCCTACTCCTACATTGGCCCCCGAAGC CACCCAAGCCTTGTACCGCAAAGGCACCATTGGCAAAGCCAAAGAACACTTGGAAGCCACCGCCCACCGCT TGAACAAAGAAAACCCCTCCATTCGCGCCTTTGTGTCCGTGAACAAAGGCTTGGTGACCCGCGCCTCCGCC CTGTATTGAACAAATTACCCGCTTGTACGCCGAACGCTTGTACCGCAAAGATGGCACCATTCCCGTGGATG AAGAAAACCGCATTCGCATTGATGATTGGGAATTGGAAGAAGATGTGCAAAAAGCCGTGTCCGCCTTGATG GAAAAAGTGACCGGCGAAAACGCCGAATCCTTGACCGATTTGGCCGGCTACCGCCACGATTTTTTGGCCTC CAACGGCTTTGATGTGGAAGGCATTAACTACGAAGCCGAAGTGGAACGCTTTGATCGCATT

Fig. S1. Synechocystiscodon optimized version of tergene from T. denticola. Start and stop

codons are also indicated.

Fig. S2. RT-PCR confirmation of transcription of *ter* gene from P_{cpc374} and P_{cpc560} . Total RNA of *S* 6803 wild-type (WT), Δ pta, Δ pta:: P_{cpc374} ter and Δ pta:: P_{cpc560} ter cells was isolated using Redzol reagent (Qiagen, Beijing, China). Residual DNA in RNA preparations was eliminated by digestion with RNAse-free DNAse and reverse transcription reactions were performed using Reverse Transcription kit (Qiagen, Beijing, China). Reverse transcription products were amplified by PCR and analyzed by electrophoresis on 1.2% (w/v) agarose gels. M was DNA marker III. Transcription of *rmpB* was used as a positive control.

Fig. S3. Schematic diagram of construction of expression vectors.