
Weber’s law - mathematical and computational supplement

1 Supplemental Figures
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Figure 1: Tuning curves appropriate for Weber’s law. a. Monotonically increasing functions. b.
Monotonically decreasing functions. Plots are shown for different values of θ0. In the monotonically
increasing case they are defined only for θ ≥ θ0 and in the decreasing case only for θ < θ0. The
plots assume Poisson statistics with τ = 0.5 sec, α = 0.25, β = 1 and ρ = 0.5. Note that changes
to α, β and τ do not change the shape of the curves, which ensure linear scaling, but do effect their
magnitudes (which changes the Weber fraction α).
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Figure 2: Weber’s law with a diverse population of neurons. a. The summed firing rate (dashed
red line) from a population of 15 simulated neurons with sigmoidal tuning curves (thin colored
lines at the bottom) is nearly identical to a log-power tuning curve (solid black line, behind dashed
line). Each of these neurons is assumed to code for the input magnitude and is independently
parameterized. b. The mean magnitude (red + symbols) estimated from 50 independent trials
(individual trial estimates indicated by green dots) using this population of 15 neurons accurately
reflects the true input magnitude. c. Standard deviation (σest, blue + symbols) of the population
magnitude estimates scales linearly with input magnitude in accord with Weber’s law.
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Fig 2 from Dean, J. Physiol, 1981
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Fig 1 from Dean, Exp Brain Res, 1981
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Fig 3 from Dean, J. Physiol, 1981
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Fig 4 from Dean, J. Physiol, 1981
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Figure 3: Examples of neural data fit by log-power curves. These data represent contrast tuning
curves extracted from the two cited papers from A.F Dean in 1981. We have fit them to a log-power
curve, y = k · ln(θ/θ0)

n, and found a range of parameters. a. From figure 1 in Dean 1981, Exp.
Brain Res. The value n = 2.21 corresponds to a noise exponent of ρ = 0.547 very close to the
exponent measured in the same paper ρ = 0.58. b. From Dean 1981, J. Physiology, Figure 2. Here,
n = 2.33 corresponding to ρ = 0.57. c. From Dean 1981, J. Physiology, Figure 3. Here n = 1.27
corresponding to ρ = 0.21 which is much lower than the experimentally observes ρ. d. Here there
is one cell from Dean 1981, J. Physiology. The two curves are for two different spatial frequencies.
Fits are strongly dependent on other parameters (such as spatial frequency). For the lower spatial
frequency which drives this cell better n = 2.74, corresponding to ρ = 0.63. For higher spatial
frequency n = 4.56 corresponding to ρ = 0.78 which is much larger than the value of the measured
noise exponent. A range of exponents and threshold values are estimated for the different cells.
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