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Frequency of common R groups in series of different lengths in the dataset 

Figure S1 shows the normalized frequency for the most common R groups in series of particular 

lengths. The steeper curves for shorter series indicates that shorter matched series are more likely 

to contain common R groups. In fact, the 5 most common R groups in series of length 2 cover 53% of 

the R groups, while this decreases to 30% for N=3, 23% for N=4, 18% for N=5 and 15% for N=6. 

 
Figure S1 – Comparison of frequencies of the most common R groups in matched series of 

different lengths (N). To highlight differences between the frequency curves in this log plot, all 

frequency values for a particular series length were divided by the frequency of the most common R 

group for that length. 

 

Retrospective test using a focussed subset 

The training data in the main retrospective test indiscriminately combined pIC50 data from a wide 

range of targets. The fact that it still worked well indicates either that SAR data is in general 

transferable between different targets (due for example to similar protein environments occurring in 

different binding sites, or due to the same physicochemical driving forces at play), or that a 

sufficiently long ordered matched series is characteristic of particular targets and so in effect we are 

selecting those matched pairs relevant to a particular target. This leads to the question of whether a 

dataset targeted at a particular protein class would provide better predictions for that class. Since 

ChEMBL provide a list of kinase and GPCR related targets (in association with the Kinase SARfari and 

GPCR SARfari web portals), we could investigate this question. 

 

The GPCR data is only available for targets up until 2011 and even then there is little 2011 data. As a 

result the test set was generated from the GPCR data from 2010 and 2011 (6213 matched series, 

reduced to 321 after removing series shorter than length 5 and duplicates), while the earlier GPCR 
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data was used for training (65339 matched series). To compare with results based on all of the data, 

predictions were made for the same test set but using training data from all ChEMBLdb assays prior 

to 2010 (332713 matched series). As before, 100 repetitions were used when generating the test 

set. 

 

The results are shown in Figure S2. For those series where predictions were made, improved 

performance is seen for the GPCR subset for the series of lengths 2 and 3. This may also be the case 

for the series of lengths 4 and 5 but the dataset size prevents any conclusions to be drawn as the 

variance is too high. However, as the GPCR dataset is much smaller than the combined ChEMBLdb 

data, the number of series for which no predictions can be made is also larger. This suggests that a 

useful approach would be to use the focussed subset if the target is a GPCR and then fall back to the 

larger dataset if no prediction is possible. 

  

A similar analysis can be done for the kinase subset. Kinase data is available for targets up until 2011. 

The test set is generated from the 2011 kinase data (2697 matched series, reduced to 461 after 

removing series shorter than length 5 and duplicates), while the earlier data was using for training 

(49364 matched series). To compare with results based on all of the data, predictions were made for 

the same test set but using training data from all ChEMBLdb assays prior to 2011 (377219 matched 

series). The results are shown in Figure S3. The results are similar to those for the GPCR data except 

that no improved performance is seen at N=2. 

 

It is worth comparing these results with those of Mills et al.
1
 who report that a matched series of 

length 3 (“local SAR” in the context of the paper) was a better guide to prediction than matched pair 

data restricted to the target of interest. 

 

Figure S2 – Retrospective test results for the ChEMBL GPCR data. 
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 Figure S3 – Retrospective test results for the ChEMBL kinase data. 

 

Enrichment values for predictions related to the Topliss Tree 

 

Each substituent predicted by Matsy has an associated enrichment value for the ordered matched 

series consisting of itself in combination with the query. For example, given [4-Cl>H] Matsy predicts 

3,4-diCl. The resulting ordered matched series [3,4-diCl>4-Cl>H] has an enrichment of 2.31 

compared to other orderings of those three substituents. This enrichment has a p-value of 0.000. 

Table S1 lists enrichment values and their associated p-values for all of the ordered series discussed 

in the text as well as those shown in Figure 2. 

 

Table S1 – Enrichments and their p-values for ordered series related to the Topliss Tree 

comparison 

 

Series Enrichment p-value 

4-Cl>H 1.12 0.000 

   

3,4-diCl>4-Cl>H 2.31 0.000 

2-naphthyl>3,4-diCl>4-Cl>H 4.14 0.000 

4-NO2>3,4-diCl>4-Cl>H 2.69 0.003 

3-CF3-4-Cl>3,4-diCl>4-Cl>H 5.05 0.007 

   

4-Cl>3,4-diCl>H 1.09 0.415 

4-Br>4-Cl>3,4-diCl>H 2.84 0.000 
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4-NO2>4-Cl>3,4-diCl>H 2.20 0.021 

4-OMe>4-Cl>3,4-diCl>H 1.55 0.078 

2,4-diCl>4-Cl>3,4-diCl>H 1.20 0.613 

   

4-Cl>H>3,4-diCl 0.69 0.003 

3-Cl>4-Cl>H>3,4-diCl 0.81 0.728 

4-OMe>4-Cl>H>3,4-diCl 0.78 0.631 

   

H>4-Cl 0.88 0.000 

   

4-OMe>H>4-Cl 0.78 0.000 

4-OH>4-OMe>H>4-Cl 2.73 0.000 

   

H>4-Cl>4-OMe 1.03 0.610 

2-F>H>4-Cl>4-OMe 2.44 0.000 

cyclohexyl>H>4-Cl>4-OMe 2.49 0.002 

4-OH>H>4-Cl>4-OMe 2.18 0.004 

3-Cl>H>4-Cl>4-OMe 1.70 0.003 

   

4-OH>H>4-Cl 1.35 0.013 

2-Cl>4-OH>H>4-Cl 2.73 0.006 

3-Cl>4-OH>H>4-Cl 1.57 0.285 

3-OH>4-OH>H>4-Cl 2.40 0.026 

   

H>4-OH>4-Cl 0.74 0.070 

4-OMe>H>4-OH>4-Cl 0.68 0.568 

   

H>4-Cl>4-OH 0.81 0.188 

4-F>H>4-Cl>4-OH 1.35 0.395 

 

Scaffolds and targets for Matsy predictions 

 

Table 3 summarizes the Matsy predictions for [CCC>CC>C]. The best prediction was n-hexyl, which 

improved the binding in 40 out tof 53 cases. Here we provide additional information on the 40 

targets and scaffolds on which the prediction of hexyl was based. 

 

Table S2 – Scaffolds and targets for the n-hexyl prediction in Table 3 

 

Scaffold ChEMBL assay Target 

 

CHEMBL1040228 Acyl coenzyme 

A:cholesterol 

acyltransferase 1 
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CHEMBL1054937 Acyl-CoA:cholesterol 

acyltransferase 

 

CHEMBL1054937 Acyl-CoA:cholesterol 

acyltransferase 

 

CHEMBL1068137 Anandamide 

amidohydrolase 

 

CHEMBL2209179 Angiotensin II 

receptor 

 

CHEMBL645260 Angiotensin II 

receptor (AT-1) type-1 
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CHEMBL646537 C-C chemokine 

receptor type 5 

 

CHEMBL649303 Caspase-3 

 

CHEMBL661605 Cholesteryl ester 

transfer protein 

 

CHEMBL663079 Cyclooxygenase-1 

 

CHEMBL665927 Cyclooxygenase-2 
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CHEMBL666799 Cytochrome P450 

19A1 

 

CHEMBL670726 Cytochrome P450 

19A1 

 

CHEMBL679284 Cytochrome P450 

19A1 

 

CHEMBL744319 Delta opioid receptor 

 

CHEMBL744319 Endothelin receptor 

ET-A 
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CHEMBL746513 Endothelin receptor 

ET-B 

 

CHEMBL746513 Glucagon receptor 

 

CHEMBL747492 Malonyl-CoA 

decarboxylase 

 

CHEMBL747493 Malonyl-CoA 

decarboxylase 

 

CHEMBL747656 Muscarinic 

acetylcholine receptor 

M1 
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CHEMBL747701 Muscarinic 

acetylcholine receptor 

M1 

 

CHEMBL748244 Muscarinic 

acetylcholine receptor 

M1 

 

CHEMBL749237 Muscarinic 

acetylcholine receptor 

M1 

 

CHEMBL749237 Muscarinic 

acetylcholine receptor 

M1 

 

CHEMBL749504 Muscarinic 

acetylcholine receptor 

M1 
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CHEMBL749925 Muscarinic 

acetylcholine receptor 

M1 

 

CHEMBL751533 Muscarinic 

acetylcholine receptor 

M1 

 

CHEMBL751534 Muscarinic 

acetylcholine receptor 

M1 

 

CHEMBL751535 Muscarinic 

acetylcholine receptor 

M2 

 

CHEMBL755211 Muscarinic 

acetylcholine receptor 

M3 
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CHEMBL758014 Muscarinic 

acetylcholine receptor 

M3 

 

CHEMBL760085 Muscarinic 

acetylcholine receptor 

M4 

 

CHEMBL764258 Muscarinic 

acetylcholine receptor 

M4 

 

CHEMBL765526 Muscarinic 

acetylcholine receptor 

M5 

 

CHEMBL829509 Neuraminidase 
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CHEMBL859660 Peroxisome 

proliferator-activated 

receptor gamma 

 

CHEMBL878575 Phosphodiesterase 5A 

 

CHEMBL925154 Inhibition of 

hemolysis 

 

CHEMBL983195 Inhibition of NF-

kappaB activation 
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