Cationic Cyclizations and Rearrangements Promoted by a Heterogeneous Gold Catalyst

Tulaza Vaidya, Ryan Cheng, Peter N. Carlsen, Alison J. Frontier,* and Richard Eisenberg*

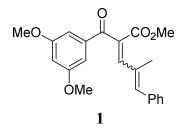
Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, United States

Supporting Information

Table of Contents

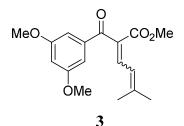
General Methods	S2
Preparation of New Nazarov Precursors	S2
New Aryl Enones (Nazarov Precursors)	S2
Cyclization Reactions with Au Catalyst	S6
New Aryl Products (Nazarov and Lactone Products)	S7
Known Cyclization and Rearrangement Products	S12
References	S14

General Methods


Reactions with gold were done in oven dried glassware using standard Schlenk techniques or in a nitrogen glovebox. All other reactions were done under an atmosphere of nitrogen. AuCl₃ and AgSbF₆ were purchased from Strem Chemicals. Dichloromethane- d_2 , toluene- d_8 , and deuterated chloroform were from Cambridge Isotope Laboratories. Dichloromethane, hexanes, toluene, and diethyl ether stored in the glovebox were purified according to the method described by Grubbs.¹ Solvents (dichloromethane, dichloroethane, toluene, THF, and ether) used for the preparation of arvl enones were purchased from Fisher and obtained from a Glass Contour solvent purification system. Reactions with AgSbF₆ were done with minimal light conditions using aluminum foil. If AgSbF₆ is not pure, rearrangement reactions are not efficient. Cyclizations were monitored by ¹H NMR using J-Young tubes or thin layer chromatography. Thin Layer Chromatography plates were visualized using a UV lamp, stained with *p*-anisaldehyde or potassium permanganate solution, and dried on a hot plate. Flash column chromatography was done on EM Science silica gel 60 (230-400 mesh). ¹H NMR, ¹³C NMR, DEPT-135, COSY, and HSQC spectra were recorded on Bruker Avance 500 MHz or Bruker Avance 400 MHz spectrometer. ¹H and ¹³C NMR chemical shifts (δ) are reported in parts per million after referencing to the appropriate solvent resonances.² An ATI Mattson Genesis FT-IR spectrometer was used to acquire infrared spectra. High Resolution Mass Spectra were obtained from the Chemistry Instrumentation Center of SUNY at Buffalo or the Mass Spectrometry Laboratory of University of Illinois at Urbana-Champaign.

Preparation of Nazarov Precursors

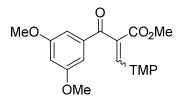
Nazarov precursors described in this paper were prepared according to known procedures using Knoevanagel condensation of β -ketoesters and aldehydes using acetic acid and piperidene in benzene at 100 °C, Lehnert modification of Knoevanagel condensation with TiCl₄/pyridine at 0 °C, or oxido-alkylidenation of alkynes.³⁻⁶


Reaction details are listed with all compounds (method of preparation, time, mmol of product, yield, purification method).

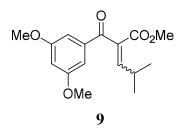
New Aryl Enones (Nazarov Precursors)

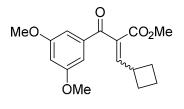


(Knoevanagel condensation, 16 h, 0.420 mmol of 1, quantitative yield, flash column chromatography with ethyl acetate:hexanes = 1:4) ¹H NMR (500 MHz, CDCl₃, δ): 7.67 (m, 1H, CH), 7.33-7.30 (m, 2H, CH), 7.24-7.23 (m, 3H, CH), 7.10 (d, J = 2.3 Hz, 2H, CH), 6.97 (s, 1H, CH), 6.66 (t, J = 2.3 Hz, 1H, CH), 3.80 (s, 6H, OCH₃), 3.71 (s, 3H, OCH₃), 1.79 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 195.2, 166.0, 161.1, 148.2, 142.2, 139.3, 136.2, 133.3, 129.6, 129.0, 128.3, 128.2, 106.9, 106.1, 55.6, 52.5, 16.4. IR (neat, cm⁻¹): 1714, 1666, 1588, 1456,


1426, 1351, 1315, 1296, 1245, 1196, 1172, 1155, 1065, 1018, 1007, 955, 925. **HRMS** calculated for $C_{22}H_{22}O_5$ (M)⁺ 366.1462, found: 366.14581.

(Knoevanagel condensation, 16 h, 0.420 mmol of **3**, quantitative yield, flash column chromatography with Ethyl acetate:hexanes = 1:4) ¹H NMR (500 MHz, CDCl₃, δ): 7.79 (d, J = 12.5 Hz, 1H, CH), 7.032 (s, 1H, CH), 7.028 (s, 1H, CH), 6.67-6.66 (m, 1H, CH), 5.86 (d, J = 11.8 Hz, 1H, CH), 3.81 (s, 6H, OCH₃), 3.69 (s, 3H, OCH₃), 1.94 (s, 3H, CH₃), 1.81(s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 194.8, 166.0, 161.1, 151.2, 139.8, 139.0, 128.4, 120.7, 107.1, 106.6, 106.4, 106.3, 55.7, 52.3, 27.1, 19.2. IR (neat, cm⁻¹): 2917, 1714, 1670, 1629, 1590, 1456, 1428, 1350, 1295, 1243, 1205, 1151, 1064, 1009, 926. HRMS calculated for C₁₇H₂₀O₅ (M)⁺ 304.1305, found 304.13138.


(Knoevanagel condensation, 16 h, 2.10 mmol of **5**, quantitative yield, flash column chromatography with ethyl acetate:hexanes = 1:2) ¹H NMR (**500 MHz, CDCl₃**, δ): 7.89 (s, 1H, CH), 7.29 (d, J = 8.7 Hz, 2H, CH), 7.11 (d, J = 2.4 Hz, 2H, CH), 6.75 (d, J = 8.9 Hz, 2H, CH), 6.64 (t, J = 2.3 Hz, 1H, CH), 3.78 (s, 6H, OCH₃), 3.74 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 195.9, 165.8, 161.5, 161.2, 142.7, 138.1, 132.4, 128.1, 125.5, 114.9, 114.4, 106.9, 106.6, 55.7, 55.4, 52.6. IR (neat, cm⁻¹): 1721, 1710, 1668, 1594, 1571, 1512, 1423, 1356, 1292, 1255, 1208, 1202, 1188, 1180, 1168, 1154, 1125, 1065, 1051, 1025, 1006, 928. HRMS calculated for C₂₀H₂₀O₆ (M)⁺ 356.1254, found: 356.12555.


7

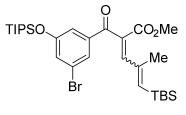
(Knoevanagel condensation, 16 h, 0.42 mmol of 7, quantitative yield, flash column chromatography with ethyl acetate:hexanes = 1:2) ¹H NMR (400 MHz, CDCl₃, δ): 8.15 (s, 1H, CH), 7.08 (m, 2H, CH), 6.59 (t, J = 2.9 Hz, 1H, CH), 5.95 (s, 1H, CH), 3.78 (s, 6H, OCH₃), 3.77 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 3.50 (s, 6H, OCH₃). ¹³C NMR (100 MHz, CDCl₃, δ): 193.3, 167.4, 163.8, 160.6, 159.8, 139.7, 136.0, 128.1, 107.1, 106.5, 105.5, 105.2, 90.3, 55.7, 55.5, 54.9,

52.3. **IR (neat, cm⁻¹)**: 1717, 1672, 1591, 1455, 1426, 1336, 1315, 1295, 1250, 1234, 1204, 1152, 1124, 1087, 1061, 1033, 1005, 951, 925. **HRMS** calculated for $C_{22}H_{24}O_8$ (M)⁺ 416.1466, found: 416.14597.

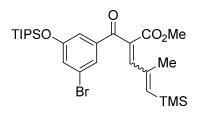


(Knoevanagel condensation, 16 h, 1.05 mmol of **9**, quantitative yield, flash column chromatography with ethyl acetate:hexanes = 1:4) ¹H NMR (500 MHz, CDCl₃, δ): 7.04 (m, 2H, CH), 6.94 (d, J = 11.0 Hz, 1H, CH), 6.67 (m or t, J = 2.2 Hz, 1H, CH), 3.81 (s, 6H, OCH₃), 3.69 (s, 3H, OCH₃), 2.40-2.32 (m, 1H, CH), 1.00 (d, J = 6.6 Hz, 6H, CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 194.1, 165.2, 161.1, 154.0, 138.7, 131.1, 106.9, 106.4, 55.7, 52.4, 29.4, 21.9. IR (neat, cm⁻¹): 2964, 1717, 1671, 1639, 1602, 1467, 1457, 1426, 1356, 1335, 1318, 1305, 1242, 1205, 1195, 1176, 1159, 1149, 1061, 1038, 1011, 959. HRMS calculated for C₁₆H₂₀O₅ (M)⁺ 292.1305, found: 292.12933.

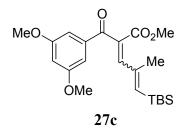
11


(Knoevanagel condensation including Lehnert modification, 2.10 mmol of the β -ketoester was used to obtain 1.68 to 1.89 mmol of **11**, 80-90% yield, 24 h, flash column chromatography with ethyl acetate:hexanes = 1:4 to 1:6) ¹H NMR (500 MHz, CDCl₃, δ): 7.28 (d, J = 10 Hz, 1H, CH), 7.03 (d, J = 2.0 Hz, 2H, CH), 6.70 (t, J = 2.25 Hz, 1H, CH), 3.85 (s, 6H, OCH₃), 3.73 (s, 3H, OCH₃), 3.00 (m, 1H, CH), 2.11-2.08 (m, 2H, CH₂), 2.03-1.99 (m, 2H, CH₂), 1.90-1.86 (m, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃, δ): 193.9, 165.1, 161.0, 151.7, 138.5, 130.7, 106.8, 106.3, 55.6, 52.2, 35.4, 28.8, 28.5, 18.9. IR (neat, cm⁻¹): 2944, 1721, 1674, 1597, 1460, 1431, 1368, 1352, 1320, 1298, 1249, 1205, 1158, 1064, 1005, 925. HRMS calculated for C₁₇H₂₁O₅ (M)⁺ 305.1389, found: 305.1397.

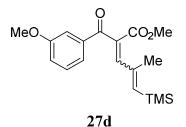
14


(Knoevanagel condensation, 16 h, 0.630 mmol of 14, quantitative yield, flash column chromatography with ethyl acetate:hexanes = 1:4) ¹H NMR (500 MHz, CDCl₃, δ): 7.06 (m, 2H, CH), 6.64 (t, *J* = 2.3 Hz, 1H, CH), 6.50 (d, *J* = 11.4 Hz, 1H, CH), 3.79 (s, 6H, OCH₃), 3.64 (s,

3H, OCH₃), 1.45-1.37 (m, 1H, CH), 0.95-0.92 (m, 2H, CH₂), 0.73-0.70 (m, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃, δ): 194.2, 165.1, 161.0, 154.0, 138.8, 130.4, 106.9, 106.3, 55.6, 52.1, 13.1, 9.7. IR (neat, cm⁻¹): 2917, 1717, 1676, 1626, 1593, 1452, 1434, 1422, 1356, 1288, 1242, 1200, 1149, 1063, 1050, 1010, 956, 933, 921. HRMS calculated for C₁₆H₁₈O₅ (M)⁺ 290.1149, found 290.11472.

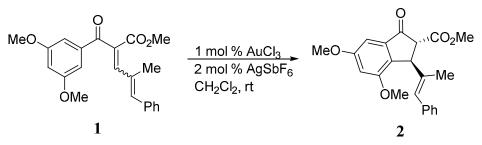

27a

(Oxido-alkylidenation, 24 h, 1.93 mmol of **27a**, 77% yield over two steps, flash column chromatography with ethyl acetate:hexanes = 1:19) ¹H NMR (400 MHz, CDCl₃, δ): 7.64 (s, 1H), 7.52 (s, 1H), 7.30 (s, 1H), 7.24 (s, 1H), 6.10 (s, 1H), 3.71 (s, 3H), 1.71 (s, 3H), 1.26 (m, 3H), 1.09 (d, *J* = 7.3 Hz, 18H), 0.85 (s, 9H), 0.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 193.6, 165.6, 157.2, 149.2, 147.4, 143.4, 139.3, 128.3, 128.2, 124.5, 123.2, 119.1, 52.5, 26.3, 20.3, 17.8, 17.1, 12.6, -4.8. IR (neat, cm⁻¹): 2951, 2866, 1728, 1682, 1589, 1562, 1435, 1285, 1169, 1088, 972, 918, 883, 849, 748, 690. HRMS calculated for C₂₉H₄₈O₄BrSi₂ (M)⁺ 595.2269, found: 595.22589.



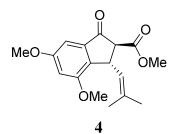
27b

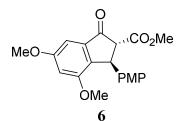
(Oxido-alkylidenation, 24 h, 2.03 mmol of **27b**, 79% yield over two steps, flash column chromatography with ethyl acetate:hexanes = 1:19) ¹H NMR (400 MHz, CDCl₃, δ): 7.63 (s, 1H), 7.50 (s, 1H), 7.30 (s, 1H), 7.25 (s, 1H), 6.10 (s, 1H), 3.71 (s, 3H), 1.69 (s, 3H), 1.33 – 1.18 (m, 3H), 1.09 (d, *J* = 7.3 Hz, 18H), 0.09 (s, 9H). ¹³C NMR (100 MHz, CDCl₃, δ): 193.6, 165.5, 157.2, 150.1, 148.9, 146.2, 139.4, 128.2, 128.1, 124.4, 123.1, 119.0, 52.4, 19.8, 17.8, 12.5, -0.67. IR (neat, cm⁻¹): 2947, 2893, 2866, 2360, 2341, 1728, 1681, 1654, 1589, 1562, 1434, 1365, 1284, 1238, 1164, 1091, 995, 972, 918, 845, 748, 686, 667. HRMS calculated for C₂₆H₄₂O₄BrSi₂ (M)⁺ 553.1800, found: 553.18280.


(Knoevanagel condensation, 16 h, 0.269 mmol of **27c**, 64% yield, flash column chromatography with ethyl acetate:hexanes = 1:5) ¹**H NMR (500 MHz, CDCl₃, \delta)**: 7.49 (s, 1H, CH), 7.06-7.05 (m, 2H, CH), 6.67-6.65 (m, 1H, CH), 6.05 (s, 1H, CH), 3.81 (s, 6H, OCH₃), 3.70 (s, 3H, OCH₃), 1.72 (s, 3H, CH₃), 0.92 (s, 3H, CH₃), 0.81 (s, 6H, CH₃), 0.22 (s, 3H, CH₃), 0.02 (s, 3H, CH₃). ¹³**C NMR (125 MHz, CDCl₃, \delta)**: (both diastereomers) 195.2, 194.9, 166.0, 161.1, 148.8, 147.8, 145.5, 144.4, 142.3, 139.2, 139.0, 130.0, 128.9, 107.0, 106.3, 55.7, 53.5, 52.6, 26.6, 26.4, 25.6, 20.4, 17.2, 1.13, -3.80, -4.66. **IR (neat, cm⁻¹)**: 2953, 2931, 1724, 1677, 1593, 1462, 1428, 1352, 1316, 1297, 1249, 1206, 1157, 1066, 1011. **HRMS** calculated for C₂₂H₃₃O₅Si (M)⁺ 405.2092, found: 405.20828.

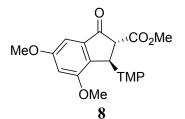
(Oxido-alkylidenation, 24 h, 1.42 mmol of **27d**, 54% yield over two steps, flash column chromatography with ethyl acetate:hexanes = 1:4 to 1:6) ¹H NMR (**500 MHz, CDCl₃**, δ): 7.50 (s, 2H, CH), 7.45 (d, *J* = 7.5 Hz, 1H CH), 7.36 (t, *J* = 7.5 Hz, 1H, CH), 7.13 (d, *J* = 8.0 Hz, 1H, CH), 6.07 (s, 1H, CH), 3.84 (s, 3H, OCH₃), 3.687 (s, 3H, OCH₃), 1.70 (s, 3H, CH₃), 0.06 (s, 9H) ¹³C NMR (**125 MHz, CDCl₃**, δ): 194.9, 165.8, 159.9, 149.6, 148.4, 145.4, 138.4, 129.7, 129.0, 122.2, 120.3, 112.5, 55.4, 52.3, 19.8, -0.548. **IR (neat, cm⁻¹)**: 3006, 2954, 1722, 1701, 1680, 1599, 1583, 1487, 1464, 1452, 1435, 1361, 1319, 1216, 1174, 1043, 848. **HRMS** calculated for C₁₈H₂₅O₄Si (M)⁺ 333.1522, found 333.1523.

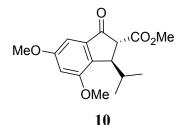
Cyclization Reactions with Au Catalyst

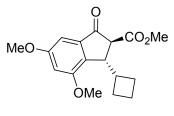

All cyclizations were done according to the procedure described for the cyclization of **1**. The cyclizations were monitored using Thin Layer Chromatography (TLC) and/or ¹H NMR spectroscopy. Aryl enone substrates are used as diastereomeric mixtures to obtain a single product.⁷ Reaction details are listed with all compounds (temperature, solvent, time, mmol of product, yield, purification method).


Gold(III) chloride (0.0008 g, 0.0026 mmol) was dissolved in CH_2Cl_2 (0.8 mL) in a 15 x 45 mm Amber Screw Cap Vial. Silver(I) hexafluoroantimonate (0.0019 g, 0.0055 mmol) was weighed under minimal light and added to the reaction mixture. The vial was capped, wrapped with aluminum foil, and the reaction mixture was stirred for 0.5 h at room temperature. Aryl

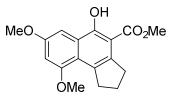
enone **1** (0.100 g, 0.273 mmol) was added to the mixture and stirred for 0.5 h at room temperature. Au and Ag were filtered through Celite using ethyl acetate and the removal of solvent provided aryl cyclopentenone **2** in >99% yield. ¹H NMR (500 MHz, CDCl₃, δ): 7.33-7.30 (m, 2H, CH), 7.23-7.29 (m, 3H, CH), 6.83 (d, J = 1.9 Hz, 1H, CH), 6.70 (d, J = 1.9 Hz, 1H, CH), 6.36 (s, 1H, CH), 4.48 (d, J = 3.1 Hz, 1H, CH), 3.85 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.55 (d, J = 3.1 Hz, 1H, CH), 1.71 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 199.0, 169.3, 162.1, 158.2, 138.2, 138.0, 137.6, 137.1, 129.0, 128.2, 127.3, 126.5, 106.7, 96.8, 60.5, 56.0, 55.9, 53.0, 50.1. IR (neat, cm⁻¹): 1741, 1705, 1609, 1493, 1453, 1437, 1356, 1305, 1232, 1205, 1147, 1031, 982. HRMS calculated for C₂₂H₂₂O₅ (M)⁺ 366.1462, found: 366.14682.

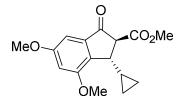

New Aryl Products (Nazarov and Lactone Products)


(room temperature, CH₂Cl₂, 1 h, 0.176 mmol of **4**, >99% yield, flash column chromatography with ethyl acetate:hexanes = 1:4) ¹**H NMR (500 MHz, CDCl₃, \delta)**: 6.77 (d, *J* = 2.1 Hz, 1H, CH), 6.66 (d, *J* = 2.1 Hz, 1H, CH), 4.94 (d, *J* = 9.5 Hz, 1H, CH), 4.53 (dd, *J* = 9.6 Hz, 2.8 Hz, 1H, CH), 3.82 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.40 (d, *J* = 2.8 Hz, 1H, CH), 1.79 (d, *J* = 1.3 Hz, 3H, CH₃), 1.71 (d, *J* = 1.4 Hz, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 199.5, 169.4, 161.7, 158.1, 139.5, 137.0, 134.2, 124.5, 106.8, 96.6, 61.9, 55.9, 55.8, 52.9, 39.9, 25.9, 18.5. IR (neat, cm⁻¹): 2955, 1736, 1711, 1592, 1495, 1454, 1435, 1359, 1308, 1236, 1205, 1150, 1040, 935. HRMS calculated for C₁₇H₂₀O₅ (M)⁺ 304.1305, found 304.13058.

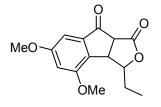

(room temperature, CH₂Cl₂, 0.5 h, 0.281 mmol of **6**, >99% yield, flash column chromatography with ethyl acetate:hexanes = 1:2) ¹H NMR (500 MHz, CDCl₃, δ): 6.97 (d, *J* = 8.7 Hz, 2H, CH), 6.85 (d, *J* = 2.0 Hz, 1H, CH), 6.79 (d, *J* = 8.7 Hz, 2H, CH), 6.66 (d, *J* = 2.0 Hz, 1H, CH), 4.88 (d, *J* = 2.8 Hz, 1H, CH), 3.85 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃), 3.58 (d, *J* = 2.9 Hz, 1H, CH). ¹³C NMR (125 MHz, CDCl₃, δ): 199.3, 169.0, 162.1, 158.5, 157.9, 138.7, 137.6, 134.5, 128.3, 114.1, 107.1, 96.6, 64.4, 56.0, 55.8, 55.4, 53.0, 45.3. IR (neat, cm⁻¹): 1738, 1710, 1610, 1583, 1511, 1494, 1453, 1435, 1360, 1307, 1244, 1204, 1173, 1148, 1109, 1030, 987, 933. HRMS calculated for C₂₀H₂₀O₆ (M)⁺ 356.1254, found: 356.12564.

(room temperature, CH₂Cl₂, 0.5 h, 0.240 mmol of **8**, >99% yield, flash column chromatography with ethyl acetate:hexanes = 1:2) ¹H NMR (500 MHz, CDCl₃, δ): 6.81 (d, *J* = 2.1 Hz, 1H, CH), 6.54 (d, *J* = 2.1 Hz, 1H, CH), 6.17 (d, *J* = 2.2 Hz, 1H, CH), 5.97(d, *J* = 2.2 Hz, 1H, CH), 5.43 (d, *J* = 2.8 Hz, 1H, CH), 3.89 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.81(d, *J* = 2.8 Hz, 1H, CH), 3.78 (s, 3H, OCH₃), 3.61 (s, 3H, OCH₃), 3.38 (s, 3H, OCH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 200.5, 170.1, 160.9, 160.1, 159.1, 158.9, 157.4, 139.7, 137.6, 109.9, 106.1, 96.3, 91.3, 91.2, 60.8, 56.5, 55.7, 55.67, 55.2, 52.5, 35.6. IR (neat, cm⁻¹): 1736, 1704, 1604, 1590, 1497, 1467, 1461, 1432, 1428, 1356, 1333, 1301, 1228, 1206, 1113, 1151, 1059, 1036, 989, 950, 934. HRMS calculated for C₂₂H₂₄O₈ (M)⁺ 416.1466, found: 416.14667.


(room temperature, CH₂Cl₂, 0.5 h, 0.342 mmol of **10**, >99% yield, flash column chromatography with ethyl acetate:hexanes = 1:4) ¹H NMR (**500 MHz, CDCl₃, \delta**): 6.77 (d, J = 2.1 Hz, 1H, CH), 6.67 (d, J = 2.1 Hz, 1H, CH), 3.85 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.80-3.78 (m, 1H, CH), 3.74 (s, 3H, OCH₃), 3.47 (d, J = 2.8 Hz, 1H, CH), 2.73-2.67 (m, 1H, CH), 1.04 (d, J = 6.9 Hz, 3H, CH₃), 0.51 (d, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (**125 MHz, CDCl₃, \delta**): 199.9, 170.3, 161.6, 157.9, 139.3, 138.0, 106.5, 96.7, 55.9, 55.7, 54.9, 52.8, 47.3, 28.3, 21.7, 15.9. IR (neat, cm⁻¹): 2957, 1740, 1710, 1613, 1494, 1463, 1454, 1435, 1360, 1328, 1300, 1247, 1204, 1150, 1103, 1040, 1024, 935. HRMS calculated for C₁₆H₂₀O₅ (M)⁺ 292.1305, found: 292.1305.

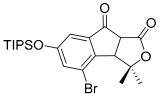

(room temperature, toluene, 16 h, 0.179 mmol of **12**, 64% yield, flash column chromatography with ethyl acetate:hexanes = 1:4) ¹H NMR (500 MHz, CDCl₃, δ): 6.81 (d, *J* = 2.0 Hz, 1H, CH), 6.70 (d, *J* = 1.5 Hz, 1H, CH), 3.89 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.77 (m, 1H, CH), 3.59 (d, *J* = 2.0 Hz, 1H, CH), 2.84 (m, 1H, CH), 2.10-2.03 (m, 2H, CH₂), 1.86-1.81 (m, 2H, CH₂), 1.80-1.77 (m, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃, δ): 199.6, 169.8, 161.4, 157.8, 139.0, 137.5, 106.3, 96.6, 57.5, 55.7, 55.4, 52.7, 45.7, 39.2, 27.7, 25.1, 17.9. IR (neat,

cm⁻¹): 2955, 1742, 1712, 1613, 1495, 1464, 1454, 1435, 1361, 1308, 1205, 1151, 1038, 934. **HRMS** calculated for $C_{17}H_{21}O_5$ (M)⁺ 305.1389, found 305.1388.

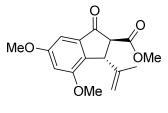

13

(room temperature, toluene, 16 h, 0.084 mmol of **13**, 30% yield, flash column chromatography with ethyl acetate:hexanes = 1:4)¹**H NMR (500 MHz, CDCl₃, \delta)**: 12.34 (br, 1H, OH), 7.35 (d, *J* = 2.0 Hz, 1H, CH), 6.64 (d, *J* = 2.0 Hz, 1H, CH), 4.04 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 3.48 (t, *J* = 7.5 Hz, 2H, CH₂), 3.27 (t, *J* = 7.5 Hz, 2H, CH₂), 2.11 (m, 2H, CH₂). ¹³**C NMR (125 MHz, CDCl₃, \delta)**: 172.9, 159.1, 157.7, 157.3, 136.9, 129.8, 126.1, 122.3, 105.2, 101.5, 94.6, 55.4, 55.4, 52.0, 35.0, 34.6, 24.4. **IR (neat, cm⁻¹)**: 3392, 2921, 1730, 1655, 1595, 1502, 1439, 1407, 1341, 1213, 1156, 1079, 1053, 1012, 946. **HRMS** calculated for C₁₇H₁₉O₅ (M)⁺ 303.1232, found 303.1241.

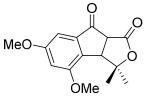
15


(room temperature, CH₂Cl₂ 16 h, 0.205 mmol of **15**, 68% yield, flash column chromatography with ethyl acetate:hexanes = 1:4) Product formation was observed within 2 h. However, the reaction was run for 16 h to see if more of **16** would form. ¹H **NMR (500 MHz, CDCl₃, \delta)**: 6.81 (d, *J* = 2.0 Hz, 1H, CH), 6.73 (d, *J* = 1.5 Hz, 1H, CH), 3.91 (s, 3H, OCH₃), 3.86 (m, 4H, OCH₃/CH), 3.78 (s, 3H, OCH₃), 3.56 (d, *J* = 2.5 Hz, 1H, CH), 3.30 (m, 1H, CH), 0.97-0.95 (m, 1H, CH), 0.66-0.62 (m, 1H, CH), 0.52-0.50 (m, 1H, CH), 0.28-0.22 (m, 1H, CH). ¹³C **NMR (125 MHz, CDCl₃, \delta)**: 199.2, 169.5, 161.5, 158.2, 139.2, 137.4, 106.5, 96.5, 60.6, 55.7, 55.5, 52.7, 45.3, 15.8, 5.9, 2.9. **IR (neat, cm⁻¹)**: 2954, 1742, 1712, 1613, 1494, 1459, 1435, 1360, 1310, 1266, 1230, 1206, 1154, 1035, 911. **HRMS** calculated for C₁₆H₁₉O₅ (M)⁺ 291.1232, found 291.1239.

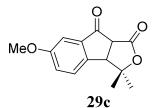
16


(room temperature, CH_2Cl_2 , 16 h, 0.072 mmol of 16, 24% yield, flash column chromatography with ethyl acetate:hexanes = 1:4) ¹H NMR (500 MHz, CDCl₃, δ): 6.82 (s, 1H, CH), 6.72 (s, 1H,

CH), 4.60-4.57 (m, 1H, CH), 3.89 (s, 3H, OCH₃), 3.86-3.85 (m, 1H, CH), 3.83 (s, 3H, OCH₃), 1.97-1.93 (m, 2H, CH₂), 1.11 (t, J = 7.4 Hz, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 195.0, 169.7, 162.7, 157.4, 137.4, 136.0, 106.7, 97.3, 85.2, 56.1, 55.9, 54.3, 42.7, 30.0, 9.23. IR (neat, cm⁻¹): 2968, 2940, 1774, 1715, 1613, 1464, 1491, 1436, 1355, 1324, 1307, 1206, 1167, 1099, 1034, 1027, 970. HRMS calculated for C₁₅H₁₆O₅ (M)⁺ 276.0992, found 276.09930.


29a

(room temperature, toluene, 5 h, 0.023 mmol of **29a** from **27a**, 79% yield, preparatory TLC with ethyl acetate:hexanes = 1:4) **29a** formed within 5 h, however, the reaction mixture was monitored using TLC until 16 h to observe any further reaction. ¹H NMR (**500 MHz, CDCl₃, \delta**): 7.40 (d, J = 2.2 Hz, 1H, CH), 7.19 (d, J = 2.2 Hz, 1H, CH), 4.14 (d, J = 8.7 Hz, 1H, CH), 3.97 (d, J = 8.6 Hz, 1H, CH), 1.85 (s, 3H, CH₃), 1.31-1.25 (m, 3H, CH), 1.10 (s, 3H, CH₃), 1.095 (d, J = 7.4 Hz, 18H, CH₃). ¹³C NMR (**125 MHz, CDCl₃, \delta**): 194.6, 167.6, 158.2, 144.3, 138.3, 131.7, 122.4, 113.8, 86.9, 57.2, 50.4, 31.4, 25.7, 17.9, 12.7. IR (neat, cm⁻¹): 2946, 2893, 2868, 1781, 1725, 1602, 1558, 1464, 1389, 1374, 1297, 1259, 1173, 1128, 983, 962. HRMS calculated for C₂₂H₃₁O₄BrSiNa (M+Na)⁺ 489.1067, found: 489.10648.

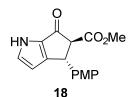

28b

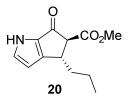
(60 °C, CH₂Cl₂:toluene = 1:1, 24 h, 0.198 mmol of **28b**, 80% yield, column chromatography with ethyl acetate:hexanes = 1:4) ¹**H NMR (500 MHz, CDCl₃, \delta)**: 6.80 (m, 1H, CH), 6.68 (m, 1H, CH), 4.83 (m, 1H, CH), 4.71 (m, 1H, CH), 4.32 (d, *J* = 3.0 Hz, 1H, CH), 3.84 (s, 3H, CH₃), 3.82 (s, 3H, CH₃), 3.77 (s, 3H, CH₃), 3.45 (d, *J* = 3.5 Hz, 1H, CH), 1.62 (s, 3H, CH₃). ¹³**C NMR (125 MHz, CDCl₃, \delta)**: 198.9, 169.1, 161.9, 157.9, 144.4, 137.8, 137.6, 112.4, 106.5, 96.6, 60.6, 55.8, 55.7, 52.8, 47.6, 20.1. **IR (neat, cm⁻¹)**: 2956, 2925, 1739, 1714, 1495, 1453, 1436, 1360, 1310, 1206, 1152. **HRMS** calculated for C₁₆H₁₉O₅ (M)⁺ 291.1232, found 291.1239.

29b

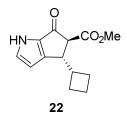
(60 °C, CH₂Cl₂:toluene = 1:1, 24 h, 0.205 mmol of **29b**, 83% yield, column chromatography with ethyl acetate:hexanes = 1:4) ¹**H NMR (500 MHz, CDCl₃, \delta)**: 6.90 (d, *J* = 2.0 Hz, 1H, CH), 6.77 (d, *J* = 2.0, 1H, CH), 4.13 (d = 8.0 Hz, 1H, CH), 3.96 (m, 4H, CH/OCH₃), 3.90 (s, 3H, OCH₃), 1.75 (s, 3H, CH₃), 1.16 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 195.4, 168.3, 162.5, 157.6, 137.7, 134.1, 106.5, 97.3, 86.5, 56.2, 55.9, 55.7, 47.4, 30.7, 24.9. **IR (neat, cm⁻¹)**: 3055, 2987, 1774, 1716, 1617, 1497, 1436, 1423, 1361, 1317, 1154, 1095, 1023, 896. **HRMS** calculated for calculated for C₁₅H₁₇O₅ (M)⁺ 277.1076, found 277.1073.

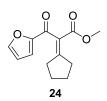
(60 °C, CH₂Cl₂:toluene = 1:1, 24 h, 0.265 mmol of **29c**, 88% yield, column chromatography with ethyl acetate:hexanes = 1:4) ¹H NMR (**500 MHz, CD₂Cl₂, \delta**): 7.70 (d, *J* = 8.5 Hz, 1H, CH), 7.28 (dd, *J* = 8.5 Hz, 2.5 Hz, 1H, CH), 7.21 (d, *J* = 2.5 Hz, 1H CH), 3.95 (d, *J* = 3.5 Hz, 1H, CH), 3.91 (s, 3H, OCH₃), 3.62 (dd, *J* = 3.0 Hz, 1H, CH), 1.20 (s, 3H, CH₃), 1.14 (s, 3H, CH₃). ¹³C NMR (**125 MHz, CD₂Cl₂, \delta**): 198.7, 169.7, 160.0, 147.3, 137.4, 128.8, 124.1, 105.1, 76.8, 57.6, 50.9, 49.1, 22.7, 21.6. **IR (neat, cm⁻¹)**: 3045, 2986, 1764, 1710, 1498, 1436, 1418, 1365, 1312, 1154, 1098, 1021, 902. **HRMS** calculated for C₁₄H₁₅O₄ (M)⁺ 247.0970, found 247.0980.

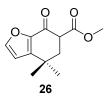

Cyclization Reaction of 27b with AlCl₃


This cyclization was performed according to the procedure of Sarpong.⁸ To a 25 ml round-bottom flask was added dry AlCl₃ (0.231 g, 1.73 mmol, 1.1 eq) and DCE (15 ml). The flask was cooled to 0 °C. Aryl enone 27b (0.869 g, 1.57 mmol, diastereomeric mixture) was added, and the reaction mixture turned deep red. The reaction mixture was stirred for 0.5 h at 0 °C and monitored by TLC. The reaction mixture was quenched with saturated aqueous potassium sodium tartrate solution, which turned the reaction mixture green, then yellow. The reaction mixture was extracted three times with Et₂O. The combined organic extracts were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (19:1 hexanes:ethyl acetate) to afford 28a as a 3.6:1 mixture of anti:syn isomers (0.597 g, 1.24 mmol, 79% yield). ¹H NMR (400 MHz, CDCl₃, δ): 7.38 (d, J = 2.2 Hz, 1H), 7.16 (d, J = 2.2 Hz, 1H), 4.93 (s, 1H), 4.70 (s, 1H), 4.29 (d, J = 2.7 Hz, 1H), 3.79 (s, 3H), 3.51 (d, J = 2.7 Hz, 3H), 1.65 (s, 3H), 1.37 – 1.20 (m, 3H), 1.10 (d, J = 7.3 Hz, 18H). ¹³C NMR (125 MHz, CDCl₃, δ): 197.6, 168.5, 157.2, 146.5, 143.3, 138.3, 131.7, 122.2, 114.1, 112.9, 61.0, 52.9, 50.3, 20.3, 17.8, 12.5. **IR (neat, cm⁻¹)**: 2947, 2866, 2360, 2341, 1720, 1650, 1585, 1554, 1458, 1377, 1292, 1223, 1157, 1134, 1099, 1060, 960, 883, 798, 759, 729, 686, 667, 617. **HRMS** calculated for $C_{23}H_{34}O_4BrSi$ (M)⁺ 483.1384, found: 483.13733.

Known Cyclization and Rearrangement Products


Characterization and purification details for the following compounds have been previously reported.^{3,6}


(room temperature, CH₂Cl₂, 12 h, 0.070 mmol of **18**, >99% yield)


(60 °C, toluene, 16 h, 0.046 mmol of 20, >99% yield)

(80 °C, toluene, 4 h, 0.063 mmol of 22, 74% yield)

(80 °C, toluene, 0.5 h, 0.406 mmol of 24, 95% yield)

(80 °C, toluene, 18 h, 0.025 mmol of 26, 50% yield)

References

- 1. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 2. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512
- 3. Malona, J. A.; Colbourne, J. M.; Frontier, A. J. Org. Lett. 2006, 8, 5661.
- 4. Canterbury, D. P.; Frontier, A. J.; Um, J. M.; Cheong, P. H. Y.; Goldfeld, D. A.; Huhn, R. A.; Houk, K. N. Org. Lett. 2008, 10, 4597.
- 5. Canterbury, D. P.; Herrick, I. R.; Um, J.; Houk, K. N.; Frontier, A. J. *Tetrahedron* **2009**, *65*, 3165.
- Vaidya, T.; Manbeck, G. F.; Chen, S.; Frontier, A. J.; Eisenberg, R. J. Am. Chem. Soc. 2011, 133, 3300.
- 7. He, W.; Herrick, I. R.; Atesin, T. A.; Caruana, P. A.; Kellenberger, C. A.; Frontier, A. J. J. *Am. Chem. Soc.* **2008**, *130*, 1003.
- 8. Marcus, A.P.; Lee, A.S.; Davis, R. L.; Tantillo, D. J.; Sarpong, R. Angew. Chem., Int. Ed. 2008, 47, 6379-6383.