A Statistical Method to Base Nutrient Recommendations on Meta-Analysis of Intake and Health-Related Status Biomarkers

Hilko van der Voet, Waldo J. de Boer, Olga W. Souverein, Esmée L. Doets, Pieter van 't Veer

Appendix S1: Derivation of nutrient intakes under the stochastic model.

The stochastic model (bivariate normal distribution for log intake and log status) implies a linear regression line when predicting ln(status) from ln(intake). For error-free observations this relation is

$$S_i = ANS + \beta_1 (I_i - ANI) \tag{A.1}$$

with subscript *i* indicating any individual person in the population of interest.

In our model it is assumed that for each individual *i* the measured ln status (y_i) is a linear function of the deviation of the true ln intake (I_i) from the individual ln requirement (R_i) , plus random measurement error (e_i) with mean 0 and variance σ_e^2 . The measured ln intake (x_i) is assumed to be also a linear function of the true ln intake (I_i) , plus random measurement error (d_i) with mean 0 and variance σ_d^2 . Parallel lines are assumed for all individuals. The model can thus be written as

$$y_i = S_0 + \beta_1 (I_i - R_i) + e_i; \quad x_i = \beta_{Q0} + \beta_{Q1} I_i + d_i$$
 (A.2)

The parameters S_0 and β_1 are the parameters of interest in the 'disease model', where S_0 is the ln status value expected for any individual who exactly satisfies his personal intake requirement. This is the external nutrient status cut-off value to classify health as sufficient or insufficient. The parameters β_{Q0} and β_{Q1} describe the general and intake-related bias in the model describing questionnaire data used to assess nutrient intake. Note that absence of general bias at the average nutrient intake (ANI) level is represented by $\beta_{Q0} = (1 - \beta_{Q1})ANI$, so that $x_i = ANI + \beta_{Q1}(I_i - ANI) + d_i$. Assuming also absence of intake-related bias we would set $\beta_{Q1} = 1$, reducing the model to the simple measurement error model $x_i = I_i + d_i$.

The relation between the observed quantities x_i and y_i is obtained by elimination of the unknown true intake. After introducing centring constants *ANI*, *ANS* and *ANR* for x, y and R respectively, the model can be written as

$$y_{i} = ANS + \beta_{1}\beta_{Q1}^{-1}(x_{i} - d_{i} - ANI) + \beta_{1}(ANR - R_{i}) + e_{i}$$
(A.3)

where

$$ANR = (ANI - \beta_{Q0}) / \beta_{Q1} + (S_0 - ANS) / \beta_1$$
(A.4)

In the following we assume absence of general bias in the observed intakes, in which case the latter equation simplifies to

$$ANR = ANI + (S_0 - ANS) / \beta_1$$
(A.5)

ANR is therefore the intersection of the line with slope β_1 through (ANI, ANS) with the line y = S_0 .

ANR and INL_p are defined as the median and pth percentile of the nutrient requirements distribution. INL_p is ANR plus an appropriate multiple of the requirements standard deviation:

$$INL_{p} = ANR + z_{p} SDNR$$
(A.6)

In the bivariate model the deviations from the true regression line are explained by variation in individual requirements around *ANR* (see Figure 1A). Consequently,

$$SDNS^{2} = \beta_{1}^{2} \left(SDNI^{2} + SDNR^{2} \right)$$
(A.7)

and, given the true parameters of the bivariate distribution, the standard deviation of nutrient requirements *SDNR* and the coefficient of variation for nutrient requirements CVNR can be estimated by

$$SDNR = \sqrt{(SDNS / \beta_1)^2 - SDNI^2}; \quad CVNR = \sqrt{\exp(SDNR^2) - 1}$$
 (A.8)

The PNL is defined as the intake level where p % of the *S* distribution is above S_0 , so from equation A.1

$$S_0 + z_p SDNS = ANS + \beta_1 \left(PNL_p - ANI \right)$$
(A.9)

which using equation 5 can be rewritten as

$$PNL_{p} = ANR + z_{p} SDNS / \beta_{1}$$
(A.10)