SUPPORTING INFORMATION

Figure S1. AHLs from the control, A, and B libraries examined in this study. Compound numbering is analogous to our earlier publications.^[1]

Figure S2. AHLs from the C and D libraries examined in this study. Compound numbering is analogous to our earlier publications.^[1]

Figure S3. AHLs from the E library examined in this study. Compound numbering is analogous to our earlier publications.^[2]

Figure S4. AHLs from the Q, R, and S libraries examined in this study. Compound numbering is analogous to our earlier publications.^[3]

Figure S5. Primary LasR antagonism screening data for the control and A libraries in *P. aeruginosa* PAO-JP2 + plas/LVAGFP, *P. aeruginosa* PAO-JG21 + plas/LVAGFP, and *E. coli* JLD271 + pPROBE-KL. Antagonism assays were performed using the following compound concentrations and controls:

<u>PAO-JP2</u> :	10 µM of synthetic ligand against 100 nM OdDHL
	Positive control (100 % inhibition) = 2 μ L DMSO (no AHL added)
	Negative control (0 % inhibition) = 100 nM OdDHL
<u>PAO-JG21</u> :	10 µM of synthetic ligand against 10 nM OdDHL
	Positive control (100 % inhibition) = 2 μ L DMSO (no AHL added)
	Negative control (0 $\%$ inhibition) = 10 nM OdDHL
<u>JLD271</u> :	10 µM of synthetic ligand against 2 nM OdDHL
	Positive control (100 % inhibition) = $2 \mu L$ DMSO (no AHL added)
	Negative control (0 % inhibition) = 2 nM OdDHL

All fluorescence data were background-corrected by subtracting the negative control fluorescence value (wells containing reporter strain + 2 μ L DMSO only) from the experimental value. Percent (%) LasR activity was measured by normalizing background-corrected value to fluorescence value obtained in wells containing reporter strain + OdDHL. Percent (%) LasR inhibition = 100% - % LasR activity.

All compounds were screened in triplicate over 3 separate trials. Error bars represent the SEM of 3 trials.

Figure S6. Primary LasR antagonism screening data for the B library in *P. aeruginosa* PAO-JP2 + *plasI*LVAGFP, *P. aeruginosa* PAO-JG21 + *plasI*LVAGFP, and *E. coli* JLD271 + *pPROBE-KL*. Antagonism assays were performed as described in Figure S5.

Figure S7. Primary LasR antagonism screening data for the C library in *P. aeruginosa* PAO-JP2 + *plasI*LVAGFP, *P. aeruginosa* PAO-JG21 + *plasI*LVAGFP, and *E. coli* JLD271 + *pPROBE-KL*. Antagonism assays were performed as described in Figure S5.

Figure S8. Primary LasR antagonism screening data for the D library in *P. aeruginosa* PAO-JP2 + *plasI*LVAGFP, *P. aeruginosa* PAO-JG21 + *plasI*LVAGFP, and *E. coli* JLD271 + *pPROBE-KL*. Antagonism assays were performed as described in Figure S5.

Figure S9. Primary LasR antagonism screening data for the E library in *P. aeruginosa* PAO-JP2 + plas/LVAGFP, *P. aeruginosa* PAO-JG21 + plas/LVAGFP, and *E. coli* JLD271 + pPROBE-KL. Antagonism assays were performed as described in Figure S5.

Figure S10. Primary LasR antagonism screening data for the Q, R, and S libraries in *P. aeruginosa* PAO-JP2 + plas/LVAGFP, *P. aeruginosa* PAO-JG21 + plas/LVAGFP, and *E. coli* JLD271 + pPROBE-KL. Antagonism assays were performed as described in Figure S5.

	Compound	LasR inhibition (%)
	A4	30
	B14	29
	D13	$26^{\rm a}$
	E5	35
≥ 25%	E6	27
inhibition	E32	39
	E33	26
	E35	33
	E36	26
	R4	25
	S1	28

Table S1. List of the most active AHL-derived LasR antagonists identified in the *P. aeruginosa* PAO-JP2 (pump-active) GFP reporter screen and accompanying inhibition data. Primary data from plots in Figures S5–S10.

 $^{\rm a}$ Compound displayed limited solubility at concentrations greater than 1 $\mu M.$

	Compound	LasR inhibition (%)
	E3	81
	E5	86
	E10	81
	E11	91
$\geq 80\%$ inhibition	E21	87
	E22	80
	E26	81
	E27	83
	E28	84
	E30	85
	S6	91

Table S2. List of the most active AHL-derived LasR antagonists identified in the *P. aeruginosa* PAO-JG21 (pump-mutant) GFP reporter screen and accompanying inhibition data. Primary data from plots in Figures S5–S10.

	Compound	LasR inhibition (%)	Compound	LasR inhibition (%)	Compound	LasR inhibition (%)
	Ctrl 1	37	D1	35	E21	87
	Ctrl 4	53	D3	28	E22	80
	Ctrl 6	46	D4	26	E23	41
	Ctrl 8	52	D7	29	E24	42
≥ 25%	Ctrl 9	59	D13	28ª	E25	47
inhibition	A2	35	D15	31	E26	81
	A3	61	D17	34	E27	83
	B1	26	D20	67	E28	84
	B5	57	E1	57	E29	76
	B9	46	E2	60	E30	85
	B10	27	E3	81	E31	77
	B11	60	E4	29	E33	49
	B12	43	E5	86	E36	50
	B13	49	E6	51	E37	64
	C1	25	E7	37	E38	69
	C2	49	E8	51	E39	68
	C3	29	E9	42	Q9	27
	C4	26	E10	81	Q12	26
	C5	40	E11	91	R5	27
	C6	56	E12	63	R6	35
	C8	60	E13	49	R8	30
	C10	49	E14	37	R9	27
	C11	59	E15	31	S1	38
	C14	30	E16	55	S2	42
	C17	35	E17	50	S3	51
	C19	25	E18	42	S4	41
	C20	35	E19	66	S5	50
	C24	30	E20	75	S6	91

 $^{\mathrm{a}}$ Compound displayed limited solubility at concentrations greater than 1 $\mu M.$

	Compound	LasR inhibition (%)
	A3	99
	B11	80
	C6	100
	C8	94
≥ 80% inhibition	C10	82
	E3	87
	E5	85
	E10	80
	E16	82
	E20	80
	E27	81
	E38	88
	E39	88

Table S3. List of the most active AHL-derived LasR antagonists identified in the *E. coli* JLD271 GFP reporter screen and accompanying inhibition data. Primary data from plots in Figures S5–S10.

	Compound	LasR inhibition (%)	Compound	LasR inhibition (%)	Compound	LasR inhibition (%)
	Ctrl 8	64	C20	67	E20	80
	A2	46	C23	29	E21	77
	A3	99	C24	33	E22	71
	B6	26	D3	33	E24	56
≥ 25%	B7	50	D6	65	E25	68
inhibition	B9	73	D7	31	E26	78
	B10	44	D13	65ª	E27	81
	B11	80	D17	41	E28	78
	B12	47	D20	36	E29	79
	B13	67	E1	66	E30	74
	B14	40	E2	71	E31	66
	C1	35	E3	87	E33	41
	C2	72	E4	41	E36	36
	C3	59	E5	85	E37	77
	C5	74	E6	53	E38	88
	C6	100	E7	48	E39	88
	C8	94	E10	80	Q9	36
	С9	31	E11	75	Q10	40
	C10	82	E12	67	Q12	37
	C11	65	E13	52	R4	35
	C13	66	E14	52	R5	54
	C14	78	E15	64	R6	43
	C15	29	E16	82	S3	45
	C16	31	E17	67	S5	36
	C17	51	E18	61	S6	69
	C19	39	E19	69		

 a Compound displayed limited solubility at concentrations greater than 1 $\mu M.$

Figure S11. LasR antagonism dose responses and IC_{50} values for AHLs A4, B14, E5, and E6 in *P. aeruginosa* PAO-JP2 and PAO-JG21. Plots on the left are truncated to show the dose response curves of the compounds in the inhibitory concentration range for each strain. Plots on the right show the full dose response including non-monotonic behavior, if applicable. Synthetic compounds were screened against 100 nM and 10 nM OdDHL in PAO-JP2 and PAO-JG21, respectively, over varying concentrations. IC_{50} values were calculated from the truncated plots using GraphPad Prism. Error bars, SEM of n = 3 trials.

Figure S12. LasR antagonism dose responses and IC_{50} values for AHLs **E32**, **E33**, **E35**, and **E36** in *P. aeruginosa* PAO-JP2 and PAO-JG21. Plots on the left are truncated to show the dose response curves of the compounds in the inhibitory concentration range for each strain. Plots on the right show the full dose response including non-monotonic behavior, if applicable. Synthetic compounds were screened against 100 nM and 10 nM OdDHL in PAO-JP2 and PAO-JG21, respectively, over varying concentrations. IC_{50} values were calculated from the truncated plots using GraphPad Prism. Error bars, SEM of n = 3 trials.

Figure S13. LasR antagonism dose responses and IC₅₀ values for AHLs **R4**, **R5**, **S1**, and 3-oxo-C12-aniline in *P. aeruginosa* PAO-JP2 and PAO-JG21. Plots on the left are truncated to show the dose response curves of the compounds in the inhibitory concentration range for each strain. Plots on the right show the full dose response including non-monotonic behavior, if applicable. Synthetic ligands screened against 100 nM and 10 nM OdDHL in PAO-JP2 and PAO-JG21, respectively, over varying concentrations of inhibitor. IC₅₀ values were calculated from the truncated plots using GraphPad Prism. Error bars, SEM of n = 3 trials.

Figure S14. LasR antagonism dose response curves for DMABI in *P. aeruginosa* PAO-JP2 and PAO-JG21 in the absence and presence of PABN. DMABI potency was not affected by removal of MexAB-OprM or addition of the RND pump inhibitor PABN. Antagonism assays were performed using the following compound concentrations and controls:

<u>PAO-JP2</u>: Variable of

Variable concentrations of DMABI against 100 nM OdDHL Positive control (100 % inhibition) = 2 μ L DMSO (no AHL added) Negative control (0 % inhibition; red line) = 100 nM OdDHL

<u>PAO-JG21; PAO-JP2 + PABN; PAO-JG21 + PABN</u>: Variable concentrations of DMABI against 10 nM OdDHL Positive control (100 % inhibition) = 2 μ L DMSO (no AHL added) Negative control (0 % inhibition; red line) = 10 nM OdDHL

All fluorescence data were background-corrected by subtracting the negative control fluorescence value (wells containing reporter strain + 2 μ L DMSO only) from the experimental value. Percent (%) LasR activity was measured by normalizing the background-corrected value to the fluorescence value obtained in wells containing reporter strain + OdDHL. Percent (%) LasR inhibition = 100% - % LasR activity.

 IC_{50} values were calculated using GraphPad Prism. Error bars, SEM of n = 3 trials.

The % activity scale on the y-axis has been zoomed to show that LasR inhibition by DMABI, while modest, is significant relative to the negative control.

References.

- [1] G. D. Geske, J. C. O'Neill, D. M. Miller, M. E. Mattmann, H. E. Blackwell, *J. Am. Chem. Soc.* **2007**, *129*, 13613-13625.
- [2] G. D. Geske, M. E. Mattmann, H. E. Blackwell, *Bioorg. Med. Chem. Lett.* 2008, *18*, 5978-5981.
- [3] M. E. Mattmann, P. M. Shipway, N. J. Heth, H. E. Blackwell, *ChemBioChem* **2011**, *12*, 942-949.