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Overview of Data Collected.Data were collected from five patients
with intractable epilepsy who required invasive monitoring with
intracranial electrode arrays for seizure localization (see Table
S1 for subject demographics). Between 48 and 64 electrodes
were implanted per patient. Multiple runs of the full 36-word
task (Fig. S1A) were recorded for each subject, resulting in four
to six datasets per subject. Eight-eight frequencies (exponentially
sampled from 1 to 338) were analyzed for each channel of re-
corded electrocorticographic (ECoG) data over the entirety of
the task recordings. There were six cognitive task comparisons
(i.e., rest vs. all spoken words, [i] vs. [e], [i] vs. [æ], [i] vs. [u], [e]
vs. [æ], [e] vs. [u], and [æ] vs. [u]) that were analyzed. The rest
condition was defined as the period of 0.5–0 s before the audio
cue was given. Thirty-seven time slices (Fig. S1B) were analyzed
for each trial. Between 144 and 216 valid trials were recorded
from a given patient. In total, 222 hypotheses were tested per
subject, giving an expectation of about five falsely discovered
positive tests using the Benjamini-Hochberg procedure (1). A
summary of the data characteristics of this study is provided in
Table S2.

Rationale for Methodological Approach. When dealing with a very
complex dynamic system (i.e., the brain), one can use a simple
analysis that may provide complex results or use a complex
analysis that provides more simplified results. There is a funda-
mental tradeoff in either approach. With a more classic signal
analysis (e.g., covariance/coherence between two electrodes), the
results are straightforward to interpret, but as the number of
variables increase (numerous electrodes and numerous frequency
bands), the ability to interpret the findings becomes more diffi-
cult. Conversely, using more complex analyses, which can identify
multidimensional relationships in the data, can be more difficult
to interpret from an electrophysiologic/mechanistic standpoint in
how these analytic tools actually represent brain function.
It is in this light that we have attempted to strike a balance.

Because the power in an electrocorticographic signal drops off
at a 1/f scale, using a traditional measure of correlation of a raw
signal would have limited the assessment of interactions between
electrodes to the lower frequencies. This limitation would have
essentially excluded assessment of higher gamma rhythms, which
contribute minuscule amounts to the total signal in terms of
magnitude of power and when present are unlikely to have
a consistent phase relationship between electrodes (but are quite
physiologically relevant). Also, when cortical activation using
field potentials is considered, amplitude modulation has been
found to be a very meaningful measure associated with cognitive
tasks. Moreover, frequency subbands (e.g., mu, beta, and gamma,
gamma subbands) have also been shown to have independent
behavior during a cognitive task (2–4). If one were to take a cor-
relation matrix across all these metrics [location and multiple sig-
nal characteristics such as event-related potentials (ERPs) or
coherence of frequency bands and amplitude modulation], iden-
tifying trends would be too complex. Also, because of the very high
dimensionality of such a matrix, there will be a high probability for
spurious/noisy correlations. This high dimensionality makes it dif-
ficult to separate noise from physiologic signal. Thus, integrating
across all these dimensions (location, frequency, and signal char-
acteristics) requires some form of data-driven dimensionality re-
duction [i.e., choosing amplitude modulation and using principal
component analysis (PCA) in the frequency and anatomic domain]
to allow for statistically meaningful interpretation of the data.

For this aggregated pattern to then be correlated to a cognitive
task, we chose a discriminant function analysis (DFA). DFA is
a method used to find a weighted pattern of time series variables
that maximally discriminate the time series into specified groups.
DFA has been shown to give better results than the more popular
method of logistic regression when the sample sizes are on the
order of 50 or less per condition (5), which was the case for this
work. Again, on high-dimensional data, a PCA decomposition
gives a low-dimensional representation of the time series data,
and it is common to use DFA in this low-dimensional space. The
above approach was critical to test our hypothesis that networks
would share a multispectral interaction because it necessarily in-
tegrated across anatomic locations and across frequencies scales.
This hypothesis is also why affinity propagation was subsequently
used. This affinity propagation enabled us to cluster the spatio-
spectral patterns without a priori assumptions regarding the
number of clusters, expected spectral patterns, or assumptions
regarding the similarity or dissimilarity of the spatio-spectral
patterns. Finally, scaling these network-related findings against
known physiologic mechanisms (i.e., single-site amplitude modu-
lation) required the use of a Monte Carlo (MC) P value to enable
a valid comparison of two very different physiologic measures. The
MC P value has the advantage that the data do not need to give
a Gaussian distribution of the test statistic to evaluate the signif-
icance of the test condition. In addition, MC P values are com-
parable across different test statistics for different measurements
because the same null hypothesis is tested (6). This property al-
lows for comparison of the MC P values computed for the func-
tional spectral network to those of the amplitude response.
A schematic overview of the analysis performed in this paper is

given in Fig. S5. Here we explain the figure and notation used on
the basis of key analysis steps (indicated by A–F in the figure).
For those who wish to have the primary code used in this analysis

or the simulated data to test the code and the use of it, please con-
tact Zachary V. Freudenburg at voges78@gmail.com.

Detailed Description of Analysis. To begin, the ECoG signal was
composed of temporal samples from each recorded channel. In
the figure and this section, the temporal and channel dimensions
of the ECoG signal were indexed as t = index through recorded
ECoG samples (recorded at 1,200 Hz); and c = index through
recorded ECoG channels 1 to C, where C is the number of for
a given subject.
The result of the Gabor Wavelet Dictionary analysis was the

spatio-spectral signal denoted as SPs(c, f, t), where f was the
index through the analyzed frequency bin centers. Frequency bin
centers were unique rounded integers based on the exponential
distribution of 2 to the power of 0–8.4 in 87 steps of 0.06 (i.e.,
unique(round(2[0:0.06:8.4]))).
For the functional spectral network (FSN) analysis, the addi-

tional preprocessing step of PCA was performed on the spatial-
spectral signal (SPs) over the temporal dimension. The first 100
principal components, based on percent signal variance, and
corresponding component scores (i.e., the transformed PCA space
values corresponding to each spatial-spectral data point) were
denoted, respectively, as PC1:100(c, f) and PCs1:100(t).
The task cue labels and voice onset times (VOTs) were used to

define 37 time periods before and after VOT (main text), indexed
by τ and seven cognitive subtask comparisons (main text), in-
dexed by l. These time periods and task conditions were then
used to define a label vector over trials for each τ and l denoted
as Labelsτ,l(trial).
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The rest of the analysis was then done using the time periods,
and task conditions of the Labelsτ,l signal were then used to
analyze the SPs and PCs1:100 signals. This approach allowed all
calculations using the Labelsτ,l(trial) structure to be redone
multiple times based on pseudolabels formed from randomly
shuffling the trials 1,000 times according to the MC P value
statistic procedure (6).
The mean percent variance accounted for was 86%. There was

a notable difference in the percent variance accounted for be-
tween the two subjects who had 64 electrode grids (74% and 75%)
and those who had 48 electrode grids (96%, 91%, and 90%). The
relatively smaller percent variance accounted for by the first 100
principal components in the 64 electrode subjects indicates that
additional electrodes add additional independent spectral fea-
tures to the data, which is expected.

Selection of the best amplitude response. Standard R2 analysis is
performed on SPs(c, f, t) over trials according to the Labelsτ,l
structure to produce R2τ,l(c, f), which was the signed R2 value per
each channel (c) and frequency (f) at each time period (τ) and
cognitive task comparison (l).
The single best amplitude response (AR) per τ and l was defined

according to the following procedure: (i) loop through each
channel (c) and find continuous frequency ranges Fc;iðfi; fi+1;
fi+2; . . . ; fx+nÞ, such that the sign of R2τ;lðc; fiÞ=R2τ;lðc; fi+jÞ and the
P value of R2τ;lðc; fi+jÞ< 0:05 for all 0≤ j≤ n; (ii) choose the fre-
quency range Fc;i that maximizes

Pn
j=0R2τ;lðc; fi+jÞ as the best AR;

and (iii) calculate the AR signal ½ARsτ;lðtrialÞ� for the best frequency
range Fc;i...k as

ARsτ;lðtrialÞ= 1
n

Xk

j=0

SPsτ
�
c; fi+j;trial

�
:

ARsτ;lðtrialÞ was then used to compute the ARsτ;l R
2 value.

The P value for significance was obtained by converting the
coefficient of determination by a generalized Fisher’s method,
where F = [r2/(p − 1)]/[(1 − r2)/(n − p)]. F is the F-statistic, r2 is
the coefficient of determination, p is the number of compared
processes (active movement/rest), and n is the number of ob-
servations (number of trials). Once the F-statistic is calculated,
this was then converted to a P value using a table of F-statistics.
DFAwas used to determine the covarying spatio-spectral patterns

that best discriminated the trials for each cognitive task condition pair
l and time period τ. The hear-and-repeat task was used to define
seven different cognitive tasks as follows: (i) all spoken words vs. the
preceding “rest,” (ii) “ee” words vs. “eh” words, (iii) “ee” words vs.
“ah” words, (iv) “ee” words vs. “oo” words, (v) “eh” words vs. “ah”
words, (vi) “eh” words vs. “oo” words, and (vii) “ah” words vs. “oo”
words. The patterns were defined by solving

DF Labelsτ;lðtrialÞ= a+ b1 ×PCs1ðtrialÞ; . . . ; + b100 ×PCs100ðtrialÞ;

using linear regression, where DF Labelsτ;lðtrialÞ was 1 for each
trial from the first task of condition l (where two cognitive sub-
tasks were contrasted with each other; main text) for time period
τ and 0 for each trial from the second task condition of l.
We then defined b̂= b1; . . . ; b100 as the discriminant function

in the principle component space.
Calculation of discriminant functions patterns in spatio-spectral space. Next

we calculated the spatio-spectral pattern for each discriminant
function as

ssDFτ;l = b̂−1τ;l p S
−1 ×PC∼ 1

1:100;

where PC∼ 1
1:100 was the pseudo-inverse of the component matrix,

and S−1 was the inverse of the singular value matrix. ssDFτ;l was
then reshaped to the channel by frequency bin matrix ssDFτ;lðc; f Þ.

Use of affinity propagation to find clusters of spectrally similar electrodes
within each ssDFτ,l. The spatio-spectral disciminant function pat-
tern ssDFτ;lðc; f Þ was used as the basis for grouping channels with
similar amplitude differences between the cognitive tasks of
condition pair l and time period τ using the affinity propagation
clustering algorithm (7). In our use of affinity propagation, each
channel (c) was a data point with features ssDFτ;lðc; f1:88Þ over
the 88 frequency bins. The similarity (sn,m) between data points
cn and cm was calculated as

sn;m =
X88

i=1

ssDFτ;lðcn; fiÞ× ssDFτ;lðcm; fiÞ:

Affinity propagation does not predefine a number of clusters but
uses a message passing protocol to converge to a number of clus-
ters. Hence, the number of clusters found was variable for each
ssDFτ;l. The number of clusters can be influenced by setting
a self-affinity level for each data point (i.e.: channel in this case)
that varies how likely it is that each data point becomes its own
cluster. It is standard to make this equal for each data point, and
we used a value that led to slightly fewer clusters than the stan-
dard value recommended in ref. 7. The number of channel clus-
ters varied from two to nine across all ssDFτ;l for each subject.
We used fkg to denote the set of all channels in a given cluster.

Calculation of spectral cluster responses. The relevance of a channel
cluster fkg within a given spatio-spectral discriminant function
pattern ssDFτ;l was computed on the cluster signal given by

CLsτ;l;kðtrialÞ=
X

c∈fkg

X88

j=1

ssDFτ;lðc; fiÞ×SPsτ
�
c; fj; trial

�
:

As depicted in Fig. S5, R2 analysis was performed on CLsτ;l;k to
determine the relevance of each subgroup of spectrally similar
channels to the cognitive task discrimination of the total discrim-
inant function ssDFτ;l.
Generally speaking, this equation enables one to identify

a correlation measure (R2) for the discriminant function mea-
sures (i.e., spatial-spectral pattern) and amplitude response in an
equivalent fashion. This equation takes patterns identified by the
discriminant function that are characterized by frequency am-
plitude changes and electrode location (i.e., the spatial-spectral
pattern), and it matches to spatial-spectral patterns in data from
one condition to another condition. It is constrained in such
a way that it should match one positively and the other nega-
tively. The match between the spatial-spectral patterns of two
conditions and the discriminant function was computed in this
way so that the difference between conditions reflected in the
DFs can be expressed in terms of an r2 value. This same method
can also be used for amplitude response (i.e., a single site, with
a single frequency band) and for FSN (i.e., a subset of electrodes
within a discriminant function).

Definition of FSNs. FSNs were defined as the minimal subset of
spectral clusters needed to discriminate a cognitive task condition.
This minimal subset of channels was defined as follows: (i) sort
clusters, CLsτ;l;k, by R2 value in descending order kmax; . . . ; kmin;
(ii) iterate through clusters i= kmax; . . . ; kmin and calculate the R2

value of
Pi

j=maxCLsτ;l;ki ; (iii) use MC P value statistics to de-
termine at which i the R2 value of

Pi
j=maxCLsτ;l;ki becomes sig-

nificant; and (iv) include all channels in the FSN that were in the
combined cluster that first reaches significance, such that

FSNτ;l = ssDFτ;lðc∈ fkmax; . . . ; kig; 1 :88Þ:

Hence, the discriminative value of FSNτ;l was computed by per-
forming R2 analysis on the response of each FSN, defined as:
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FSNsτ;lðtrialÞ=
X

c∈fkmax ;...;kig

X88

j=1

ssDFτ;lðc; fiÞ× SPsτ
�
c; fj; trial

�
;

which was found to have a significant MC P value. This MC P
value was then directly compared with that of ARτ;l. The MC P
value was computed by comparing the R2 value of FSNτ;l to a dis-
tribution of 1,000 R2 values gained from pseudo-FSNs with the
same numbers of channels as that included in fkmax; . . . ; kig. All
steps performed using cognitive task labels per trial, indicated by
the gray background in Fig. S5, were repeated using randomly shuf-
fled versions of Labelsτ;l to generate the MC distribution of R2 values
for the pseudo-FSNs with equal numbers of included channels.

Analysis Validation with White Noise Data and Simulated Spectral
Events Data. The methods used to define FSNs are unique in
their application to ECoG spectral data and therefore warrant
additional validation on simulated data, in which a ground truth is
known. To this end, we replaced the actual ECoG signals (real
data) with two forms of known ground truth data.
First, a random white noise signal was created (white noise

data) for each subject. Second, a simulated microphone response
locked spectral events signal was created (simulated spectral
events data).
Both types of simulated data were run through the exact same

analysis as the real data. This analysis was done by simply re-
placing the real ECoG signal with an equal amount of simulated
data. Trial timing based on microphone signal and all other sub-
ject-specific and non–subject-specific parameters were kept the
same. This procedure was done for every dataset from all five
subjects. Only the rest vs. rest cognitive task was tested for the
validation, and hence only the VOTs and no specific phoneme
labels were used for each trial.
In this section, we first discuss the specifics of the two types of

simulated data and then present the validation results they
produced in Fig. S6.
Creation of white noise and spectral event simulated data. The white
noise signal was created by using the standard MATLAB random
signal generator that generates random numbers between 0 and 1.
An equal number of signal samples as the original real data were
generated. The raw signal was replaced before Gabor Wavelet
Dictionary spectral analysis and normalization of the spectral re-
sponse were done, and no scaling factor of the randomly generated
numbers was performed to produce the white noise signal.
Creation of the simulated spectral events data was a more

complex process.We started with random signals generated in the
same way as the white noise data. Then frequency events were
added to temporal periods of the signal that were time-locked to
VOTs from the real data microphone signal in a subset of 24
electrode channels. The same channels (1–4, 9–12, 17–20, 25–31,
and 33–39), which comprised one corner of grid, were chosen for
both the 64 electrode and 48 electrode grids.
These frequency events consisted of an alpha range frequency

(14 Hz) and a broadband gamma range (65–95 Hz) frequency
component being added to the noise signal. The alpha band
events were added by first creating a sine wave at 14 Hz and then
windowing it with a Hann window that spanned from −0.5 to
0.5 s from VOT. The alpha band events were then scaled using
the scaling factor of R[1/log(f)], with f = 14 and R being a ran-
dom number between 0 and 1, and then added to the period of
the signal from 600 samples before (0.5 s) to 600 after VOT for
each trial. The gamma band events were created by first creating
a white noise signal and then band pass filtering the signal be-
tween 65 and 95 Hz. The gamma signal was then scaled by the
factor of 1/log(f), with f = 65, windowed using a Hann window
and added to the simulated signal period that spanned from −0.3
(630 samples) to 0.1 s (120 samples) from VOT for each trial.

Simulated data results. Fig. S6 summarizes the comparison of the
results of running the simulated data through the analysis to that
of the real data. Throughout the figure, the color scheme of red,
gray, and green is used to indicate the results for real data, white
noise, and simulated spectral events, respectively. Fig. S6 A and
B summarizes the results of the PCA run on simulated data. Fig.
S6A plots the mean (solid lines) and SE (shaded areas) over the
five subjects of the percent variance in the simulated data ac-
counted for by the first 100 PCs on a log scale. The log scale
highlights the differences between the real, white noise, and
simulated spectral events in the first several PCs. It can be seen
that the percent variance accounted for in the white noise data
only changes slightly over the first 100 PCs, indicating that there
are no dominant patterns of covariance of spectral features in
the data. In contrast, the simulated spectral events data shows
two dominant PCs that clearly account for more variance than
the white noise. This result is expected because two spectral
bands with different temporal spans (causing two spectral pat-
terns) were added to a white noise background. This trend is also
present in Fig. S6C, which gives spatial-spectral plots (with
electrode channel plotted on the x axis and frequency plotted
from low at the bottom to high at the top on the y axis) PCs 1, 5,
10, 50, and 100 for the real (top row), white noise (middle row),
and simulated spectral events (bottom row) for subject 1. The
white noise PCs are seen to remain similar in their lack of spa-
tial-spectral structure (indicated by a lack continuous bands of
amplitude change on the y axis and/or channels with similar
frequency patterns on the x axis) for all five example PCs. In
contrast PC 1 of the simulated spectral events has clear spatial-
spectral structure, which is exemplified by the group of 24
channels with increases in amplitude from 65 to 95 Hz. However,
PCs 5, 10, 50, and 100 of the simulated spectral events data
demonstrate the same lack of spatial-spectral structure as the
white noise PCs. The fact that the PC structure of the simulated
spectral events data are generally the same as that of the white
noise data, with the exception of the first two PCs, is again
highlighted by Fig. 5B, which plots the distributions over the five
subjects of the total percent variance accounted for by the first
100 PCs for the three data types (the boxes from left to right for
real, white noise, and simulated spectral event data, re-
spectively). The figure shows that, despite the first 2 PCs, the
first 100 PCs of simulated spectral events data does not account
for significantly more variance than those of the white noise
data. This result demonstrates that the patterns of amplitude
covariance added to the simulated spectral events data account
for a small portion of the spectral features of the data.
Taken together, the PCA plots also highlight two character-

istics of the real data. First, the real data have spectral patterns
that are diverse but are well accounted for by 100 PCs. It can also
been seen that the real data have dominant PCs, similar to the first
two PCs of the simulated spectral events data. However, the
percent variance remains above the white noise level until around
PC 50, indicating a muchmore diverse set of independent spectral
patterns in the real data. This increased diversity is also dem-
onstrated by the fact that the real data PCs show marked spatial-
spectral structure at PCs 1, 5, 10, and 50, whereas PC 100 of the
real data shows some spatial-spectral structure but looks most
similar to white noise PCs. In addition, the total percent variance
accounted for by the first 100 PCs of the real data are signifi-
cantly higher than both the white noise and simulated spectral
events data. Second, there are both uniform noise and electro-
physiological spatial-spectral structure in the real data. The real
data PCs also demonstrate that the first PCs (which account for
the most variance) have a spatial-spectral structure of frequency-
specific amplitude changes that are global (across all electrodes) in
nature and not anatomically focal. This type of spatial-spectral
structure is likely due to uniform (in contrast to white noise)
components of the real signal. The spatial-spectral pattern of PC 50
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demonstrates a spatial-spectral structure with anatomically local and
spectrally broad features, which is more similar to that expected
from electrophysiological components of ECoG data. The spa-
tial-spectral structure of PCs 5 and 10 demonstrate both uniform
noise and electrophysiological components.
The second feature of the methods highlighted by the vali-

dation results is that the DFs are able to successfully combine the
PCs to isolate spatial-spectral structure that is correlated to the
cognitive task. Fig. S6D shows that the spatial-spectral patterns
of the DFs for the simulated spectral events data (bottom row)
reflect those that are expected by the spectral events that were
added to the signal, whereas those of the white noise (middle
row) are very similar to the spatial-spectral patterns of PCs for
white noise. It should also be noted that even nonsignificant time
periods, such as time periods 1 and 1.5 s (bottom left two plots),
show the spatial-spectral structure of the added theta band
spectral events. This result is due to the fact that these event shift
the mean of the theta band and cause the time point outside to
the added events to have a negative amplitude in the normalized
data. Fig. S6D summarizes the number of significant temporal
periods (rejected null hypotheses among the 37 time periods
tested) found by the analysis (using an MC P value cutoff of 0.05)
for the three types of data. Each data type for which the number
of significant hypothesis was significantly greater (using a pair-
wise t test over subjects) than the number of expected false
discoveries is indicated with an asterisk. The number of false
discoveries was calculated using the Benjamini–Hochberg pro-
cedure that takes into account the distribution of the P values (in
our case MC P values) computed for each tested hypothesis. The
plot shows that the numbers of significant time points in the
simulated spectral events data are less than that of the real data.
This result is to be expected given the time span of the simulated
spectral events. However, the numbers were significantly higher
than the number of expected false discoveries (mean of 4.6),
whereas the number for white noise data was not.
Fig. S6 F–H gives examples of star plots for the FSNs com-

puted from the DFs for the three data types. Although some DFs
were found for the white noise data, the blank plot in Fig. S6G
highlights that these did not achieve statistical significance found
by the FSN method. Fig. S6H shows that the FSN for a signifi-
cant time period, such as that centered around 0 s, is spatially
constrained to the electrode channels to which the simulated
spectral events were added (i.e., channels 1–4, 9–12, 17–20,
25–31, and 33–39).

Impact of Epilepsy on Physiologic Data. The use of invasively
monitored human subjects is both a strength and a weakness of
the study. Specifically, this clinical scenario provides unique ac-
cess to human cortical electrophysiology that is distinct from
noninvasive recording and imaging modalities, as well as from
animal models. These patients, however, by definition have
a pathologic condition affecting their brain that requires place-
ment of intracranial electrodes. Previous work has demonstrated
that global synchronization increases substantially during a sei-
zure and globally decreases before a seizure in the context of
mesial temporal lobe epilepsy (8). Also, in the context of gen-
eralized epilepsy (absence seizures in which no seizure focus is
present), there is a complex interplay between long-range desynch-
ronization and local synchrony (9).
With these very relevant considerations, several features in this

study support a more generalized phenomenon beyond the
pathophysiology associated with epilepsy.
First, this study fundamentally hinges on the performance of

a cognitive speech task in patients with a focal seizure onset zone
that did not involve speech cortex. Their seizure onset zone was
determined by ongoing monitoring, and their speech areas were
defined by stimulation mapping (Fig. S7). All of the patients had
normal speech function as assessed by a neuropsychologist. In

addition, the speech paradigm was performed on a day when no
seizures were recorded. Finally, the study was designed to identify
very specific elements of a cognitive task (phonemes), which
would be unlikely to be accounted for by random pathologic
events (ictal or interictal discharges). Thus, taken together, the
pathologic cortex was anatomically separate and did not affect
baseline speech function, and more generalized effects (i.e., the
seizure) were temporally distinct from the time the experimental
task was performed.
Second, given these precautions, the impact of the chronic ef-

fects of seizures over time on human cortex can not be excluded.
This confounding factor is in part why we referenced our findings
to the known physiology of amplitude modulation (i.e., mu-beta
amplitude reductions/gamma amplitude increases) that has been
demonstrated in both invasively monitored subjects and in nor-
mal healthy subjects (2, 3, 10). Numerous studies have shown
that if a seizure focus is involved in a given region of the brain,
this is typically associated with a reduced cognitive performance.
This property underpins that seizures are typically disruptive and
do not augment cortical function. Thus, the superior perfor-
mance of FSNs at identifying behavior compared with amplitude
modulation is unlikely to be attributed to this pathologic phe-
nomenon.
Third, it is important to note that the previously described

measures of synchrony described by Mormann et al., although
superbly done, are taken from histologically and developmentally
distinct regions of brain (8). Depth electrodes placed in the
hippocampus/mesial temporal lobe are recording from the allo-
cortex. The allocortex is a heterogenetic cortex, because during
development it never has the six-layered architecture of the
homogenetic neocortex (what was evaluated in this study with
surface electrodes over lateral frontal/temporal/parietal regions).
It also differs from the heterotypic cortex, a type of neocortex
that, during prenatal development, passes through a six-layered
stage to have less layers (e.g., agranular area 4 of Brodmann) or
more layers (e.g., striate area 17 of Brodmann) in the mature
brain. Thus, one has to be somewhat cautious about fully at-
tributing these synchrony findings to other regions of the brain
whose cytoarchitecture is fundamentally different.
Fourth, our analytic methodology would likely accommodate

epilepsy-related alterations in cortical physiology that were not
directly task relevant. Specifically, with the PCA signal de-
composition and DFA, the aggregated SPs of either epilepsy-
induced continuous uniform synchronous signals, or random
episodic synchronous events, would be separated from the task-
specific patterns that occur consistently during temporally con-
strained epochs in time.

FSN Analysis of Simulated EEG Data. The FSN methods used by this
work were applied to invasive electrophysiologic data. To explore
the applicability of these methods to more widely used non-
invasive EEG, we created a simulated noninvasive signal from the
ECoG signal. EEG signal has two main differences from ECoG in
terms of signal resolution that may affect applicability of the FSN
methods. First, there is a difference in anatomic spatial resolution
of the measured electrophysiology as a result of greater sepa-
ration of the sensors (electrodes) from the measured cortical
activity (i.e., above the scalp vs. on the cortical surface). Second,
there is a reduced sensitivity to physiologically relevant signals in
the frequency domain above 30–40 Hz (11). In this section, we
test the effects of these limitations of EEG on the results of the
FSN methods. To be clear, the results discussed here are obtained
from simulated EEG data and not real EEG data. Although this
allows us to test the effects of the previously mentioned limitations
on the FSN methods without introducing the confounds that arise
when different data sets are used, such as difference in cognitive
task performance and mental state, it does not account for the ef-
fects of the increased anatomic coverage of EEG relative to ECoG.
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Simulating EEG data. To simulate the limitations of EEG signal in
the ECoG data sets used in this work, both spatial and frequency
filtering were applied to the raw ECoG signal before processing.
No other changes were made to the signal, metadata (i.e., trial
labels and VOT times), or analysis parameters. The frequency
filter applied was a simple low-pass filter with a cutoff at 30 Hz,
which provided for a conservative simulation of the limitations of
EEG in the frequency domain.
The spatial filter applied is depicted in the Fig. S8 A–C. Each

simulated EEG channel was computed as the weighted sum over
a subset of 16 ECoG electrodes. The area of the ECoG grids that
contributed to a single simulated EEG electrode is depicted in
Fig. S8A. The relative weights in the sum of the 16 electrodes
that contribute to a single simulated EEG electrode are shown in
Fig. S8B. The spatial filter was used to down sample the 64- and
48-electrode ECoG grids to nine and six EEG channels, re-
spectively. A full simulated nine-channel EEG grid is illustrated
in Fig. S8C. Simulated EEG grids from 48-channel ECoG grids
only included the top six rows of ECoG electrodes in Fig. S8A
and top two rows of Fig. S8C.
Effects of EEG spatial and spectral limitations on the FSN analysis
methods. The EEG simulation described previously produced
two notable results. First, similar to ECoG, simulated EEG FSNs
outperformed the simulated EEG ARs for the rest vs. speech
cognitive task. Second, unlike ECoG, neither the simulated EEG
ARs nor FSNs discriminated phonemes at an above-chance level.
These results are further detailed in Fig. S8D and E. Similar to

Fig. 3A, Fig. S9D shows the temporal periods for which signifi-
cant ARs and FSNs from the simulated EEG data significantly

distinguish rest from speech. The blue and black boxes mark
temporal periods (from 1 to 37, left to right) that had significant
ARs and FSNs, respectively, for subjects 1–5. There were more
significant FSNs than ARs for each of the five subjects. Com-
pared with Fig. 3B, the significantly distinguished periods for the
simulated EEG (both AR and FSNs) are less than that found for
ECoG data in all cases.
This point is further highlighted by Fig. S7E, which shows the

distributions over subjects of the number of significant ARs and
FSNs found for the rest vs. speech cognitive task (left two col-
umns) and all phoneme discriminant cognitive tasks (right two
columns). The horizontal lines with stars indicate that signifi-
cantly more (paired t test, P < 0.05) simulated EEG FSNs that
discriminate rest and speech were found than any other condi-
tion. The figure also indicates that the number of significant
phoneme discriminant ARs and FSNs found in simulated EEG
data were not significantly different and, in fact, were generally
at the level of expected false discoveries for the phoneme
discrimination task (indicated by the vertical dotted line). This
result is unsurprising given the important role that gamma
rhythms (which are not accessible with EEG) play in parsing
information content of phonemic articulation (12).
In conclusion, the FSN methods do show an advantage over

ARs even when the frequency and spectral resolution limitations
of EEG are applied in distinguishing task vs. rest. It does not,
however, overcome some of the fundamental limitations of EEG
in distinguishing subtasks (i.e., phonemes) that are possible with
more anatomically and spectrally resolved invasive signals.
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Fig. S1. (A) Table of task words. (B) Task timing. The relative timing of the audio cues and recorded spoken responses are depicted with the blue and red lines,
respectively. Time is represented on the x axis. The 37 analyzed time periods relative to voice onset time (VOT) are listed in the gray boxes at the bottom of the
figure with arrows indicating the relative positions in time. The three vertical dashed lines indicate 533 ms before audio cue, audio cue time, and 4 s after audio
cue, respectively, from left to right.
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Fig. S2. ARs- and FSNs-based pseudospectra over time. The time periods, including the 0-, 0.5-, 1-, and 1.5-s time samples relative to voice onset time (i.e., t12,
t18, t24, and t30) are in the rows from top to bottom. The left column shows the number of ARs (y axis) with significant increases and decreases in gray and
dark gray, respectively, for each spectral bin (x axis). The right column gives the number of FSNs with significant increases and decreases in red and dark red,
respectively. Significant ARs were those with P < 0.05. Significant frequency bins within the FSNs were taken as the bins for which the SE across the spectral
patterns for all of the electrodes in the same FSN spectral grouping was above or below zero.
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Fig. S3. Changing topographies and their spectral characteristics at VOT, and 0.5, 1, and 1.5s after VOT (in columns from left to right for subjects) for subjects
1–5 (in rows from top to bottom). Anatomic location electrodes included in each FSN are depicted as red circles on the top brain plots. The mean and SEs of the
spectral patterns are shown, respectively, with the dark red line and shaded red areas in the bottom spectral plots across the electrodes included in each FSN.
The shaded gray areas indicate spectral bands with SEs that are either above or below zero.
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Fig. S4. Significant phoneme discriminant FSNs for all subjects: subject 1 (A–E), subject 2 (F–H), subject 3 (I–N), subject 4 (O–T), and subject 5 (U–Z). (A)
Significant [i] vs. [æ] discriminant FSNs at time points t12 and t15. (B) Significant [i] vs. [u] discriminant FSN at time point t12. (C) Significant [e] vs. [æ] dis-
criminant FSN at time point t9. (D) Significant [e] vs. [u] discriminant FSNs at time points t6, t7, t16, t22, and t37. (E) Significant [æ] vs. [u] discriminant FSNs at
time points t4, t5, t6, t7, t8, t23, t24, t29, and t34. (F) Significant [i] vs. [æ] discriminant FSNs for subject 2 at time points t4, t35, and t36. (G) Significant [i] vs. [e]
discriminant FSNs for subject 2 at time points t9 and t18. (H) Significant [e] vs. [u] discriminant FSNs for subject 2 at time points t10 and t23. (I) Significant [i] vs.
[æ] discriminant FSNs at time points t4, t15, t22, t30, and t31. (J) Significant [i] vs. [e] discriminant FSNs at time points t15, t19, t20, t21, t22, t24, and t25. (K)

Legend continued on following page
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Significant [i] vs. [u] discriminant FSNs at time points t1, t2, t30, and t33. (L) Significant [e] vs. [æ] discriminant FSNs at time points t15, t20, and t24. (M)
Significant [e] vs. [u] discriminant FSNs at time points t2, t14, t19, t24, and t33. (N) Significant [æ] vs. [u] discriminant FSNs at time points t13, t14, t15, and t20.
(O) Significant [i] vs. [æ] discriminant FSNs at time points t3, t7, t8, t9, t14, t23, t26, and t30. (P) Significant [i] vs. [e] discriminant FSNs at time points t8, t9, t14,
t19, and t27. (Q) Significant [i] vs. [u] discriminant FSNs at time point t2. (R) Significant [e] vs. [æ] discriminant FSNs at time point t14. (S) Significant [e] vs. [u]
discriminant FSNs at time points t8, t16, t19, t20, t22, and t23. (T) Significant [æ] vs. [u] discriminant FSNs at time points t7, t8, t11, t13, t14, t15, and t16. (U)
Significant [i] vs. [æ] discriminant FSNs at time points t7, t15, t16, t22, t26, t27, t28, and t29. (V) Significant [e] vs. [u] discriminant FSNs at time points t6 and t10.
(W) Significant [i] vs. [e] discriminant FSNs at time points t8, t14, t26, and t32. (X) Significant [i] vs. [u] discriminant FSNs at time points t19, t20, t34, t33, t35, and
t36. (Y) Significant [e] vs. [æ] discriminant FSNs at time points t1, t2, t6, t11, t16, and t18. (Z) Significant [æ] vs. [u] discriminant FSNs at time points t15, t16, t17,
t19, t21, t22, t23, and t34.

Fig. S5. Diagram of analysis pipeline described in SI Text.
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Fig. S6. Results of analysis run on white noise and simulated spectra events data. (A) Plot of percent variance in data accounted for on the y axis over the first
100 principal components (PCs) on the x axis. The red, gray, and green lines plot the mean percent variance across the five subjects for the real data (ECoG
signal reported in the paper), white noise signals, and simulated spectral events over the first 100 PCs, respectively. The shaded light red, light gray, and light
green areas represent the limits of the SE for real data, white noise, and simulated spectral events across the five subjects over the first 100 PCs, respectively. (B)
Distributions of percent variance accounted for in total for the first 100 PCs for the real data (red box and whiskers), white noise (gray box and whiskers), and
simulated spectral events (green box and whiskers) over the five subjects. The black lines indicate that the distribution of the real data were significantly higher

Legend continued on following page
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than that of the white noise and simulated spectral events (pairwise t test, P < 0.001). (C) Example PCs 1, 5, 10, 50, and 100 (respective columns from left to
right) for real data (top red highlighted row), white noise (middle gray highlighted row), and simulated spectral events (bottom green highlighted row) from
subject 1. The plot represents increases (red) and decreases (blue) in amplitude over electrode number (x axis) and frequency (y axis). (D) Example discriminant
function (DF) patterns for the time periods centered at 0, 0.5, 1, 1.5, and 2 s after VOT (respective columns from left to right) for real data (top red highlighted
row), white noise (middle gray highlighted row), and simulated spectral events (bottom green highlighted row) from subject 1. Again, the plot represents
increases (red) and decreases (blue) in amplitude over electrode number (x axis) and frequency (y axis). (E) Distributions of number of significant DFs (null
hypothesis rejected time periods) for the real data (red box and whiskers), white noise data (gray box and whiskers), and simulated spectral events (green box
and whiskers). Each data type for which the number of significant hypothesis was significantly greater (using a pairwise t test over subjects) than the number of
expected false discoveries is indicated with an asterisk. (F) Example FSN found in the real data from subject 1 at the time period centered at VOT. (G) Example
FSN found in the white noise data from subject 1 at the time period centered at VOT. (H) Example FSN found in the simulated spectral events data from subject
1 at the time period centered at VOT.

Fig. S7. Methods and results for analysis run on simulated EEG data. (A) Representative ECoG grid configuration. (B) Spatial weighting schemed used in the
weighted sum used in the simulated EEG data spatial filter. (C) Scaled simulated EEG grid configuration. (D) Significant speaking vs. rest time periods for
subjects 1–5 (top to bottom rows). Time points with a significant AR and/or FSN in the simulated EEG data are indicated by black and blue rectangles, re-
spectively. The vertical black lines indicate the time periods that include the –1-, –0.5-, 0-, 0.5-, 1-, 1.5-, and 2-s time samples relative to voice onset time. (E)
Distributions of the number of significant time periods for ARs (black) and FSNs (blue) in simulated EEG data summed over subjects for the rest vs. speech
(leftmost two boxes) and all phoneme discriminant conditions (rightmost two boxes).
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Fig. S8. Cortical stimulation mapping results for subjects 1–5. The bold line plotted on the brains represents the bipolar stimulation positive sites for speech
arrest (red), induced tongue movement (green), and induced facial twitches or sensation (blue). The lines connect the locations of the pair of electrodes across
which the stimulation was given.

Table S1. Patient demographics

Subject Age Sex IQ
Age of

seizure onset Seizure focus Handedness
Anti-epileptic
medications ECoG implant description

1 58 F 116 10 y SFG Right KP, CBZ 8 × 8 grid over the left FC
2 48 F 86 1.5 y MTL Left CLP, DPH, PG, OXC 8 × 8 grid over the left FPC
3 49 F 100 10 mo ATL Right KP, TP 4 × 8 grid over the left TC
4 46 F 81 ∼26 y ITL Ambidextrous LTG, LA, TP, ZNA 4 × 8 grid over the right FPTC
5 36 M 71 1 y ATL Left DK, TP 4 × 8 grid over the left FPTC

ATL, anterior temporal lobe; CBZ, carbamazepine; CLP, clonazepam; DK, depakote; DPH, phenytoin; DZ, diazepam; FC, frontal cortex; FPC, frontal-parietal
cortex; FPTC, frontal-parietal-temporal cortex; ITL, inferior temporal lobe; KP, levetiracetam; LA, lorazepam; LTG, lamotrigine; MTL, mesial temporal lobe; OXC,
Oxcarbazepine; PG, pregabalin; SFG, superior frontal gyrus; TC, temporal cortex; TP, topiramate; ZNA, zonisamide.

Table S2. Data composition

Subject
Recording
electrodes

Number
of task runs

Number of
audio cued words

Number of valid
spoken responses

Number of
valid [i] trials

Number of
valid [e] trials

Number of
valid [æ] trials

Number of
valid [u] trials

1 64 6 216 213 53 52 54 54
2 64 6 216 216 54 54 54 54
3 48 6 216 214 54 52 54 54
4 48 5 180 177 44 43 45 45
5 48 4 144 143 36 36 35 36
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