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1 Data

Synthetic networks In order to evaluate how well different network distance measures identify
network models, and to characterize the underlying topology of real-world networks, we generated

random networks using the following seven random network models:

1. The Erdos-Reényi random model (ER) represents uniformly distributed random interac-
tions . An ER network is generated by fixing the number of nodes in the network, and then
by randomly adding edges between uniformly chosen pairs of nodes until a given density is

reached.

2. The Generalized random model (ER-DD) is an extension of the ER model, where the
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degree distribution of the nodes in the generated network is forced to match the one of an
input network *. An ER-DD network is generated by first randomly assigning stubs (i.e.
connection capacities) to the nodes of the network, and then adding edges between nodes
that have available stubs uniformly at random while reducing the number of available stubs

of the connected nodes after each edge addition.

. The Geometric model (GEO) represents the proximity relationship between uniformly dis-
tributed points in a d-dimensional space !°: two nodes are connected by an edge if the Eu-
clidean distance between the corresponding points is smaller than a distance threshold 7.
Here, a GEO network is generated by uniformly distributing points in 3-dimensional space,

and the distance threshold is chosen so as to obtain a given edge density.

. The Geometric models with gene duplication (GEO-GD) is a geometric model in which
the points are distributed according to a duplication rule, mimicking the gene duplication
process in biology 2. A GEO-GD network is generated from a small initial seed network
(i.e., a single edge), to which the duplication process is applied: a randomly chosen parent
node is duplicated, and the new node is randomly placed within the distance of 27 from its
originating node (where r is the same distance threshold parameter used in the definition
of the GEO model). The duplication process iterates until the required number of nodes is
generated, after which the edges are placed according to GEO model rules so as to achieve

the requested edge density.

. The Barabasi-Albert Scale-free (SF-BA) model — also called preferential attachment —
generates networks with scale-free topology, which is characterized by power law degree
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distributions '>. A SF-BA network starts from a small seed network and nodes are added
iteratively based on the “rich-gets-richer” principle: new nodes are attached existing nodes
in accordance with attachment probabilities, which correspond to the degrees of existing

nodes within the network.

6. The Scale-free model with gene duplication and divergence (SF-GD) is a scale-free model
which mimics the gene duplication and the gene divergence processes from biology !°. A
SF-GD model is generated from a small initial seed network (i.e., a single edge) which grows
iteratively through the processes of duplication and divergence events: in each iteration, an
existing node v is randomly chosen and the new node, v/, is connected to all neighbours
of v; also, an edge is placed between v and v" with probability p. In a divergence step, we
consider all nodes u that are connected to both v and ¢/, and the edge (u, v) or the edge (u, ')
is removed with the probability ¢q. Here, p = 0.5 and the value of ¢ is set in accordance with

the number of edges in the data network.

7. The Stickiness-index based model (STICKY) is based on the assumption that the higher
the degrees of two nodes, the more likely they are to be neighbours !. A STICKY network is
generated by randomly assigning stickiness-index values (which are proportional to the node
degrees of an input network) to all nodes. Then, the probability of connecting two nodes is

defined as the product of their stickiness-indices.

For evaluating the clustering performance of network distance measures, we generated model

networks with 1000, 2000, 4000 and 6000 nodes, and edge-densities of 0.5%, 0.75% and 1%. These



specific values were chosen as they represent the range of sizes and densities observable in real-
world networks. We generated 30 random networks for each node count, edge density and network
model combination, producing a total of 2, 520 networks: 4 (node counts) x3 (edge-densities) X7
(network models) x30 (network instances) = 2, 520 model networks. For models that required a
pre-defined degree distribution, we used SF-BA networks with same number of nodes and edge-
densities. For identifying real-world networks, we generated model networks with same node

counts and edge densities (and, where relevant, degree distributions) as the real-world networks.

Real-world networks We use five types of real-world networks, which describe interaction data
from different fields: economy, social sciences, Internet packet routing and two from biology. Their

properties are given in Table S1. The real-world networks and their descriptions are as follows:

1. Autonomous systems networks describe communications between routers connected to
the Internet. Each autonomous system is a subset of these routers and the information ex-
change between the autonomous systems forms a “who-talks-to-whom” network. The 733
autonomous networks in our study were obtained from SNAP database *. Border Gateway
Protocol (BGP) was used for logging the traffic as part of the Oregon Route Views project,
and each network represents daily communication data between autonomous systems for the

time period between 8" November 1997 and 26" May 2001.

2. Facebook networks capture friendship relationships between Facebook users that are asso-

*Data on router traffic of Oregon University between 09.09.1997 and 02.01.2000. Downloaded on 09.08.2012

from: http://snap.stanford.edu/data/as.html.



ciated to a specific university. The 98 Facebook networks in our study were obtained from
the study of Traud et al. T and represent data collected from 98 American Universities in

Sept. 2005.

3. Metabolic networks represent bio-chemical reactions between enzymes and metabolites
inside a cell. The 2, 301 metabolic networks used in these studies represent enzyme-enzyme
interactions, where two enzymes are connected by an edge if they catalyse reactions that
share a common metabolite. We obtained the metabolic networks of all species from the
Kyoto Encyclopaedia of Genes and Genomes (KEGG) database in February 2013 . We

filtered out networks which contained less than 100 nodes.

4. Protein Structure networks represent interactions between amino acids on a protein. Two
amino-acids are said to interact if the Euclidean distance between their alpha-carbons is
smaller than 7.5A. We generated the networks of all the protein structures of the Astral_40
compendium v1.75B (proteins with less than 40% of sequence identity, and at least 100

amino-acids) 8.

5. World trade networks represent trading relations between countries. Using commodity
trade data from the United Nations Commodity Trade Statistics (UN Comtrade) database ',
we generated 49 trade networks, one for each year between 1962 and 2010. The fact that
most countries have both import and export trade makes the trade network inherently direc-

tional. However, since we are only interested in the presence or absence of an interaction

TA. L. Traud, P. J. Mucha, M. A. Porter, Physica A: Statistical Mechanics and its Applications 391,4165 (2012).
YKEGG database Release 65.0. url: www.genome.jp/kegg/. Downloaded on: 08.02.2013.
$Data obtained from Astral 40 compendium v1.75B in January 2011: http://scop.berkeley.edu/astral/



Supplementary Table S1: Network properties of the real-world networks.

Number of Number of Nodes Edge Densities (%)
Network Type Networks | Min. | Med. | Max. | Min. | Med. | Max.
Autonomous Systems 733 103 | 4180 | 6474 | 0.06 | 0.09 | 4.55
Facebook 98 769 | 9949 | 41554 | 0.16 | 0.78 | 5.70
Metabolic 2301 100 | 366 705 | 0.74 | 1.17 | 3.39
Protein Structure 8226 100 | 178 | 1419 | 047 | 3.75 | 8.31
World Trade 49 86 103 125 | 8.72 | 11.64 | 13.53

between countries, we generated undirected networks and weighted the edges by summing
import and export trade volumes. We threshold the network by removing the lowest weighted
edges until 90% of the total trade in the network remains. The topology of these thresholded
trade networks is non-random (not ER). In addition to these “total” trade networks, we in-

clude in our analysis 10 trade networks for specific commodities defined in the Standard

International Trade Classification (SITC) Rev.1.

Crude oil prices and economic indicators of countries We obtained the crude oil prices for all
years between 1962 and 2010 from UNCTADSTAT Reports ¥ (downloaded in November 2012).

As the crude oil prices in that data set are given on a monthly basis, we compute the crude oil price

of a year as the average price of the corresponding 12 months.

We obtain the economic indicators of country wealth from PENN World Table (PENN) 3!
(version 7.1; downloaded in November 2011) and International Monetary Fund World Economic

Outlook Database (WEO) 32 (downloaded in October 2012). All prices were expressed in 2005 US

YUnited Nations Conference on Trade and Development (UNCTADSTAT) database, http://unctadstat.unctad.org.

Accessed: 03/11/2012




Dollars. The list of used economic indicators and their definitions is as follows:

Gross Domestic Product - version 1 (RGDPL): Purchasing Power Parity converted Gross
Domestic Product Per Capita (Laspeyres), derived from the growth rates of consumption

share, government consumption share, and investment share. This data is from PENN.

Gross Domestic Product - version 2 (RGDPL2): Purchasing Power Parity converted Gross
Domestic Product Per Capita (Laspeyres), derived from growth rates of domestic absorption.

This data is from PENN.

Gross Domestic Product - version 3 (RGDPCH): Purchasing Power Parity converted

Gross Domestic Product Per Capita (Chain Series). This data is from PENN.

Consumption Share (KC): Consumption Share of Purchasing Power Parity Converted Gross

Domestic Product Per Capita at 2005 constant prices (RGDPL). This data is from PENN.

Government Consumption Share (KG): Government Consumption Share of Purchasing
Power Parity Converted Gross Domestic Product Per Capita at 2005 constant prices (RGDPL).

This data is from PENN.

Investment Share (KI): Investment Share of Purchasing Power Parity Converted Gross Do-

mestic Product Per Capita at 2005 constant prices (RGDPL). This data is from PENN.

Openness (OPENK): Trade openness as a percent of 2005 constant prices. This data is from

PENN.

Population (POP): The total population of the country. This data is from WEO.

7



e Level of Employment (LE): The number of people who, during a specified brief period
such as one week or one day, (a) performed some work for wage or salary in cash or in
kind, (b) had a formal attachment to their job but were temporarily not at work during the
reference period, (c) performed some work for profit or family gain in cash or in kind, (d)
were with an enterprise such as a business, farm or service but who were temporarily not at

work during the reference period for any specific reason. This data is from WEO.

e Current Account Balance (BCA): Current account is all transactions other than those in
financial and capital items. The major classifications are goods and services, income and
current transfers. The focus of the BOP is on transactions (between an economy and the rest

of the world) in goods, services, and income. This data is from WEO.

KC, KI and KG are expressed in percentage of GDP per capita. We included copies of these
indicators, converted into constant price per capita, i.e., multiplied by GDP per capita (e.g., KC
x RGDPL). We also included copies of the indicators expressed in constant price per capita (also
including RGDPL, RGDPL2, RGDPCH) but converted into raw constant price value — these are

multiplied by the population (e.g., RGDPL x POP).

2 Methods

Standard node statistics



Degree. The degree of a node is defined as the number of connections it has to other nodes in

the network.

Clustering coefficient. The clustering coefficient of a node u, c,, is the fraction of triangles that

touch the node over all possible triplets that can be formed by u and its neighbours.

Betweenness centrality. The betweenness centrality of a node u, bc,,, is the ratio of the number

of shortest paths from all vertices to all others that pass through u over all shortest paths:

beu= > Ot{t). (S.1)

SEUFL 5St

where 0 is the number of shortest path from node s to node ¢, and 0 (u) is the number of those

paths that pass through .

Closeness centrality. The closeness centrality of a node u, cc,, is the average of the lengths of

the shortest paths from w to all other nodes in the network:

1
2 =1 A’

where d,, is the is the length of the shortest path from node « to node v.

(S.2)

CCy =

Standard network distance measures We compare the model clustering performance of Graphlet
Correlation Distance (GCD) with the model clusterings computed using degree distribution, clus-
tering coefficient, diameter, Relative Graphlet Frequency Distance (RGFD) and Graphlet Degree
Distribution Agreement (GDDA). These five network distance measures are defined below.

9



Degree distribution. The degree distribution of a network is the distribution of the degrees over
all nodes. There are many standard ways of comparing two distributions (e.g, the Kolmogorov-
Smirnov two-sample test). Here, we use the comparison measure given in ®, which is defined as
follows. First, we scale and normalizes the given distributions, in order to reduce the contribution
of higher degree nodes. The distance is then computed as the square root of sum of square errors
of the two distributions. More specifically, given two degree distributions, d¢ and dy, the distance

between these two distributions, D(d¢, dg), is:

Sa(k) = 0 (8.3)
To = Salk), (5:4)
=
No(k) = S(}(Gk>, (S.5)
Ddovdi) = = | S (Nalk) = Nu(h)? 56

Clustering coefficient. The clustering coefficient of a network is the average of the clustering
coefficients of all nodes in the network. The clustering coefficient distance of two networks is the

absolute difference of their clustering coefficients.

Diameter. The diameter of a network is the maximum shortest path distance that is observed
among all node pairs. The diameter distance of two networks is the absolute difference of their

diameters.
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Spectral Distance. The adjacency matrix, A, of an unweighted network G is an n X n matrix
where A[u,v| is equal to 1 when nodes u and v are connected, and equal to 0 otherwise. A is a
symmetric matrix when G is undirected. The diagonal degree matrix, D, of a network is ann x n
matrix whose diagonal elements are equal to the node degrees, D(u,u) = d, and other elements
are all equal to 0. The standard combinatorial Laplacian matrix, L, of a network is computed from

the adjacency and diagonal degree matrices as in Equation S.7.
L=D-A. (S.7)

Spectral network theory explains the topology a network using the eigenvalues and eigenvec-
tors of matrices associated to the network, such as its adjacency matrix or Laplacian matrix °.
Let X be the matrix associated with the graph. The eigendecomposition X = ¢A¢p? where
A = diag(Ai, Ag, ..., Ay) is the diagonal matrix with the ordered eigenvalues as elements and
¢ = (P1]¢2|...|¢n) is the matrix with the ordered eigenvectors as columns. The spectrum is the set

of eigenvalues s = {\1, Ay, ..., A\, }, where A; < Ay < ... < A\,

In >, the spectral distance between two networks (G and G is defined as the Euclidean

distance between their spectra (Equation S.8).

dy(Gr,Gs) = \/Z (s — sP)2, (S.8)

When the spectra of two networks are different size, 0 valued eigenvalues are added into the smaller

spectrum while preserving the correct magnitude ordering.

Wilson and Zhu ° compare various spectral distance measures that are defined from differ-
ent types of matrices, showing that the spectral distance between the Laplacian matrices of two
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networks is the best measure for classification and clustering purposes. Later on, Thorne and
Stumpf © also use the spectral distance of Laplacian matrices for the analysis of the evolution in
protein interaction networks. In parallel to these studies, we chose spectral distance from Lapla-
cian matrices as the benchmark representing the performance of spectral distance measures against

graphlet correlation distance.

Graphlets and graphlet-based network distance measures. Graphlets are small, connected,
non-isomorphic, induced subgraph of a larger graph G = (V, E) 3. There are 30 graphlets with
2- to 5- nodes. Each graphlet contains “symmetrical nodes” which are said to belong to the same
automorphism orbit (illustrated in the left panel of Supplementary Fig. S1). The automorphism
orbits represent topologically different ways in which a graphlet can touch a node (illustrated in
the right panel of Supplementary Fig. S1). All 30 graphlets and their 73 automorphism orbits are
illustrated in Fig. 1-d. The Graphlet Degree Vector (GDV) of a node generalises the notion of
a node’s degree into a 73-dimensional vector ® where each of the 73 components of that vector

captures the number of times node 7 is touched by a graphlet at orbit i (where i € {1,2,...73}).

Relative Graphlet Frequency distance (RGFD) '3 quantifies the topological similarities of
two networks based on the frequencies of the appearance of 3- to 5- node graphlets (the only 2-
node graphlet, Gy, which captures the degree distribution, is not used). Let /V;(G) represent the

number of graphlets of type i in G'and T(G) = 3.2, N;(G). Given two networks, G and H, the
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RGFD distance between these networks, D (G, H), is defined as:

29 Ni{(G) N;(H)

D(G,H) = ; logTG) - 1ogm . (S.9)

Graphlet Degree Distribution Agreement (GDDA) 8 uses the notion of graphlet degree distri-
butions to compare two networks. The graphlet degree distribution of an orbit i is the distribution
of the graphlet degrees for all nodes in the network. As the GDV of a node is defined as a 73-
dimensional vector, there are 73 different graphlet degree distributions describing the topology
of a network. Let d@(l{;) be the number of nodes in network G that touch £ graphlets at orbit j.
Given two networks, GG and H, the distance between the ;" graphlet degree distributions of these

networks, D’/ (G, H), is computed as follows:

S (k) = dé,ik) (S.10)
7% = SL(k) (S.11)
k
NL(Ek) = SC}(;) (S.12)
DG, H) = %\/sz;(k) — NG (K))? (5.13)

The GDDA distance is defined as the arithmetic average of the 73 distances that are computed
for each of the 73 graphlet automorphism orbits. The degree distribution distance is computed
in a similar way to GDDA with the exception that it is computed only for the graphlet degree

distributions of orbit O.
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Redundancies and Dependencies in Graphlet Degree Vectors Graphlet degrees coming from
large graphlets are dependent on the graphlet degrees coming from smaller ones. The simplest of
these dependencies occurs when two edges (orbit 0) are “combined” (also described in the main
paper): given two adjacent edges, (a, b) and (a, ), the orbit touching a from the graphlet induced

by {a,b,c} is either orbit 3 if b and ¢ are connected by an edge, or orbit 2 otherwise. Therefore,

(7

2 ) is equal to the sum of (' and C'3, where C; represents the graphlet degree for orbit i.

Considering all combinations of 2, 3, and 4 node graphlets that produce graphlets of size
< 5, we obtain 17 independent orbit redundancy equations (that cannot be derived from other

equations):

1. (P)=0C+Cy

2. () (%) =3Cy +2C11 + Cus

3. () (") = G5+ 205 + Cio + 2C12

4. () (“7?) = O +2C13 + 3C1a

5. () (7) = Cag + Cag + 2C34 + 2056 + 2C46 + Cs1 + 2055 + Csg
6. () (“?) = 2Ca1 + Oy + 2Cs0 + 2035 + 2C47 + Cas + Csz + Coo
7. () (7)) = Cag + Cay + Oy + Cag + 2049 + 2Cs4

8. (?) (001_3) = 4Cy3 + 2033 + Cyp + Css

9. (Cf) (001_2) = C3g + 3Cs0 + Cs3 + 2C63 + Cos + Cis

14



10.

11.

12.

13.

14.

15.

16.

17.

(019) (00171) = Cag + Cy3 + Cs1 + Cs9 + 2062 + 205

(0110) (001_2) = CZG + 2C’41 + 048 + 053 + 2057 + 060 + 2064 + 2066

(Cln) (001_3) = 2033 + 2C'42 + 4044 + 3058 + 2061 + 067

(%12) (“07%) = Cyr + o + Cos + Co + 2Cs + 3Crg

(0113) (001_3) = Cyo + 3C55 + 2C41 + 2Cs7 + 4Cg9 + 2C7

(021) =Cs+Cs+Cy+ Cra+ Cr7+ Cos+ Csy + Cs7 + Cyg +2C19 + Cs1 + Csa + 2054 +

Cio + 20 + 2045
(%) = Chs + 3C1s + Cas + Cit + Cr + 2C9 + 2C + 3Cry

(C2> (6;3) =201 +2C13 + O35 + 2Cs + 3Cs55 + 3Cs5 + Cg1 + 2Cs7 + Crq

1

Additional 9 equations illustrate redundancies, but they can be derived from the above listed

17 independent equations and are given below for illustrative purposes only:

18.

19.

20.

21.

(030) =C7+C11 +Ci3+Ciy
(040) = O3 + Cs3 + Cyo + Cug + Cs5 + Csg + Cg1 + Cor + Cg + Crp + Crg

(Cil) (00271) = Cy1 + Cog + C30 + 2038 + Cyy + 2047 + Cyg + 3C50 + 2C53 + Cs7 + 2Ck0 +

3063 + 2064 + 2066 + 3068 + 3070

(?2) (002_2) = 6093 + 5C33 4+ 4C49 4+ 4Cus + 3C55 4 3C58 4 3C61 + 2C67 4 2C69 + Cry
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22. (%) (%) = Cs3 + 2Cuz + 2044 + 3Cs5 + 3Css + 3Cs1 + 4Cs7 + 4Cs9 + 5C71 + 6Cra

23. (94)(%3) = Csg + Cr + 20 + 4Chy

1 1

24. (7) =3C7 + O + 3Ca3 + 2053 + Cuag + 2Cu4 + Coy + Cog

25. (9 () = Cs +2Cs + Coy + O + 2C35 + Cyy + 2Cu7 + 3Cs0 + Csz + Coo + 2Cs3 + Cos

26. () (Cf’) = C1o +2C12 + C3p + Cyg + Cs3 + Cs7 + Cyp + Cp3 + 2064 + 2C66 + 2C6s + 3C70

Eq.2+FEq4
3

For example, £/q.18 is equivalent to , when (5 is replaced by using Fq.1:

° Eq'Q;:EqA : 02(0072);:03(0072) =Cr+Cn+Cis+Cuy

e From Fq.1:C3 = ((’;0) — Yy

e Replacing ('3 by the term from Eq.1 in w :
CalCo= ()=o) _ Cr+Cn+Ci3+Cu

e Simplifies to: w =C;4+Cp+Cis+Cy

Which is exactly Fq.18 : (030) =Cr;+Cp+Cis+Cy

Other equations from the above list, numbered 18-26, can be similarly derived from the 17 inde-

pendent equations.

We use these equations to remove redundant orbits from Graphlet Degree Vectors, so they
would not contain redundant information. Since there are 17 independent equations, we eliminate
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17 orbits as redundant. However, we can make different choices about which orbits to eliminate.
One set of redundant orbits that can be eliminated is written in bold in the first 17 equations. For 2-
to 4-node graphlets, we can eliminate 4 orbits as redundant. We chose to eliminate orbits 3, 12, 13
and 14 using Equations 1, 2, 3, and 4. The remaining set of non-redundant orbits is illustrated in

red in Fig. 1-d of the main paper. We validate that the choice of orbits does not change the results.

Graphlet Correlation Matrix / Distance As described in the main paper, Graphlet Correlation
Matrix encodes the topology of a network based on correlations between various node properties
contained in orbit counts, over all nodes. Given network GG, we compute graphlet degree vectors
of all nodes and construct a matrix where each row represents the graphlet degree vector of a node.
We exploit the existence of dependencies between orbits by computing the Spearman’s correlation
coefficient among all pairs of orbits (i.e., among all columns of the matrix of graphlet degree
vectors) and for the graphlet correlation matrix of the network, (GC'Mg). Graphlet correlation
matrix construction is illustrated in Supplementary Fig. S2, we used a random geometric graph

with 500 nodes and 1% edge density in this illustration.

We use Spearman’s correlation for measuring monotonic correlations between orbits because
the scale in which graphlet degrees evolve are not directly comparable, as graphlet degrees from
large graphlets are binomial functions of graphlet degrees from smaller graphlets. Thus, Pearson’s

correlation, which measures linear correlations, is not suitable.

It is possible that a graphlet does not appear in a network. In that case, graphlet degrees for

all of the graphlet’s orbits for all nodes are 0. As these orbit values do not change, Spearman’s Cor-
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G, G

Supplementary Figure S1: Graphlets and automorphism orbits. Left panel: graphlet G,
contains three nodes (a, b and c¢) and three automorphisms represented by arrows (one that maps a
to ¢, and another that maps b onto itself). Right panel: graph G (comprised of 4 gray nodes) has
two induced graphlets G;: first one maps node v to orbit {a, ¢} (black nodes); second one maps
node v to orbit {b} (white node). These two mappings are topologically distinct: in the first case,
v plays in GG, the role of a node having degree equal to 1, while in the second case, it plays the role

of a node having degree equal to 2.

Graphlet Correlation Matrix (GCM)
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Supplementary Figure S2: Illustration of Graphlet Correlation Matrix computation. Given
a geometric network, G, which has 500 nodes and 1% edge density (illustrated on the left), the
graphlet degree vectors of all nodes are computed. The rows of the middle table present graphlet
degree vectors of the nodes in the graph (each row contains the 73-dimensional graphlet degree
vector of a node), and the distribution of the values in each column defines the graphlet degree
distribution for orbit i, d.,. The graphlet degree distributions of orbit 0 and 1, d% and dg, are
highlighted in red. The graphlet correlation between orbits 7 and j, GC'Mq(i, j), is defined as the
Spearman’s correlation coefficient between d., and dz;. By computing the GC' M (i, ) for all pairs
of considered orbits, we obtain the symmetric graphlet correlation matrix of G, GC M.



relation coefficient cannot be computed for these orbits. To overcome this problem, we introduce
a dummy graphlet degree vector, [1, 1, ..., 1] into the matrix of graphlet degree vectors. This small
amount of noise resolves the Spearman’s correlation coefficient computation problem. As a result,
orbits for which all graphlet degrees are all O correlate perfectly (having Spearman’s correlation
coefficients of 1) while these orbits do not correlate with the rest of the non-zero orbits (having

Spearman’s correlation coefficients close to 0).

We define Graphlet Correlation Distance (GCD) between two networks as the Euclidean
distance of the upper triangle values of their GCMs. Given GCMs of networks G and H, GC Mg

and GC My, graphlet correlation distance between G and H is defined as:

GCD(G, H) = ZZ GCMe(i,j) — GCMp(i, §))2. (S.14)

=1 j=i+1

When all orbits from 2- to 5-node graphlets are considered, the GCM of the network is a
73 x 73 symmetric matrix. We denote the GCD that is computed from this matrix as GCD-73.
Similarly, when we compute the GCM of the network using only the non-redundant orbits of 2-
to 4-node graphlets (the orbits coloured red in Fig. 1-d, we obtain an 11 x 11 symmetric matrix,

which we denote by GCD-11.

Computational Complexities of Graphlet-based Distance Measures For GCD, RGFD and GDDA,
we have to count the number of graphlets/graphlet degrees in the network. Given a network with n

nodes, the worst case running time for counting all graphlets and graphlet degrees for 2- to k-node
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graphlets is O(n*) and a tighter upper-bound is O(nd*~1), where d < n is the maximum degree

over all nodes in the network.

For GCD, computing the Spearman’s correlation coefficients between the orbits over n nodes
is done in O(n In(n)) time, and the Euclidean distance between two GCMs is computed in O(1)
time. In RGFD, computing the differences between the number of graphlets is done in O(1) time.
In GDDA, computing the differences between the normalized distributions of graphlet degrees is
done in O(n) time, since each graphlet degree distribution contains up to n distinct values. The

arithmetic average of these differences is then computed in O(1) time.

Hence, the time complexities are dominated by the complexity of counting graphlets. How-
ever, since GCD performs better when it uses up to 4-node graphlets rather than up to 5-node
graphlets, it reduces the time complexity of GCD-based network comparison from O(nd*) to
O(nd?). This is a big improvement for large networks. For example, for Facebook network of
Berkeley University (which contains 22,937 nodes and 852,444 edges), counting all graphlets/graphlet
degrees for up to 5-node graphlets takes ~ 4 days, while it takes only ~ 5 hours to count all of its
up to 4-node node graphlets/graphlet degrees. This performance improvement makes GCD-based

analyses feasible even for large networks.

3D Embedding of Networks using Multi-dimensional Scaling Multidimensional scaling (MDS)
is a set of statistical techniques that assigns n-dimensional coordinate values to a set of data points

22

while trying to preserve the given pairwise distances between the data points “~*. To visualize

GCDs between networks, we use MDS-based embedding into 3-dimensional space, using met-
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ric squared stress criterion as the fit-criterion. We use Matlab’s mdscale function for performing

multi-dimensional scaling.

Precision-Recall Curves For evaluating the performance of network distance measures, we use
the Precision-Recall (PR) curves 2*. Network pairs that are generated from the same model define
the True set of the evaluation, while networks that are generated from different models define
the False set. For a given distance threshold ¢ for a network distance measure, four values are
computed: the true positives, T'P, is the number of True pairs having pairwise distances smaller
than ¢; the true negatives, T'N, is the number of False pairs having pairwise distances greater
than or equal to €; the false negatives, F' N, is the number of True pairs having pairwise distances
greater than or equal to €; and the false positives, [P, is the number of False pairs having pairwise

distances smaller than e.

The precision and recall are defined as follows:

TP
Precision = ————. S.15
recision TP PP ( )
TP
Recall = ———. 1
eca TP+ N (S.16)

PR curve plots the precision versus the recall for varying values of . The Area Under the
Precision-Recall curve (AUPR) is equal to the average precision of the distance measure. Thus,
the closer the AUPR is to 1, the better the considered distance for clustering/separating network

models.
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Generating Noisy Networks For noise-tolerance and sampling experiments, we generate noisy
networks by randomly rewiring a percentage of edges. For a network that has |E| edges, a “k%
noisy network” is generated as follows: at each step, three nodes, a, b, ¢, are chosen such that there
is an edge (a, b) but there is no edge (a, ¢). Edge (a, b) is removed and edge (a, c) is added. This

process is repeated (| E| x k)/100 times.

To reduce the computational requirements of the noise tolerance experiments, we use model
networks having {1000, 2000} nodes and {0.5%, 1%} edge-densities, so since we have 7 network
models, this results in 2 x 2 x 7 x 10 = 280 model networks in total that we randomize. We choose
to perform these experiments with smaller size networks since it is harder to distinguish between
network models at lower network sizes. We randomize each of the 280 networks by rewiring k%
of edges as described above. This results in 280 noisy model networks. We evaluate the clustering
performance of a network distance measure on this set of noisy networks. We repeat this 30 times

and report the average and standard deviation of the 30 experiments.

Note that this amounts to a large number of computations, since for each noise level (and we
had 9 of them, in increments of 10%), we have 30 x 280 = 8,400 networks to count graphlets
for. That is, we count graphlets for 9 x 8,400 = 75, 600 networks, which takes a long time even if

done in parallel on a decent compute cluster.

Edge Sampling Experiments Many real-world networks are incomplete, i.e., they have missing
edges. For evaluating the performance of network distance measures on incomplete networks, we

sample k% of edges from a model network and make a subgraph induced on the sampled edges.
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We do this sampling for each of the 280 above described model networks.

We sample {10%,20%, 30%, ...,90%} of edges for each of the 280 model networks 30

times. This results in 280 x 9 x 30 = 75, 600 networks to count graphlets for.

In addition, to test the clustering performance of the distance measures for both noisy and
incomplete data, we sample {10%, 20%, 30%, ...,90%} edges from 280 networks with 40% of
edges rewired as described in the previous section. (Doing this for the full set of 75,600 noisy
networks described in the previous section is computationally prohibitive.) As before, we repeat
this 30 times, so the number of networks that we count graphlets for in this experiment is again

75, 600.

So in total, we count graphlets for 2 x 75,600 = 151, 200 networks.

Node Sampling Experiments We test if the clustering of distance measures is still robust even
if we use the properties of only k% of nodes of a network to compose a distance measure. We

compute distance measures by sampling £% of nodes as follows:

e Spectral Distance: We compute the Laplacian matrix of the complete network, randomly
choose k% of the nodes, and compute the spectrum from the submatrix formed by the rows

and columns of the Laplacian matrix corresponding to these nodes.

e Graphlet Correlation Distance (GCD): We randomly choose k% of the nodes of a network

and compute GDVs for each of the nodes (we compute GVDs using the entire network).
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Then, GCM is computed over GDVs of the k% of the selected nodes and GCDs are computed

from these GCMs.

¢ Relative Graphlet Frequency Distance (RGFD): For graphleti € {1,2,...29} of network
G, we make N;(G) by counting only graphlets i that touch each of the selected £% nodes.

We compute RGFD from these N;(G) as described in section 2.

e Graphlet Degree Distribution Agreement (GDDA): As for GCD and RGFD, we randomly
chose k% of the nodes, for which GDVs are computed by using the entire network. Then,
Graphlet Degree Distributions (GDDs) are computed over these GDVs, and GDDA is com-

puted using these distributions.

e Clustering Coefficient: We randomly choose k% of the nodes, and compute their clustering
coefficients using the entire network. We then average these clustering coefficients to obtain

the clustering coefficient of the network.

e Diameter: We randomly choose k% of the nodes of a network and compute their eccentric-
ities in the entire network (eccentricity of a node is the maximal shortest path distance of
the node to all other nodes in the network). We choose the largest eccentricity over the £%

sampled nodes and that is the diameter of the network.

We sample {10%, 20%, 30%, ..., 90%} of nodes from each of the 280 model networks 30
times to compute the average and standard deviation of clustering performances of sampled dis-

tance measures.
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In addition, to test the clustering performance of the sampled distance measures for noisy
networks, we sample {10%, 20%, 30%, ...,90%} nodes from 280 networks with 40% of edges
rewired as described above. As before, we repeat this 30 times to find averages and standard

deviations of clustering performance of such sampled measures.

Canonical Correlation Analysis To relate a country’s economic wealth (as per economic indi-
cators listed above) and its position in the world trade network, we apply Canonical Correlation
Analysis. Canonical Correlation Analysis *° finds the weights for two sets of variables that maxi-
mize the correlation between linear combinations of the two sets of variables. The resulting weight
values indicate which variables (i.e., orbits and economic indicators) are correlated with each other.
For increased robustness to numerical artefacts, we use canonical cross-loadings instead of directly
interpreting the weights. The value of a canonical cross-loading for a variable in one set is the cor-
relation of that variable with the weighted sum (using the weights from Canonical Correlation

Analysis) of all variables in the other set.

In our analysis, the first set of variables is composed of economic indicators of a country:
RGDPL, RGDPL2, RGDPCH, KC, KG, KI, OPENK, POP, LE, BCA. The second set of variables
is composed of the graphlet degrees (corresponding to orbits) of a country in the trade network:

Co, Ch, ..., Cra.

Therefore, the obtained weight values highlight the positively and negatively correlated eco-
nomic indicators and graphlet orbits. We restrict the canonical correlation analysis with the trade

networks of 1980 to 2010 because of the availability of economic indicator values (specifically
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BCA and LE) before 1980 is scarce.

We define the brokerage score as the weighted linear combination of the broker graphlet
degrees (i.e., Ca3, C33, Cyy, and Csg), using the coefficients obtained from the canonical corre-
lation analysis. This score measures how broker-like position a country is in within the world
trade network of a particular year. Similarly, we define the peripheral score as the weighted linear
combination of the graphlet degrees for peripheral orbits (C'5, Cig, and Cy7), using the coeffi-
cients obtained from the canonical correlation analysis. This score measures how peripheral is the

position of a country within the world trade network of a particular year.

3 Supplementary Results

Graphlet Correlation Matrices for Model Networks Supplementary Fig. S3 presents the graphlet
correlation matrices (GCMs) of the 7 network models that are generated with 500 nodes and 1%
density. The GCMs of different models differ from each other especially by the observed Spear-
man’s correlation coefficients between the orbit sets {0, 2, 5, 7}, {8}, {10, 11}, {6, 9}, and {1,

4).

Evaluation of GCDs that use different orbits We evaluate several GCD variants: (1) GCD-11,
computed by using non-redundant 2- to 4-node graphlet orbits (i.e., orbits 0, 1, 2, 4, 5, 6, 7, 8,
9, 10, and 11 in Fig. 1-d of the main paper), (2) GCD-15, computed by using all 2- to 4-node
graphlet orbits (i.e., orbits 0-14 in Fig. 1-d of the main paper), (3) GCD-56, computed by using

non-redundant 2- to 5-node graphlet orbits (i.e., orbits other than 3, 5, 7, 14, 16, 17, 20, 21, 23, 26,
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Supplementary Figure S3: The graphlet correlation matrices of different network models.
Networks are of sizes 500 nodes and 1% density. The network models that the matrices represent

are: (a) ER, (b) ER-DD, (c) SF-BA, (d) SF-GD, (e) GEO, (f) GEO-GD, (g) STICKY.



28, 38,44, 47,69, 71, and 72 in Fig. 1-d of the main paper), and (4) GCD-73, computed using all
2- to 5-node graphlet orbits (i.e., orbits 0-72 in Fig. 1-d of the main paper). We formally compare
the performances of these four GCD versions against each other in the same way in which we
compared GCD-11 and GCD-73 in the main paper. We use the same 2,520 model networks that

we used in the experiments of Fig. 3. The results are presented in Supplementary Fig. S4.

For evaluating the performance of the four GCDs (GCD-73, GCD-56, GCD-15, and GCD-

11) for grouping networks of the same size and density, the number of network pairs that we

210

5 ) x 12 = 263, 340, because for one network size and density (and there are 12

compare is (
different network sizes and densities that we use, described in the main paper), we have 210 net-
works, since there are 7 network models that we use and 30 networks from each model. In these
experiments, GCD-11 outperforms all other GCD versions in terms of AUPR (panels a, b, and ¢
in Supplementary Fig. S4). For evaluating the performance of these GCDs for grouping networks
of different size and density, the number of network pairs that we compare is (2’5220) = 3,173,940
(this is because we have 7 models, 12 node size and edge densities, and 30 network instances for

each model and node size and endge density). GCD-15 performs the best for grouping networks

of different size and density.

In the main paper, we use GCD-11, since it is the best for determining the fit of models to
data networks (which are all of the same size) and hence also for tracking changes in the world

trade network topology over consecutive years.
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Supplementary Figure S4: Quality of clustering networks by using different GCD versions:
GCD-11, GCD-15, GCD-56, and GCD-73. The 2,520 model networks are used as in Fig. 3.
Panels (a) and (b) present the quality of clustering of the same size and density networks, while (c)
and (d) present quality of clustering of networks of different sizes and densities. Panels (a) and (c)
are the Precision-Recall curves for clustering of model networks by using each of the four GCD
versions. Panels (b) and (d) are tables summarizing the Area Under the Precision-Recall curve
(AUPR) achieved by each GCD version.



Evaluation of GCD Against Other Measures Fig. 2-e illustrates that the model networks of
different sizes and densities cluster together. Here, we do the same for networks of the same size
and density: Supplementary Fig. S5 shows a 3-dimensional MDS embedding by using GCD-11
distances among model networks of size 6000 and density 1%. It illustrates that GCD-11 clusters

even better networks of the same size and density than those of different sizes and densities.

We formally evaluate the performance of GCD against those of other network distance mea-
sures as described in the main paper (Fig. 3), but only for networks of the same size and edge
density. The expectation is that the performance will be even better in this case. The results are
presented in Supplementary Fig. S6. For the experiments that are shown in Panels a-c of the Fig-
ure, we use the same set of 2,520 networks that are generated for the experiments in Fig. 3, but
rather than computing the distances among all pairs of networks, we compare network pairs which
are of the same size and edge-density. The number of those pairs is (2;0) x 12 = 263, 340, be-
cause for one network size and density setting (and there are 12 of them as described in the main
paper), we have 210 networks since there are 7 models and 30 networks from each model. For the
experiments in panels d-f of Supplementary Fig. S6, we randomize each network 30 times when
we simulate each type and level of noise (as above), which if performed on the entire set of 2,520
networks would be computationally prohibitive. Hence, we use the same subset of 280 out of the
2,520 networks (having {1000, 2000} nodes and {0.5%, 1%} edge-densities) that we have used
for the experiments in Fig. 3. We use these node sizes and edge densities because these networks

are more difficult to cluster than larger networks (as explained in the main paper). Since we only

consider network pairs of the same size and edge-density, we evaluate the clustering performance
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Supplementary Figure S5: 3-dimensional MDS embedding using GCD-11 distances for model
networks with 6000 nodes and 1% density.



70

using the distances among (2

) x 4 = 9,660 network pairs (for each network size and edge den-
sity that we use, there are 70 networks and there are 4 network size and density settings). Here,

GCD-11 outperforms all other distance measures: it achieves the highest AUPR and it is the most

robust to noisy and missing data.

Supplementary Fig. S7 shows the results of edge sampling and of node sampling experiments
(described above) on noiseless model networks. These results are indeed very similar to those
obtained on noisy networks (40% of rewired edges) presented in the main paper Fig. 3 (when
comparing all networks) and in the Supplementary Fig. S6 (when only comparing networks having

same size and edge density), with GCD-11 being the most robust.

Model-fitting for Real-world Networks The graphlet correlation distance can be used for eval-
uating which network model best fits the structure of a real network. In order to test this, for
each real-world network, we generate 30 networks from each of the 7 network models that are of
the same size and density as the real-world network. We compute the GCD-11 between the real-
world (data) networks and the 30 model networks (per model) along with the GCD-11 among the
model networks of the same type. Supplementary Fig. S8 illustrates the distributions of all these

data-vs-model and model-vs-model GCD-11 distances.

A network model fits a real-world network if there is an intersection between the data-vs-
model and model-vs-model histograms . The size of the intersection defines the goodness-of-fit.
Hence, autonomous networks are best fit by the ER-DD model, however ER-DD network model

is a very weak fit. Facebook networks are best fit by SF-GD networks, while GEO and GEO-GD
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Supplementary Figure S6: Clustering of the model networks of the same size and edge den-
sity by using the eight network distance measures (color coded). Error bars are one standard
deviation above and below the mean. (a) Precision-Recall curves for clustering the model networks
with each of the eight distance measures. (b) Table summarizing the Area Under the Precision-
Recall curve (AUPR) achieved by each distance measure. (¢) AUPR for different levels of noise
(“Rewiring Rate”) added to the model networks in 10% increments. (d) On the model networks
with 40% of noise, i.e., randomly rewired edges (“40% rewired”), AUPR for incomplete such
networks: % of edges were randomly removed from them in increments of 10% (so “Edge Com-
pleteness” of 100% means that no edges were removed). (e) On the model networks with 40% of
noise (as described for panel (d)), AUPR when only a percentage of a measure was taken to com-
prise the distance measure (e.g., % of Graphlet Degree Vectors of a network (denoted by “Nodes
Sampled”) were randomly chosen to make up its GCM-11 and subsequently its GCD-11).
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Supplementary Figure S7: Effects of missing data and Graphlet Degree Vector sampling
on distance measures (color coded) applied to model networks. (a) Considering all pairs of
model networks of different sizes and edge densities, AUPR for model networks with 2% of edges
randomly removed from model networks to simulate missing data, where x is in increments of
10% (denoted by “Edge Completeness”). (b) Considering all pairs of model networks of different
sizes and edge densities, AUPR for model networks when only a percentage of a measure (denoted
by “Nodes Sampled”) is taken to comprise the entire distance measure. (c¢) is the same as (a), but
when we consider pairs of model networks of the same size and edge density. (d) is the same as
(b), but when we consider pairs of model networks of the same size and edge density.
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Supplementary Figure S8: Modelling the autonomous, Facebook, metabolic, protein struc-
ture, and world trade networks with seven random network models by using Rito et al.’s
non-parametric test 2’. Each row represents one theoretical network model and each column repre-
sents one real network domain. On each panel, the horizontal axis is GCD-11, the vertical axis is
measured probability density; the blue bars represent a histogram of GCD-11 distances across all
pairs of randomly generated model networks with the same size and density as the corresponding
real-world network (this gives us an expectation of how well the models compare with each other);
the red bars represent a histogram of the GCD-11 distances of the real-world network compared to
the 30 corresponding model networks. The quality of the fit is measured by the amount of overlap
(i.e., shared area) under the distributions.



network models also fit. For metabolic and protein structure networks, all of the GEO, GEO-GD,
and SF-GD network models fit well. For trade networks, none of the seven network models fit
well. There exists a small intersection of the data-vs-model and model-vs-model distances for the
ER-DD model. However, because of the small size of the trade networks, the ER-DD model is
unstable (see 2®) as can be understood from the wide-spread model-vs-model distances. Therefore,

it does not fit the structure of trade networks.

Effects of Crude Qil Price Changes on Trade Network Topology Table S2 lists all the signifi-
cant (p-values < 0.05) positive correlations between the change distributions of crude oil price and
network topology. Supplementary Fig. S9 illustrates the distributions of the changes in crude oil
price and network topology that have significant Spearman’s correlations. Similarly, Supplemen-
tary Fig. S10 illustrates the distributions of the changes in crude oil price and network topology

that have significant Phi correlations.

The changes in crude oil price are correlated with the changes in “TOTAL” trade network
topology that occur one and two years later (the strongest correlation is observed two years later,
with a Spearman’s correlation coefficient of 0.414 and p-value of 0.005). These correlations are
expected, since petroleum is critical for moving goods. Freight transportation consumes about
35% of all transport energy that is used worldwide, which is virtually based only on petroleum.
The increases in crude oil price raise the transportation costs, and thus erodes the advantages of

the long-distance supply chains.

Among the commodity based networks, “FOOD and LIVE ANIMALS” show the strongest
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Supplementary Figure S9: Statistically significant correlations of the crude oil price and
WTN topology changes (p-value < 0.05) using Spearman’s Correlation. WTN change patterns
that are presented in the figures are: (a) WTN with the block size of 2 years and 2 year shift (WTN
topology changes 2 years after oil price changes) (Sp. Corr. = 0.414; p-value = 0.005), (b) WTN
with block size of 2 years and 1 year shift (Sp. Corr. = 0.356; p-value = 0.016), (¢) The trade
network of “Misc. Manufactured” commodity, with block-size of 3 years and 3 year shift (Sp.
Corr. = 0.347; p-value = 0.026), (d) WTN with block size of 3 years and 1 year shift (Sp. Corr. =
0.316; p-value = 0.039).
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67

o~ ~

NN o ~ @ M ©® m o m ® m @
3 N~ R ® ® o & o o 3 ¢ R R 8 ® @ & o o
a © 4 © 4 e +4 v d @ 2 ~ 8 N 8 N o &~ N8
& 1 © ~ ~ © o - o (-} (=} 7 { Y © ~ ~ o © -] -] (=} }..3 {
K H b 2
g 120 0.6 E o 120 0.7 E
o 6 T @
o 100 z o 100 z
= o = 0.6
S 80 055 S o °
o o o 0.5 8
T 60 0.4 F T 60 F
2 T E 2 0.4 £
U 40 ‘o o 40 ‘°
c 0.3 <
= 20 2 = 20 03 2
@ ] o [
- 2 < = 25
c ~ N ~ o ~ o ~ o NYc o c ~ N ~ o ~ o ~ o > o
& © N~ R ® ® o & o o & & N~ N ® ® & oo © o
2 < 2 2 2 2 2 2 2 2 2 < < 2 < < 2 2 2 2
3] © 4 © 4 © H4 v d © [¥] © 4 © 4 © o4 © o ©
© R R @ ® & & o o © R R & ® & & ©o& o
(g) Block Size: 3 / Shift Years: 0 (h) Block Size: 3 / Shift Years: 1

Supplementary Figure S10: Statistically significant correlations of the crude oil price and
WTN topology changes (p-value < 0.05) using Phi Correlation: (a) “Food and Live Animals”
commodity network with year-shift of O years (immediate change) and block-size of 3 years (Phi
Corr. = 0.479; p-value = 0.001), (b) “Crude Material (except Fuel)” commodity network with
year-shift of 1 year (network topology changes 1 year after oil price changes) and block-size of 2
years (Phi Corr. = 0.468; p-value = 0.001), (c¢) “Chemicals” commodity network with year-shift of
1 year and block-size of 2 years (Phi Corr. = 0.465; p-value = 0.001), (d) “Chemicals” commodity
network with year-shift of O years and block-size of 3 years (Phi Corr. = 0.403; p-value = 0.007),
(e) “Mineral Fuels” commodity network with year-shift of 3 years and block-size of 3 years (Phi
Corr. =0.402; p-value = 0.001), (f) “Mineral Fuels” commodity network with year-shift of 2 years
and block-size of 2 years (Phi Corr. = 0.399; p-value = 0.001), (g) WTN with year-shift of 1 year
and block-size of 2 years (Phi Corr. = 0.371; p-value = 0.001), (h) “Crude Material (except Fuel)”
commodity network with year-shift of 1 year and block-size of 2 years (Phi Corr. = 0.334; p-value
=0.001).



correlation (with Phi coefficient of 0.479 and p-value of 0.001) on the same year as the crude
oil price changes. This correlation is also expected, since (i) oil is needed for agriculture and
(1) oil price increase leads to increase in demand for corn, soy and other corns that are used for
production of bio-ethanol and bio-diesel. We also find that this correlation increases over time: the
Phi correlation coefficient rises from 0.31 for years in between 1962 and 1986, to 0.51 for years in

between 1986 to 2007.

Supplementary Table S2: All significantly correlated changes in Crude Oil Price and Trade
Network Topology (p — value < 0.05), when using block sizes of [1, 3] and shift years of [-3 ,

3D.

Corr. / p-value | Corr. / p-value
Commodity Block Size | Shift Years (Spearman) (Phi Coef.)

TOTAL 2 2 0.414/0.005 | -0.055/0.725

TOTAL 2 1 0.356/0.016 | -0.025/0.875

MISC. MANUFACTURED 3 3 0.347/0.026 | 0.012/0.940
TOTAL 3 1 0.316/0.039 | 0.089/0.575

FOOD and LIVE ANIMALS 3 0 -0.321/0.033 | 0.479/0.001
CRUDE MATERIAL (except FUEL) 2 1 -0.022/0.885 | 0.468/0.001
CHEMICALS 2 1 -0.021/0.893 | 0.465/0.001
CHEMICALS 3 0 -0.084/0.589 | 0.403/0.007
MINERAL FUELS 3 3 -0.087/0.588 | 0.402/0.010
MINERAL FUELS 2 2 -0.114/0.461 | 0.399/0.008

TOTAL 3 0 0.212/0.166 | 0.371/0.014

CRUDE MATERIAL (except FUEL) 3 1 -0.469/0.001 | 0.334/0.031
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Supplementary Figure S11: Betweenness and closeness centralities of countries in WTN over
years: (a) Betweenness centrality of the United States (USA), China (CHN), Germany (DEU),
France (FRA), and the United Kingdom (GBR) from 1962 to 2010. (b) Betweenness peripherality
(that we define as 1-[betweenness centrality]) of Argentina (ARG), China (CHN), Cyprus (CYP),
and Greece (GRC) from 1962 to 2010. (c¢) Closeness centrality of the United States (USA), China
(CHN), Germany (DEU), France (FRA), and the United Kingdom (GBR) from 1962 to 2010. (d)
Closeness peripherality (that we define as 1-[closeness centrality]) of Argentina (ARG), China
(CHN), Cyprus (CYP), and Greece (GRC) from 1962 to 2010.




