Supplemental material

Hagedorn et al., http://www.jcb.org/cgi/content/full/jcb.201312098/DC1

Figure S1. **F-actin and invadopodial membrane components are tightly colocalized in wild-type animals.** Lateral view images show ACs coexpressing the F-actin marker *cdh-3* > mCherry::moeABD (green in overlays, left) with the invadopodial membrane components PI(4,5)P2 (visualized with GFP:: $PLC\delta^{PH}$), GFP::MIG-2, and GFP::CED-10 (magenta in overlays). F-actin and all invadopodial membrane components localized tightly together within invadopodia at the invasive cell membrane (arrowheads). Pearson's correlation coefficients (r) for colocalization are shown as mean \pm SEM ($n \ge 5$ animals each genotype.

Figure S2. **Polarization of lysosomal but not endosomal proteins during AC invasion.** (A) Early (Rab5; mCherry::RAB-5), late (Rab7; mCherry::RAB-7), and recycling (Rab11; mCherry::RAB-11) endosomal proteins do not enrich at the invasive membrane during AC invasion. However, the lysosomal proteins LMP-1 (mCherry::LMP-1) and CUP-5 (GFP::CUP-5) are highly polarized (three- to fourfold) to the invasive membrane. Lateral-view images; bars, 5 μ m. (B) Graphs report the fold enrichment of the endosomal and lysosomal markers at the invasive membrane ($n \ge 5$ animals examined for each genotype, error bars report \pm SEM).

Figure S3. Invadopodial membrane recycling from the endolysosome is regulated by UNC-60A. (A) Focused laser photobleaching of an \sim 1.0-µm region above the invasive membrane (circle) in a wild-type AC (top row) resulted in over 50% loss of the endolysosome LMP-1::GFP signal throughout the AC within 2.5 min (time-points, minutes). The LMP-1::GFP signal persisted for longer in *unc-60a* (RNAi) animals. The original fluorescent images are shown underneath images depicting a heat map of the fluorescent intensity. (B) Graphs report LMP-1::GFP signal remaining at the nonbleached invasive membrane over time ($n \ge 5$ animals each genotype; P < 0.05 for 25, 50, and 75% signaling remaining; Student's t test).

Video 1. **UNC-60A (ADF/cofilin) regulates F-actin dynamics during invadopodia formation.** Lateral-view time-lapses show 3D reconstruction of F-actin in wild-type (top) and *unc-60a* RNAi-treated (bottom) ACs. F-actin is visualized with cdh-3 > mCherry:: moeABD (green); the basement membrane is visualized with laminin::GFP (magenta). Images were acquired using a spinningdisk confocal microscope (CSU-10 scan head; Yokogawa Corporation of America) mounted on an upright microscope (Axiolmager; Carl Zeiss). 43-min time-lapses are shown with time-points acquired every 60 s. Projections of seven z-sections (step size of 1 µm) are shown. The video plays at 10 frames per second. Bar, 5 µm. This video corresponds to Fig. 2 C.

Video 2. **UNC-60A (ADF/cofilin) regulates F-actin dynamics during invadopodia formation.** Ventral-view time-lapses show 3D reconstruction of F-actin in wild-type (top) and *unc-60a* RNAi-treated (bottom) ACs. F-actin is visualized with cdh-3 > mCherry:: moeABD (green); the basement membrane is visualized with laminin::GFP (magenta). Images were acquired using a spinningdisk confocal microscope (CSU-10 scan head; Yokogawa Corporation of America) mounted on an upright microscope (Axiolmager; Carl Zeiss). 60-min time-lapses are shown with time-points acquired every 15 s. Projections of eight z-sections (step size of 0.5 µm) are shown. The video plays at 10 frames per second. Bar, 5 µm. This video corresponds to Fig. 2 C.

Video 3. **Spot-tracking analysis of AC invadopodia lifetimes.** Ventral-view time-lapses show a wild-type (top) and *unc-60a* RNAi-treated animal (bottom) just before the normal time of basement membrane breaching in wild-type animals. F-actin (*mCherry::moeABD*) is shown in green and laminin (*laminin::GFP*) is shown in magenta; spots (cyan) are overlaid on fluorescence (left) and shown alone (right). Time points were acquired every 15 s and the video plays at a rate of 10 frames per second. Bar, 5 µm. This video corresponds to Fig. 2 D.

Video 4. **FLIP analysis reveals dynamic recycling of invadopodial membrane through the endolysosomal compartment.** Lateral-view time-lapses show spectral representation of fluorescence intensity of LMP-1::GFP in wild-type (left) and *unc-60a* RNAitreated (right) ACs. Small 1-µm regions of the invasive membrane (circles) were continuously photobleached using 100% laser power and 20 iterations. The first time-point shown is immediately before the start of photobleaching. This analysis was preformed using a confocal microscope (LSM 510; Carl Zeiss) equipped with a 100x objective. 10-min time-lapses are shown with time-points acquired every 30 s. The video plays at 10 frames per second. Bar, 5 µm. This video corresponds to Fig. 5 A.

Video 5. The invadopodial membrane component PI(4,5)P₂ localizes to static intracellular membrane vesicles in the absence of *unc-60a* (ADF/cofilin). Lateral-view time-lapses show 3D reconstruction of PI(4,5)P₂ in wild-type (left) and *unc-60a* RNAi-treated (right) ACs. PI(4,5)P₂ is visualized with cdh-3 > mCherry::PLC δ^{PH} (cyan); the basement membrane is visualized with laminin:: GFP (magenta). Images were acquired using a spinning-disc confocal microscope (CSU-10 scan head; Yokogawa Corporation of America) mounted on an upright microscope (AxioImager; Carl Zeiss). 40-min time-lapses are shown with time points acquired every 60 s. Projections of seven z-sections (step size of 1 µm) are shown. The video plays at 10 frames per second. Bar, 5 µm. This video corresponds to Fig. 5 B.

Table S1. Extrachromosomal array and integrated stain generation

Strain designation ^a	PCR fusion created	Injected concentration	Co-injection marker
qyEx237	unc-60 > GFP::unc-60a	0.1 ng/µl	unc-119+
qyEx236, qyIs224	cdh-3 > GFP::Cbrunc-60	0.1 ng/µl	unc-119+
qyEx235, qyIs222, qyIs223	cdh-3 > GFP::unc-60a	0.1 ng/µl	unc-119+
qyEx282	cdh-3 > Dendra2::act-1	0.1 ng/µl	unc-119+
qyEx411	zmp-1 > lmp-1::mCherry	0.1 ng/µl	unc-119+
qyEx403	cdh-3 > GFP::cup-5	0.1 ng/µl	unc-119+
qyls211	cdh-3 > lmp-1::GFP	0.1 ng/µl	unc-119+
qyls205	cdh-3 > mCherry::rab-11	0.1 ng/µl	unc-119+
qyls252	cdh-3 > mCherry::rab-7	0.1 ng/µl	unc-119+
qyls256	cdh-3 > mCherry::rab-5	0.1 ng/µl	unc-119+

°Ex signifies an extrachromosomal transgenic line, whereas Is denotes stably integrated lines.

Table S2. Primer sequences and templates used for PCR fusions

Primer sequence	Primer type	Amplicon	Template
5'-TAATGTGAGTTAGCTCACTCATTAGG-3'	Forward	<i>cdh-3 ></i> promoter	pPD107.94/mk62-63
5'-AACGATGGATACGCTAACAACTTGG-3'	Forward, nested	<i>cdh-3 ></i> promoter	pPD107.94/mk62-63
5'-TTTCTGAGCTCGGTACCCTCCAAG-3'	Reverse	<i>cdh-3</i> > promoter	pPD107.94/mk62-63
5'-AGTATTGCCAGAAAATCCCGTTGC-3'	Forward	<i>unc-60 ></i> promoter	Fosmid WRM0613bD01
5'-CTCTTAATGTGAGCCTAGTGCTCG-3'	Forward, nested	<i>unc-60</i> > promoter	Fosmid WRM0613bD01
5'-TCACGTGTGAGATCACAGTTGCCG-3'	Forward, nested 2	unc-60 > promoter	Fosmid WRM0613bD01
5'-GAAAAGTTCTTCTCCTTTACTCATACTCTA GAAAACAGGCACACATAG-3'	<i>gfp</i> extension, reverse	<i>unc-60</i> > promoter	Fosmid WRM0613bD01
5'-ATGAGTAAAGGAGAAGAACTTTTC-3'	Forward	GFP	pPD95_81
5'-TTTGTATAGTTCATCCATGCCATG-3'	Reverse	GFP	pPD95_81
5'-CATGGCATGGATGAACTATACAAATCCGGT GTCATGGTCGACCCAGAT-3'	<i>gfp</i> extension, forward	unc-60a	Fosmid WRM0613bD01
5'-TCATGGTCGTGGAATTACACGGCC-3'	Reverse	unc-60a	Fosmid WRM0613bD01
5'-TTAGGCTTAGGCCTGGGCTTAGCC-3'	Reverse, nested	unc-60a	Fosmid WRM0613bD01
5'-ATAGGCTCAAGCTTAGGCTTAGGC-3'	Reverse, nested 2	unc-60a	Fosmid WRM0613bD01
5'ATTACACATGGCATGGATGAACTAATGGTGAGT GACTAGTTTTTTGCT-3'	<i>gfp</i> extension, forward	Cbrunc-60	AF16 genomic DNA
5'-AGGATCCGAACATGGTCAAAACGG-3'	Reverse	Cbrunc-60	AF16 genomic DNA
5'-AATATGTGGGATTGCTTTAAAACG-3'	Reverse, nested	Cbrunc-60	AF16 genomic DNA
5'-ATGTGTGACGACGAGGTTGC-3'	Forward	act-1	C. elegans genomic
5'-ACTTCCCTTCCTGTTCAAAG-3'	Reverse	act-1	C. elegans genomic
5'-CGGAAGTTATCATACAACCG-3'	Reverse, nested	act-1	C. elegans genomic
5'-ATGAACCTTATTAAGGAAGA-3'	Forward	Dendra2	Dendra2 plasmid
5'-CCATGCTTGACTTGGTAGAG-3'	Reverse	Dendra2	Dendra2 plasmid
5'-AAGGGCCCTTCGCCATTTACATCGGCTC-3'	Forward	cup-5	pHD736
5'-AAGAGCTCGTACGGCCGACTAGTAGG-3'	Reverse	cup-5	pHD736
5'-AATTAATTAAGACGCTGGCATATCCTTGT-3'	Reverse	lmp-1	C. elegans genomic
5'-AAACCGGTATGTTGAAATCGTTTGTCATC-3'	Forward	lmp-1	C. elegans genomic
5'-AAAAGCGGTTAGCTCCTTCGGTCC-3'	Reverse	rab-5	pHD281
5'-TCTGTGACTGGTGAGTACTCAACC-3'	Reverse, nested	rab-5	pHD281
5'-AAAAGCGGTTAGCTCCTTCGGTCC-3'	Reverse	rab-7	pHD251
5'-TCTGTGACTGGTGAGTACTCAACC-3'	Reverse, nested	rab-7	pHD251
5'-CTTGGAGGGTACCGAGCTCAGAAAATGGTCTCAAA GGGTGAAGA-3'	<i>cdh-3,</i> extension, forward	rab-11	pJWZ529
5'-CAGGAAACAGCTATGACCATG-3'	Reverse	rab-11	pJWZ529
5'-CATTCACAGGACAAAGAGAGGG-3'	Reverse, nested	rab-11	pJWZ529