
Supplementary Information 

Grajales-Reyes et al. 
 
SI Materials and Methods 
Voluntary wheel running. The onset and 
progression of weakness in both animal models 
(αC418W and WT) was monitored to determine 
the effects of statin treatment. A computer-
monitored mouse activity wheel system (wheel 
counter model 86061, wheel diameter 12.7 cm, 
clear polycarbonate cage, USB computer interface 
model 86056A, activity wheel monitor software 
version 9.2, Lafayette Instruments, Lafayette) was 
used to determine exercise and locomotor activity 
profile of mice during treatment. This system 
monitored the average velocity of the activity 
wheel during 24 hours. The computer logged the 
average velocity (meters/minute) and the 
cumulative distance (meters) the mouse traveled 
for every second along the course of these 24 
hours. Once this file was obtained, the file was 
opened in Excel and the entire A column was 
filtered to display the average velocity, since this 
was the variable that was going to be analyzed. 
After this, all the data contained in the file, except 
the average velocity, was erased so that only a 
column containing all the average velocities could 
be saved as a coma separated value (CSV) file. 
This file was then renamed from a .csv to a .dat 
file so that it could be analyzed in a custom made 
program. This program analyzes the moments in 
which the activity wheel’s velocity was greater 
than 0 and calculates two values. First it calculates 
for how long (seconds) the mouse ran and second 
it calculates the average velocity of this activity 
period (meters/minute). Once these measurements 
were performed, the activity period duration and 
its corresponding average velocity were logged in 
side-by-side columns. This was organized so that 
the activity period duration is in an ascending 
order starting with the lowest value, which is 
always 1 second. Activity periods that exhibit the 
same duration were all displayed with their 
respective average velocity. For detailed 

information about the custom program refer to the 
below description. This code was written in the 
C++ programming language and can be compiled 
in the Bloodshed Dev-C++ software to produce an 
executable (.exe) file that is the custom program 
per se. These values were then analyzed with 
Sigma Plot (Systat Software Inc., San Jose, CA), 
which divides a scatter plot generated with the 
aforementioned (activity interval duration and its 
respective average velocity) data into a 10 x 10 
grid. Then, Sigma Plot calculated the frequency of 
the data points contained within each grid unit. 
The obtained frequency values were then used in 
MatLab 7.4 R2007a (The MathWorks, Inc., El 
Segundo, CA) to produce contour plots.  Velocity 
bin values were on the X-axis and time bin values 
(in log scale) are on the Y-axis, and the frequency 
information was displayed as colored contours.  
Increased frequencies were represented as a shift 
from blue to red contours. In order to display the 
dynamic range of the data, 15 contours were 
distributed following a cubic curve with a final 
contour level that displays a maximum frequency 
of 22.  As such, the final contour (22) contains all 
data equal or greater than its threshold value.  This 
arrangement allows for low frequency contours to 
be closer spaced than high frequency contours, 
providing more detail in the areas of the histogram 
representing mouse activity. Before starting the 
experiment mice were placed in a similar cage 
with a similar activity wheel so that they learned 
how to run prior to the first experiment day. Once 
the activity recording finished (24 hours) the 
mouse was returned to its original cage. In order to 
prepare the cage for a new animal, each cage and 
activity wheel was washed with tap water and 
cleaned with 70 % alcohol after each experiment 
day; the bedding was also changed.  
 
 



Animals, care and procedures. Male 6-8 
weeks-old mice that express the αC418W 
mutation on the muscle nAChR, and WT (FVB) 
were used. FVB mice were used as controls for 
αC418W and αV249F while C57BL/6 was used 
for δS262T since these mutant mice were created 
using these respective background strains. All the 
stable transgenic mice have been inbred for vastly 
more than 15 generations, inheriting the transgene 
in a simple Mendelian fashion. Mutant transgenic 
mice were previously established and described in 
detail43. All animals were bred and housed in an 
environmentally controlled facility (10/14-h 
light/dark cycle, temperature between 20-22°C, 
relative humidity 65-75%) and have free access to 
food (Harlan Laboratories, IN) and tap water. All 
protocols were approved by the University of 
Puerto Rico Institutional Animal Care and Use 
Committee (IACUC). To screen the transgenic 
mice, genomic DNA was recovered from mouse 
tail tips using DNeasy kit (Qiagen) following 
manufacturer instructions. The presence of the 
transgene was determined by polymerase chain 
reaction (PCR) using PCR beads (GE) and primers 
to amplify α and δ subunit genes and the NEO 
gene. The NEO gene primer was used to identify 
every transgenic line since only these mice have 
the gene, and the second primer varied upon which 
subunit contained the mutation43. PCR products 
were visualized in agarose gel electrophoresis. 
Upon completion of experiments, all animals were 
euthanized by cervical dislocation and disposed 
according to institutional policies.  
 
Statin treatment. Freshly prepared Atorvastatin 
calcium (Lipitor®) (44 mg/kg) (5 mg/ml) or 
placebo (PBS, 1X) was administered 
intragastrically via oral gavage with a metal 
feeding tube (Popper & Sons, Inc., NY) daily up to 
36 days.  
 
Electromyography. Evoked compound muscle 
action potential (CMAP) responses were recorded 
in mice weighting 20-30 g using a Dual Bio 
Amp/Stimulator coupled to a Power Lab 4/30 data 
acquisition system (ADInstruments, CO) under 

Avertin anesthesia as described by Gomez et al., 
199728. The CMAP responses were generated by 
the sciatic nerve stimulation. In order to do this an 
incision lateral and parallel to the femur was 
performed. This incision exposed the sciatic nerve, 
to which a copper wire was encircled. After this, 
the copper wire was coupled to an electrode that 
delivered a train pulse of 10 stimuli at a frequency 
of 5 Hz during of 0.05 ms. The percentage of 
decrease in amplitude (mV) of the CMAP 
(decrement) was calculated using the amplitude 
(peak positive to peak negative) of the 1st and 10th 
responses. 
 
Confocal microscopy imaging. For the NMJ 
size measurement, images were collected in the 
Confocal Imaging Facility at the University of 
Puerto Rico (CIF-UPR) using a Zeiss LSM 510 
Laser Scanning Confocal Microscope (Carl Zeiss, 
Inc.). Endplates were labeled by incubating in 
Alexa-Fluor® 488-conjugated α-bungarotoxin 
(Invitrogen) for 1 hour and washed 3 times with 
PBS1X (15 min).  Motor endplates were 
visualized using a 40X objective. Zeiss LSM 510 
parameters were optimized at the beginning of 
every tissue sample observation. In order to obtain 
a good representation of the endplate population, 
the hemidiaphragms were divided into 5 sections, 
dividing the space between the ventral and dorsal 
part of the hemidiaphragm equally. Once all the 
images were obtained, 10 Z-stacks were acquired 
per mouse. Each one of these sections was imaged 
with the aforementioned parameters. Collected Z-
stacks were analyzed using the Imaris x64 6.1.3 
software (Bitplane Inc., CT) in which a surface 
was generated over the reconstructed endplates so 
that its size could be calculated in three-
dimensions. These measurements were then 
plotted as normalized histograms so that changes 
in the sample distribution could be observed. 
These histograms were fitted using Peakfit (Systat 
Software Inc., CA). In order to perform the 
caveolin-1 (Cav-1) staining the tibialis anterior 
muscle was used. Once dissected, it was rapidly 
dipped in 2-methyl-butane (Sigma-Aldrich) bathed 
by liquid nitrogen. Once frozen, tissues were 



mounted in OCT compound so that the muscle 
could be cut in 10 µm slices using a cryostat 
(Leica, model CM1100, Leica, IL). Then, tissues 
were fan dried for 20 minutes and immersed into 
an acetone-methanol (1:1) mixture for 20 minutes 
at –20 °C. Following fixation, tissues were fan 
dried once again for 20 minutes. In order to block 
the tissues, muscle slices were immersed in 
blocking solution (2% NGS, 0.2% Triton X-100, 
1% DMSO in PBS 1X) for 1 hour. To prepare the 
slides for the antibody addition a circular area was 
drawn around the tissue slice with a PAP pen, 
which creates a thin-filmed hydrophobic barrier 
that keeps the antibody solution localized. Once 
the hydrophobic film dried, the antibody solution 
(caveolin-1 antibody H-97, Santa Cruz 
Biotechnologies, diluted 1:500 in blocking 
solution) was added for 12-16 hours at 4°C. In 
order to wash the primary antibody, the tissue was 
immersed in washing buffer (0.05% Tween-20 in 
PBS 1X) 3 times for 10 minutes each. Finally, the 
secondary antibody (Molecular Probes, goat anti 
rabbit 1:1000) was added for one hour at 25°C, 
and as before the tissue was washed 3 times 10 
minutes each. Later, mounting medium for 
fluorescence with DAPI (H-1200, Vector 
Laboratories Inc.) was added. All Cav-1 imaging 
was performed in a TCS laser-scanning 
microscope (Leica, IL). The percentages of Cav-1 
positive endplates were measured in order to 
compare the effects of the statin treatment and the 
difference on Cav-1 positive endplates between 
WT and αC418W mice.  
  
Glyoxal-bis (2-hydroxyanil) stain (GBHA). 
GBHA histochemical staining was performed 
according to Kashiwa et al. 196449  and Gomez et 
al., 200229. In brief, the tibialis anterior muscle 
was frozen in 2-methyl-butane bathed by liquid 
nitrogen followed by mounting in OCT compound 
and sliced in a cryostat at a 10 µm thickness, 
stained and mounted. Each slice was stained in the 
following order: slice #1 (cholinesterase stain), 
slice #2 (GBHA, calcium stain), slice #3 
(cholinesterase stain). The slice (1 or 3) that 
exhibits the highest endplate number was selected 

and compared against slice #2 (GBHA-stained). 
Cholinesterase was stained by immersing the 
slices in a modified Ringer’s solution (0.1% 
CuSO4 . 5H2O, 0.2% glycine and 5 mM 
acetylcholine iodide adjusted to pH 6.5 with a few 
drops of a 10% solution of 2-amino-2-metylpropa-
1-ol). After 15 minutes in Ringer’s solution at 
room temperature the slices were rinsed in 
distilled water and placed in a 1% solution of 
yellow ammonium sulfide (pH 9) for 5 seconds, 
followed by distilled water rinse and subsequent 
immersion in ethanol 70%. The calcium stain was 
prepared by mixing 16 ml 0.4% glycoxal bis-2-
hydroxyanil dissolved in methanol with 7.2 ml 
NaOH 5%. Then, slides were immersed in this 
solution and air dried for 2 minutes followed by 
additional immersion and air dry for two minutes 
to finally rinse in 70% ethanol. After this, the 
slides were dipped in 0.25% methylene blue 
dissolved in 70% ethanol. The counterstained 
sections were dehydrated in acetone, cleared in 
xylene, and mounted.  
 
Caspase-3 activity experiments. A firefly 
luciferase-based assay was used to measure 
activity of caspase 3 (Caspase-Glo® 3/7, 
Promega). Muscles were homogenized  (25 mM 
HEPES pH 7.5, 0.1% (v/v) Triton X-100, 5 mM 
MgCl2, 2 mM 1,4-dithiothreitol, 10 mM NH4Cl, 
10 mM 3-methyladenine, 74 µM antipain, 0.15 
µM aprotinin, 1.3 mM EDTA, 20 µM leupeptin, 
and 15 µM pepstatin). After homogenization, a 20 
µg protein product was added to the luminometer 
in triplicates for the protease luminescence assay.  
 
Cholesterol measurement in muscle. 800 µl 
of each sucrose gradient fraction were subjected to 
the Bligh-Dyer method for the extraction of lipids 
in solution50. Briefly, 3.75 ml 1:2 (v/v) CHCl3: 
MeOH were added to each sample, followed by 
1.25 ml of CHCl3, and 1.25 ml of distilled water; 
after each addition, samples were vigorously 
vortexed. The organic phase of each sample was 
carefully extracted and dried under N2(g). 
Cholesterol was separated from other lipids on 
rhodamine 6G stained silica gel G plates with 



petroleum ether/diethyl ether (98:2, v/v) as the 
solvent system. The spots corresponding to 
cholesterol was extracted with petroleum 
ether:ethyl ether (2:3 v/v) and further assayed 
using the Wako cholesterol E Kit (Wako 
Chemicals USA, VA) according to the 
manufacturer’s indications. 
  
Statistical Analysis. All experiments were 
replicated at least three times, with the number of 

replicates (n) indicated in the figure legend. Each 
replicate represents a mouse, and each data point 
was the average of at least three different samples. 
Bars in all figures represent the standard error of 
the mean (SEM). T-tests were performed using 
GraphPad Prism version 4.00 for Windows, 
GraphPad Software, San Diego, California, USA. 
	  

 
 
 
 
Custom software code  
 
/********************************************************************** 
//                                                                     * 
// Programmer: Wilfredo F. García Beltrán                              * 
// Laboratory of José A. Lasalde Dominicci 
// File: Time-Velocity Tracing Analysis                                * 
//                                                                     * 
//********************************************************************** 
/* 
     This program converts a list of continuous second-to-second 
velocities into a list of time intervals (delimited by sub-threshold 
velocities) with their respective average velocities. It accepts as 
input a tab-delimited list of continuous time-points (in seconds) with 
an instanteneous velocity for every time point; the data must be in a 
*.dat file. The output is also a *.dat file. 
*/ 
 
#include <iostream> 
using namespace std; 
#include<fstream> 
#include <iomanip> 
#include <cmath> 
 
struct meanvelocity 
{ 
    int timeinterval ; 
    double meanvelocity ; 
} ; 
 
// Prototypes of functions and subfunctions 
double Ask_for_threshold(bool&) ; 



void Time_interval_mean_velocities(void) ; 
   void Read_and_group_data_with_mean_velocity(double) ; 
   void Read_groups_with_mean_velocity(ifstream&, meanvelocity [], int) ; 
   int Count_elements_with_mean_velocity(ifstream&) ; 
   void Display_array_and_create_file_with_mean_velocity(meanvelocity [], int, ofstream&) ; 
   void Order_with_mean_velocity(meanvelocity [], int) ; 
int Count_elements(ifstream&) ; 
void Display_array(int [], int ) ; 
void Finishing_message (void) ; 
 
int main () 
{ 
    system ("cls") ; 
        cout << "\n\t<<<  Analysis of Time-Velocity Tracings  >>>\n" 
             << "\n       This program converts a list of continuous second-" 
             << "\n  to-second velocities into a list of time intervals (delimited" 
             << "\n  by sub-threshold velocities) with their respective average" 
             << "\n  velocities. It accepts as input a tab-delimited list of" 
             << "\n  continuous time-points (in seconds) with an instanteneous" 
             << "\n  velocity for every time point; the data must be in a *.dat" 
             << "\n  file. The output is also a *.dat file.\n\n" ; 
    system ("pause") ; 
         
    Time_interval_mean_velocities() ; 
     
    Finishing_message() ; 
     
    return 0 ; 
} 
 
// Definition of functions 
        
void Finishing_message (void) 
{ 
     system ("cls") ; 
     cout << "\n  ***Thank you for using this program***\n" << endl ; 
     system ("pause") ; 
} 
 
double Ask_for_threshold(bool& check) 
{ 
    char selection ; 
    double threshold ; 
    do 



    { 
        system ("cls") ; 
        cout << "\n  Do you wish to set a threshold value to determine which values" 
             << "\n  of instantaneous velocity are significant (default = 0) (Y/N)---> "; 
        cin >> selection ; 
    } while ((selection != 'Y') && (selection != 'N')) ; 
    if (selection == 'Y') 
    { 
        cout << "\n\n  Specify the 'threshold' value (non-negative real number)---> " ; 
        cin >> threshold ; 
        if(cin.fail()||threshold < 0) 
        { 
            check = true ; 
            cout << "\n\nInvalid entry. This program will close." 
                 << " Try again...\n" << endl ; 
            system("pause") ;           
        } 
    } 
    if (selection == 'N') 
    { 
        threshold = 0 ; 
    }   
        
    return threshold ; 
} 
 
void Time_interval_mean_velocities(void) 
{ 
    system("cls") ; 
    //Ask for threshold value 
    double threshold ; 
    bool check = false ; 
    threshold = Ask_for_threshold(check) ; 
    if(check == true) 
    { 
        exit(1) ; 
    } 
     
    // Read and group data from an archive and then send the resulting 
    // groups to an another external intermediary archive 
    Read_and_group_data_with_mean_velocity(threshold) ; 
     
    // Read from the intermediary archive created to then make a data array 
    ifstream entrada ;  



    ofstream salida ; 
    entrada.open("intermediary.dat") ; 
     
    // Ask for the name for the archive where the analyzed data will be sent 
    string filename ; 
    cout << "\n  Indicate the filename you prefer for the file that will be" 
         << "\n  created for the data to be sent to (.dat) ---> " ; 
    cin >> filename ; 
    salida.open(filename.c_str()) ; 
     
    // Determine the amount of elements (groups) 
    int number_of_elements ; 
    number_of_elements = Count_elements_with_mean_velocity(entrada) ; 
    cout << "\n  There are " << number_of_elements 
         << " groups (time intervals)" << endl << endl ; 
    system("pause") ; 
 
    entrada.close() ; 
     
    // Read the elements (groups) and create an array 
    ifstream entrada2 ; 
    entrada2.open("intermediary.dat") ; 
    meanvelocity ordered[number_of_elements] ;   
    Read_groups_with_mean_velocity(entrada2, ordered, number_of_elements) ; 
     
    // Order the elements in the array 
    Order_with_mean_velocity(ordered, number_of_elements) ; 
     
    Display_array_and_create_file_with_mean_velocity(ordered, number_of_elements, salida) ; 
 
    system("pause") ; 
} 
 
void Read_and_group_data_with_mean_velocity(double n) 
{    
    ifstream entra ;           // Intermediate file 
    string filename ;          // Input file name 
    ofstream sali ;            // Output file "intermediary.dat" 
 
    do 
    {   entra.clear() ; 
        cout << "\n  Indicate the filename from which the data will" 
             << " be extracted (.dat) ---> " ; 
        cin >> filename ; 



        // Abrir el archivo 
        entra.open(filename.c_str()) ; 
        if(!entra) 
        { 
            cout << "  The file named " << filename << " is not" 
                 << " available or doesn't exist. Try again.\n" ; 
            system("pause") ; 
        } 
    } while(entra.fail()) ; 
 
    sali.open("intermediary.dat") ; 
     
    int contador = 0 ; 
    double numero ; 
    double mean = 0 ; 
     
    entra >> numero ; 
    mean = numero ; 
    while(!entra.eof()) 
    { 
        if(numero <= n) 
        { 
            mean = 0 ; 
            contador = 0 ; 
            entra >> numero ; 
        } 
        else 
        { 
            mean = (numero+(mean*contador))/(contador+1) ; 
            contador++ ; 
            entra >> numero ; 
            if(numero <= n || entra.eof()) 
            { 
                 sali << contador << "\t" << mean << endl ; 
            } 
        } 
    } 
    entra.close() ; 
    sali.close() ; 
} 
 
int Count_elements_with_mean_velocity(ifstream& entrada) 
{ 
    int quantity = 0 ; 



    double element ; 
     
    entrada >> element >> element ; 
 
    // Count the number of elements 
    while(!entrada.eof()) 
    { 
        quantity++ ; 
        entrada >> element >> element ; 
    } 
    return quantity ; 
} 
 
void Read_groups_with_mean_velocity(ifstream& entrada, meanvelocity orden[], int cant_e) 
{ 
    for(int i = 0 ; i < cant_e ; i++) 
    { 
        entrada >> orden[i].timeinterval >> orden[i].meanvelocity ; 
    } 
} 
 
void Display_array_and_create_file_with_mean_velocity(meanvelocity orden[], int cant_e, 
ofstream& sali) 
{ 
    sali << "Time interval\tMean velocity" << endl ; 
    for(int i = 0 ; i < cant_e ; i++) 
    { 
        sali << orden[i].timeinterval << "\t\t\t\t" << orden[i].meanvelocity << endl ; 
        cout << "Time interval: " << orden[i].timeinterval 
             << "\tMean velocity: " << orden[i].meanvelocity << endl ; 
    } 
} 
 
void Order_with_mean_velocity(meanvelocity ordered [], int n) 
{ 
    // Cycle to organize the data 
    for (int pase = 1 ; pase < n ; pase++) 
    { 
         for (int compa = 0 ; compa < (n-pase) ; compa++) 
         { 
            if (ordered[compa].timeinterval > ordered[compa+1].timeinterval) 
            { 
               swap (ordered[compa].timeinterval, ordered[compa+1].timeinterval) ; 
               swap (ordered[compa].meanvelocity, ordered[compa+1].meanvelocity) ; 



            } 
         } 
    } 
} 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



Supplementary Figures 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Supplementary Figure S1 Statin treatment significantly decreases muscle cholesterol content. 
Organic extractions from the tibialis anterior muscle show a significant cholesterol content 
reduction (***P < 0.001, **P < 0.01) (n = 20, 4, 4, 5, 9 for 0, 3, 7, 18 and 36 days of statin treatment 
respectively). 

	  

	  

	  

	  

	  

	  

	  



	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Supplementary Figure S2 PBS treated mice display a normal locomotor activity even after 36 
days of treatment. The locomotor activity was assessed by means of detailed measurement of time 
spent running (non-stop) in the activity wheel, and the corresponding velocity in a 24-hour period. 
WT and αC418W mice were treated with PBS daily and on days 0, 3, 7, 18 and 36 were placed in 
cages with activity wheels (n = 4, 4, 9, 8, 4 for WT and n = 4, 4, 4, 4, 4 for αC418W in 0, 3, 7, 18 
and 36 days of treatment, respectively). Time running and corresponding velocities were recorded 
and plotted in heat maps. The Y-axis corresponds to Log10time spent running (non-stop) and the X-
axis is the corresponding velocity. Color corresponds to number of occasions the mice ran for a 
particular period of time and velocity. 

	  

	  

	  

	  

	  

	  



	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Supplementary Figure S3 Cartoon representation of the locomotor activity analysis. (a) This 
cartoon represents the cage with the activity wheel in which the mice run voluntarily for a 24-hour 
period. (b) Once the data was acquired from the computer, it was analyzed in a custom made 
program that generates the data that shows the average velocity during periods of constant 
activity. (c) After this, the data was used to produce a scatter plot. Then, the Sigma Plot software 
divided the scatter plot chart area into a 10 x 10 grid and measured the frequency of every division 
of the grid. (d) This data was finally analyzed in Matlab to construct the heat maps.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

	  

	  

	  

	  

	  

Supplementary Figure S4 Statin treated αC418W and PBS treated WT endplate size distributions 
are similar. The endplate size distribution of the αC418W statin treated mice, although different 
form the PBS-treated αC418W mice, becomes similar to the WT PBS-treated mice after 36 days of 
statin treatment (n= 3 for WT PBS and αC418W statin treated mice). 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S5 WT, αV249F and δS262T muscle caspase-3 activity is not affected by 
the statin treatment. In order to test whether the caspase-3 activity in other SCS mutations such as 
the αV249F and δS262T increase in response to cholesterol depletion, the corresponding levels 
were measured at the initial time point in which the αC418W caspase-3 levels showed sensitivity to 
the statin treatment. Like WT mice, none of the other SCS mice showed a response to the 
treatment (n = 3 in WT, αV249F and δS262T mice in PBS and statin treatment).   

 

	  


