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Supporting Information
Text S1. Theoretical framework of adaptive dynamics
S1.1. Invasibility of mutants

Here, we briefly introduce the theoretical framework of adaptive dynamics. This
framework underlies the evolutionary dynamics of a quantitative trait with a
frequency-dependent selection [1,2]. Let fi(y) be the growth rate (or fitness) of rare
mutants adopting strategy y, when they invade a resident population adopting strategy x.
The relative growth rate between the mutant and the resident is given by
w(x,y)= f,(y)— f.(x). (S1.1)
This function determines the invasibility of the mutant into the resident population. If
w(x,y) > 0, the mutant can invade; if w(x,y) <0, it cannot.
S1.2. Selection gradient

If x and y are very similar to one another (i.e. |y — x| << 1), the relative growth rate is



expressed by
w(x,y) = D()(y - X)+ E(x)(y —X)*/2+0(y - x)°, (S1.2)

where D(x)=0f (y)/oy] and E(x)=06f (y)/dy?| . Thus, the invisibility is
X y=x X y=x

approximately linear, and we have w(x,y)=(y—x)D(x). Here, D(x) is termed the
“selection gradient” because its sign represents the direction of evolution. If D(x) > 0,
the resident population with x can be invaded by mutants with y > x because w(x,y) > 0;
conversely, if y < x, the mutants cannot invade because w(x,y) < 0. In this way, the
population evolves towards larger strategies by repeat replacement of existing residents
by higher-performing mutants. Conversely, if D(x) < 0, only mutants with y < x can
invade and replace the resident population, which drives the population toward smaller
strategies.
S1.3. Evolutionarily singular strategy

The strategy x_ satisfying D(x) = 0, where mutant invasibility is reversed, is called an
evolutionarily singular strategy. If a singular strategy x" satisfies D'(x") < 0 (i.e. D(x) > 0
for x < x" and D(x) < 0 for x > x), then X is “convergence stable” (CS). In this case, a
monomorphic population with a similar phenotype can be invaded by mutants whose
strategies approach x . Conversely, if D'(x") > 0 then x” is convergence unstable and the
population can be invaded by mutants adopting quite different strategies from x’.
S1.4. Evolutionarily stable strategy (ESS)

If a singular strategy X is CS (i.e. D(x') = 0 and D'(x") < 0), the evolutionary stability

of the population with X~ depends on the sign of w(x",y)= E(x*)(y—x")?/2, namely,



the sign of E(X"). If X" satisfies E(x) < 0 (i.e. w(x',y) < 0) for any nearby v, then x" is
called an “evolutionarily stable strategy” (ESS). In this case, the population is robust
against invasion by mutants with similar strategies. Accordingly, when the singular
strategy X is CS and ESS (i.e. D(X) = 0, D'(X) < 0, and E(X) < 0), a monomorphic
population evolves toward X, where it is stably maintained without invasion by
similar-phenotype mutants.
S1.5. Evolutionary branching

Conversely, if E(x’) > 0 (i.e. w(x',y) > 0 for any nearby y), then x™ is ESS-unstable.
Interestingly, such a singular strategy, that is CS but not ESS-stable (i.e. D(x) = 0,
D'(X) <0, and E(X) > 0), can induce species speciation or “evolutionary branching”, in
which a monomorphic population with X~ is invaded by nearby mutants and
subsequently forms two subpopulations with higher and lower strategies than the

original X .
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