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Supporting Information 

Text S4.  Linear benefit function (bN = 0) 

  If the benefit function is linear (i.e. bN = 0), the selection gradient is 

  
D(x)  b nc c(b nb 2nc

N
)x  (2n1)c

N
bcx2  n .   (S4.1) 

S4.1. Case (i) No evolution 

  If D(0) < 0 (i.e. c > c0 = b/n), an initial population with x = 0 cannot be invaded by 

mutants adopting similar strategies and is therefore stably maintained (Figures 4A and 

S2, gray). Thus, nitrogen fixation activity does not evolve, and the population remains 

in the “No evolution” state (i.e. D(0) < 0) in section 3.2. 

S4.2. Case (ii) Maximum evolution 

  Conversely, if D(x) > 0 for 0 ≤ x ≤ 1, maximum nitrogen fixation activity (x = 1) 

evolves in the absence of null mutation. This condition is summarized as follows: 

D(0) > 0 (i.e. c < c0) if axis < 0 (i.e. b < b0),     (S4.2a) 



D(1) > 0 (i.e. c < c1) if axis > 1 (i.e. b > b1),    (S4.2b) 

det < 0 (i.e. c < cdet) if 0 < axis < 1 (i.e. b0 < b < b1),   (S4.2c) 

where 
  
det  (b nb 2nc

N
)2c2  4(2n1)(b nc)c

N
bc  and 

  
axis  (b nb 2nc

N
) 2(2n1)c

N
b  are the determinant and axis, respectively, of the 

quadratic function nD(x), and 
  
b

0
 2nc

N
(n1) , 

  
b

1
 2nc

N
n1 2(2n1)c

N , 

  
c

1
 b n 2nc

N
 (1 n c

N
 2nc

N
)b  , 

  
c

det
 4(1 2n)c

N
b2 4n2c

N
(b c

N
) (n1)2b2 . 

  Because the conditions of Eq. (S4.2) permit both cases (ii) and (vi) (Figures 4A and 

S2, magenta and green), these cases are divided according to whether the population of 

cooperators (x = 1) is invaded by cheaters (x = 0) or not. Thus, if 

  
w(1,0)  nc(1 b)(1 c

N
) b  n  0  (i.e. 

  
c  c

pm
 b n(1 c

N
)(b1) ), (S4.3) 

the resident population is not invaded by cheaters and is stably maintained. 

Consequently, under the conditions (S4.2) and (S4.3) (i.e. D(x) > 0 for 0 ≤ x ≤ 1 and 

w(1,0) < 0), the population evolves to case (ii) “Maximum evolution” (Figures 4A and 

S2, magenta). 

S4.3. Case (vi) Parasitic coexistence by null mutation 

  By contrast, if conditions (S4.2) and w(1,0) > 0 (i.e. c > cpm) are both satisfied, 

cheaters possessing the null mutation can invade a resident population with x = 1, and 

the population evolves to case (vi) “Parasitic coexistence by null mutation” (i.e. D(x) > 

0 for 0 ≤ x ≤ 1 and w(1,0) > 0) (Figures 4A and S2, green). 



S4.4. Case (iii) Intermediate evolution 

  Intermediate between cases (i) and (ii)/(vi), the parameters satisfy both D(0) > 0 and 

D(x) < 0 for some 0 < x < 1. Thus, singular strategies that satisfy D(x) = 0 exist between 

0 and 1, of which the smallest (x
*
) is described by 

  x
  (b nc) (n1)bc  (for cN = 0)     (S4.4a) 

  
x  c(b nb 2nc

N
) det 2(2n1)c

N
bc  (for cN ≠ 0).   (S4.4b) 

This singular strategy x
*
 is always CS because D′(x

*
) < 0, indicating that an initial 

population with x = 0 evolves toward x
*
. The symbiotic behavior then permits one of 

two cases depending on the ESS-stability of x
*
, namely, 

  
E(x)  n(n1)(b 2c

N
)c (n 2) det n(2n1) .   (S4.5) 

If E(x
*
) < 0 (i.e. 

  
c  c

ESS
 (n 2)2c

N
b2 3n2c

N
(b c

N
) (1 n n2)b2 ), the singular 

strategy x
*
 is both CS and ESS-stable (i.e. D′(x

*
) < 0 and E(x

*
) < 0), and the population 

with x
*
 is robust to invasion by mutants adopting similar strategies. In addition, it 

cannot be invaded by cheaters with x = 0 imposed by the null mutation, because w(x
*
,0) 

< 0 (see Text S4.7). Thus, this condition leads to case (iii) “Intermediate evolution” (i.e. 

D(0) > 0, D′(x
*
) < 0, and E(x

*
) < 0) (Figures 4A and S2, blue). 

S4.5. Case (iv) Co-dependent coexistence 

  Contrary to case (iii), if E(x
*
) > 0 (i.e. c < cESS) is satisfied, the singular strategy x

*
 is 

CS but not ESS-stable (i.e. D′(x
*
) < 0 and E(x

*
) > 0). This situation is known to cause 

“evolutionary branching”, in which the population of x
*
 is invaded by nearby mutants 

and subsequently splits into two subpopulations. Under most of the numerical 



conditions investigated in this paper, evolutionary branching leads to stable coexistence 

of full cooperators (x = 1) and full cheaters (x = 0). These parameter conditions lead to 

case (iv) or (v) (Figures 4A and S2, orange and purple), depending on the stability of 

the monomorphic population of cooperators, determined by the sign of D(1). If D(1) < 0 

(i.e. c > c1), the population of cooperators cannot maintain their activity against invasion 

of mutants producing fewer nitrogen resources. This situation leads to case (iv) 

“Co-dependent coexistence” (i.e. D(0) > 0, D′(x
*
) < 0, E(x

*
) > 0, and D(1) < 0) (Figures 

4A and S2, orange). 

S4.6. Case (v) Parasitic coexistence by evolutionary branching 

  Alternatively, if D(1) > 0 (i.e. c < c1), a monomorphic population with x = 1 should 

persist without invasion by nearby mutants, leading to case (v) “Parasitic coexistence by 

evolutionary branching” (i.e. D(0) > 0, D′(x
*
) < 0, E(x

*
) > 0, and D(1) > 0) (Figures 4A 

and S2, purple). 

S4.7. Invasibility of cheating rhizobia in case (iii) 

  The invasibility of cheating bacteria (y = 0) is determined by the sign of 

  
w(x,0)  nc(1 c

N
x)(1 bx) b x n  xD(x) x2E(x) 2 c

N
bcx3 n . (S4.6) 

In case (iii), we have w(x
*
,0) < 0 because the singular strategy x

*
 is ESS-stable (i.e. 

D(x
*
) = 0 and E(x

*
) < 0). Thus, in case (iii), a population with x

*
 cannot be invaded by 

cheaters. 

S4.8. Equilibrium proportion of cooperator in cases (iv)–(vi) 

  In cases (iv)–(vi), emergent cooperators (x = 1) and cheaters (x = 0) coexist. Now 



suppose that the proportions of cooperators and cheaters alter during a cycle of host 

plants colonization, proliferation in root nodules, and release to the soil (Figure 1A). Let 

the proportions of cooperators and cheaters before the cycle be p and q = 1 – p, 

respectively. Then the probability that a host plant is colonized by m cooperators and (n 

– m) cheaters is 

  P(m)  pmqnmn! m!(nm)! .     (S4.7) 

Given that the average nitrogen fixation in the focal plant is x m n , the growth rates 

of cooperators and cheaters are given by 
  
f
1
 B(m n)C(1)  and 

  
f
0
 B(m n)C(0) , 

respectively. Therefore, the expected number of cooperators per host plant after the 

cycle is 

  
g

1
 P(m)mf

1
m0

n

  p(1 c c
N
c)(n qb npb) ,    (S4.8) 

and of the number of cheaters is 

  
g

0
 P(m)(nm) f

0
m0

n

  q(n pb npb) .    (S4.9) 

Then the proportion of post-cycle cooperators is 
  
p  g

1
(g

0
 g

1
) . If this proportion is 

equilibrated, we have 

p = p′ and p + q =1,       (S4.10) 

Solving Eq. (S4.10), we obtain the proportion of cooperators at equilibrium as 

  
p  b (1 c

N
)(b n)c  (n1)(1 c

N
)bc .    (S4.11) 


