Sugar-modified G-quadruplexes: Effects of LNA-, 2'F-RNA- and 2'F-ANAguanosine chemistries on G-quadruplex structure and stability

Zhe Li[‡], Christopher Jacques Lech[‡] and Anh Tuân Phan*

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

SUPPLEMENTARY DATA

*Corresponding author: phantuan@ntu.edu.sg

[‡]These authors contributed equally to this work.

<u>Running title:</u> LNA, 2'-F- guanosine and 2'-F-ANA-guanosine modifications to G-quadruplexes <u>Key words</u>: G-quadruplex, LNA-guanosine, 2'-F- guanosine, 2'-F-ANA-guanosine

SUPPORTING INFORMATION CONTENTS

Locked Nucleic Acid modified guanosines

Table S1 – Thermodynamic Parameters of LNA-modified G-quadruplex

Fig S1 – ¹H NMR imino proton spectra of (4+0) G-quadruplex-forming PS-series sequences

Fig S2 – ¹H NMR imino proton spectra of (3+1) G-quadruplex-forming HT-series sequences

Fig S3 – CD spectra of the (4+0) G-quadruplex-forming PS-series sequences

Fig S4 – CD spectra of the (3+1) G-quadruplex-forming HT-series sequences

Fig S5 – CD melting (4+0) G-quadruplex-forming PS-series sequences

Fig S6 – Fraction Folded CD melting (4+0) G-quadruplex-forming PS-series sequences

Fig S7 – UV melting (3+1) G-quadruplex-forming H-series sequences

Fig S8 – Fraction Folded UV melting (3+1) G-quadruplex-forming H-series sequences

2'-F-guanosine and 2'-F-ANA-guanosine

Table S2 – Thermodynamic Parameters of 2'-F- and2'-F-ANA-modified G-quadruplex

- **Fig S9** ¹H NMR imino proton spectra of ^FG modified (3+1) G-quadruplex-forming sequences
- **Fig S10** ¹H NMR imino proton spectra of ^{FANA}G modified (3+1) G-quadruplex-forming sequences
- **Fig S11** ¹H NMR imino proton spectra of ^FG modified (4+0) G-quadruplex-forming sequences **Fig S12** – ¹H NMR imino proton spectra of ^{FANA}G modified (4+0) G-quadruplex-forming
- **Fig S12** ¹H NMR imino proton spectra of ^{FANA}G modified (4+0) G-quadruplex-forming sequences
- **Fig S13** CD spectra of ^FG modified (3+1) G-quadruplex-forming sequences
- **Fig S14** CD spectra of $^{\text{FANA}}$ G modified (3+1) G-quadruplex-forming sequences
- **Fig S15** CD spectra of ${}^{F}G$ modified (4+0) G-quadruplex-forming sequences
- Fig S16 CD spectra of ^{FANA}G modified (4+0) G-quadruplex-forming sequences
- Fig S17 UV melting of ^FG modified (3+1) G-quadruplex-forming sequences
- Fig S18 Fraction Folded UV melting of ^FG modified (3+1) G-quadruplex-forming sequences
- Fig S19 UV melting of ^{FANA}G modified (3+1) G-quadruplex-forming sequences
- **Fig S20** Fraction Folded UV melting of ^{FANÁ}G modified (3+1) G-quadruplex-forming sequences
- **Fig S21** UV melting of ^FG modified (4+0) G-quadruplex-forming sequences
- **Fig S22** Fraction Folded UV melting of ^FG modified (4+0) G-quadruplex-forming sequences
- Fig S23 UV melting of ^{FANA}G modified (4+0) G-quadruplex-forming sequences
- **Fig S24** Fraction Folded UV melting of ^{FANA}G modified (4+0) G-quadruplex-forming sequences

Name ^a	Sequence $(5' \rightarrow 3')^{b}$	T_m^c	ΔH^{d} (kacl•mol ⁻¹)	ΔS^{d} (kacl•mol ⁻¹ K ⁻¹)	$\Delta G_{37^{\circ}C}^{d}$
		(0)	(Ruer mor)	(kuer mor it)	(huer mor)
(4+0) native	TTGGGTGGGTGGGTGGGT	77.1 ± 0.5	59.6	0.170	6.8 ± 0.0
PS-L3	TT LGGTGGGTGGGTGGGT	82.0 ± 0.4	65.4	0.184	8.3 ± 0.0
PS-L4	TTGLGTGGGTGGGTGGGT	85.3 ± 0.3	67.1	0.187	9.0 ± 0.1
PS-L5	TTGGLTGGGTGGGTGGGT	36.0 ± 0.4	-	-	-
PS-L7	TTGGGT L GGTGGGTGGGT	84.3 ± 0.0	77.9	0.218	10.3 ± 0.1
PS-L8	TTGGGTGLGTGGGTGGGT	80.2 ± 0.2	69.2	0.196	8.5 ± 0.1
PS-L9	TTGGGTGGLTGGGTGGGT	32.2 ± 0.1	-	-	-
PS-L11	TTGGGTGGGTLGGTGGGT	84.9 ± 0.1	74.1	0.207	9.9 ± 0.2
PS-L12	TTGGGTGGGTGLGTGGGT	79.8 ± 0.1	68.4	0.194	8.3 ± 0.1
PS-L13	TTGGGTGGGTGGLTGGGT	31.7 ± 0.5	-	-	-
PS-L15	TTGGGTGGGTGGGTLGGT	83.2 ± 0.1	74.3	0.208	9.6 ± 0.9
PS-L16	TTGGGTGGGTGGGTGLGT	81.0 ± 0.1	61.8	0.174	7.7 ± 0.2
PS-L17	TTGGGTGGGTGGGTGGLT	80.4 ± 0.1	80.5	0.228	9.9 ± 0.8
(3+1) native	TTGGGTTAGGGTTAGGGTTAGGGA	57.4 ± 0.2	61.8	0.187	3.7 ± 0.2
HT-L3	TT LGG TTA GGG TTA GGG A	55.4 ± 0.3	60.1	0.183	3.4 ± 0.1
HT-L4	TTGLGTTAGGGTTAGGGGTTAGGGA	61.6 ± 0.0	63.7	0.190	4.7 ± 0.0
HT-L5	TTGGLTTAGGGTTAGGGTTAGGGA	56.8 ± 0.4	55.1	0.167	3.3 ± 0.1
HT-L9	TTGGGTTALGGTTAGGGTTAGGGA	-	-	-	-
HT-L10	TTGGGTTAGLGTTAGGGTTAGGGA	59.3 ± 0.5	62.9	0.189	4.2 ± 0.1
HT-L11	TTGGGTTAGGLTTAGGGTTAGGGA	58.3 ± 0.3	62.6	0.189	4.0 ± 0.1
HT-L15	TTGGGTTAGGGTTA L GGTTAGGGA	-	-	-	-
HT-L16	TTGGGTTAGGGTTAGLGTTAGGGA	-	-	-	-
HT-L17	TTGGGTTAGGGTTAGGLTTAGGGA	55.1 ± 0.4	47.5	0.145	2.6 ± 0.1
HT-L21	TTGGGTTAGGGTTAGGGTTA L GGA	-	-	-	-
HT-L22	TTGGGTTAGGGTTAGGGTTAGLGA	-	-	-	-
HT-L23 ^e	TTGGGTTAGGGTTAGGGTTAGGLA	60.5 ± 0.1	52.8	0.158	3.7 ± 0.0

 Table S1.
 Thermodynamic Parameters of LNA-modified G-quadruplex

[a] The "HT-series" denotes sequences modified from the (3+1) G-quadruplex forming sequence, while the "PS-series" denotes sequences modified from a (4+0) G-quadruplex forming sequence.

[b] Residues with LNA-modified guanosine are denoted as (L)

[c] Thermal stability data was obtained via UV melting (HT-series) and CD melting (PS-series) experiments. Salt conditions were (20 mM KPi) for the HT-series and (1.1 mM KPi) for the PS-series. Thermal stability data for the HT-series is presented for sequences which demonstrate a single species in NMR spectra. The uncertainties (\pm values) indicate the hysteresis between heating and cooling curves. [d] The values of Δ H and Δ S were deduced from a slope analysis of fraction folded curves assuming a G-quadruplex to single strand transition (unfolding event). Δ G_{37°C} was calculated from the relation Δ G(T) = Δ H-T Δ S where T=310°K. The uncertainties (\pm values) indicate the difference between Δ G_{37°C} calculated from heating and cooling curves.

[e] Sequence contains a small secondary melting transition at the low temperature range.

Figure S1 – ¹H NMR imino proton spectra of (4+0) G-quadruplex-forming PS-Series sequences.

Figure S2 – ¹H NMR imino proton spectra of (3+1) G-quadruplex-forming HT-Series sequences.

Fig S3 – CD spectra of the (4+0) G-quadruplex-forming PS-series sequences: CD spectra of modified sequences (black) and the (4+0) G-quadruplex native sequence (grey) are shown.

Figure S4 – CD spectra of the (3+1) G-quadruplex-forming HT-series sequences: CD Spectra of modified sequences (black) and the (3+1) G-quadruplex native sequence (grey) are shown. CD Difference spectra (red) are determined by subtracting the (3+1) G-quadruplex native from the modified spectra. The CD spectrum and CD difference spectrum of the (4+0) G-quadruplex native sequence is shown for reference (top).

Fig S5 –CD Melting (4+0) G-quadruplex-forming PS-series sequences. Cooling curve is shown in blue, heating in red.

Fig S6 – Fraction folded CD Melting (4+0) G-quadruplex-forming PS-series sequences. Cooling curve is shown in blue, heating in red. The melting curve of the (4+0) G-quadruplex native sequence is shown in black.

Fig S7 – UV Melting (3+1) G-quadruplex-forming HT-Series sequences. Cooling curve is shown in blue, heating in red.

Fig S8 – Fraction folded CD melting (3+1) G-quadruplex-forming HT-Series sequences. Cooling curve is shown in blue, heating in red. The melting curve of the (3+1) G-quadruplex native sequence is shown in black.

				<u> </u>	
Nama ^a	Sequence $(5' \rightarrow 2')^{b}$	T _m ^c	ΔH^{a}	ΔS^{a}	$\Delta G_{37^{\circ}C}^{a}$
Ivallie	Sequence $(3 \rightarrow 3)$	(°C)	(kacl•mol ⁻¹)	(kacl•mol ⁻¹ K ⁻¹)	(kacl•mol ⁻¹)
$(1 \mid 0)$ native	TTCCCTCCCTCCCT	76.5 ± 0.4	68.0	0 107	78 ± 0.1
(4+0) hauve	110001000100010001	70.5 ± 0.4	00.9	0.197	7.0 ± 0.1
PS-F-3	TTFGGTGGGTGGGTGGGT	76.8 ± 0.1	70.6	0 202	80 ± 03
DS = A	TTCFCTCCCTCCCTCCCT	70.8 ± 0.1	70.0 60.2	0.108	7.0 ± 0.0
DC E 5	TTCCFTCCCTCCCTCCCT	77.0 ± 0.0	09.2	0.198	7.9 ± 0.0
PS-F-5		75.4 ± 0.1	00.0	0.191	7.5 ± 0.5
PS-F-8		76.9 ± 0.1	67.5	0.193	$/./\pm 0.1$
PS-F-11	TIGGGIGGGIFGGIGGGI	77.2 ± 0.2	74.2	0.212	8.5 ± 0.0
PS-F-12	TTGGGTGGGTGFGTGGGT	75.4 ± 0.1	67.9	0.195	7.5 ± 0.0
PS-F-13	TTGGGTGGGTGG F TGGGT	76.6 ± 0.3	66.1	0.189	7.5 ± 0.2
PS-F-17	TTGGGTGGGTGGGTGG F T	75.2 ± 0.0	72.5	0.208	7.9 ± 0.2
PS-FANA-3	TT <u>F</u> GGTGGGTGGGTGGGT	77.1 ± 0.2	67.5	0.193	7.7 ± 0.2
PS-FANA-4	TTG <u>F</u> GTGGGTGGGTGGGT	79.7 ± 0.0	68.2	0.193	8.3 ± 0.1
PS-FANA-5	TTG <mark>GF</mark> TGGGTGGGTGGGT	77.2 ± 0.3	68.8	0.196	7.9 ± 0.2
PS-FANA-8	TTGGGTGFGTGGGTGGGT	79.7 ± 0.3	64.5	0.183	7.8 ± 0.2
PS-FANA-11	TTGGGTGGGTFGGTGGGT	77.2 ± 0.2	69.8	0.199	8.0 ± 0.0
PS-FANA-12	TTGGGTGGGTGFGTGGGT	79.3 ± 0.0	72.4	0.205	87 ± 02
PS-FANA-13	TTGGGTGGGTGGFTGGGT	75.5 ± 0.0 76.6 ± 0.3	66.9	0.101	7.6 ± 0.2
DS EANA 17	TTCCCTCCCTCCCTCCT	76.0 ± 0.3	68.0	0.105	7.0 ± 0.3
гэ-гана-1/	110001000100100 <u>F</u> 1	70.3 ± 0.2	08.0	0.195	7.0 ± 0.1
(3+1) native	TTGGGTTAGGGTTAGGGTTAGGGA	51.4 ± 0.2	61.7	0.190	2.7 ± 0.1
(0+1) 1144+0		0111 = 012	0117	01190	2.7 = 0.1
HT-F-3	TTFGGTTAGGGTTAGGGTTAGGGA	-	-	-	-
HT-F-4	TTGFGTTAGGGTTAGGGTTAGGGA	51.6 ± 0.4	63.1	0.194	2.8 ± 0.1
HT-F-5	TTGGFTTAGGGTTAGGGA	51.0 ± 0.1	62.9	0 194	2.8 ± 0.2
HT_F_9	TTGGGTTAFGGTTAGGGA	-	-	-	2.0 = 0.2
$HT_{-}F_{-}10$	TTGGGTTAGEGTTAGGGTTAGGGA	180 ± 12	60.4	0.187	22 + 04
	TTCCCTTACCETTACCCTTACCCA	40.9 ± 1.2	62.9	0.107	2.2 ± 0.4
		49.8 ± 0.8	05.8	0.197	2.5 ± 0.5
HI-F-15		-	-	-	-
HT-F-16	TTGGGTTAGGGTTAGFGTTAGGGA		-	-	-
HT-F-17	TTGGGTTAGGGTTAGGFTTAGGGA	48.7 ± 0.5	59.0	0.183	2.2 ± 0.3
HT-F-21	TTGGGTTAGGGTTAGGGTTA F GGA	-	-	-	-
HT-F-22	TTGGGTTAGGGTTAGGGTTAG F GA	49.8 ± 0.8	66.5	0.206	2.7 ± 0.4
HT-F-23	TTGGGTTAGGGTTAGGGTTAGGFA	49.5 ± 0.1	62.3	0.193	2.4 ± 0.2
HT-FANA-3	TT <u>F</u> GGTTAGGGTTAGGGTTAGGGA	-	-	-	-
HT-FANA-4	TTG <u>F</u> GTTAGGGTTAGGGTTAGGGA	54.5 ± 0.3	66.9	0.204	3.6 ± 0.2
HT-FANA-5	TTGGFTTAGGGTTAGGGTTAGGGA	51.9 ± 0.6	61.3	0.189	2.8 ± 0.3
HT-FANA-9	TTGGGTTAFGGTTAGGGTTAGGGA	-	-	-	-
HT-FANA-10	TTGGGTTAGEGTTAGGGA	545 + 07	65.5	0.200	35 ± 02
HT-FANA-11	TTGGGTTAGG F TTAGGGTTAGGGA	52.9 ± 0.7	62.2	0 191	3.0 ± 0.2 3.0 ± 0.2
HT_FANA 15	TTGGGTTAGGGTTAFGGTTAGGGA	52.7 ± 0.5	02.2	0.171	5.0 ± 0.2
UT EANA 17	TTCCCTTACCCTTACCCCA	-	-	-	-
FII-FANA-10		-	-	-	-
ПІ-ГАNA-1/		55.8 ± 0.0	00.0	0.185	3.1 ± 0.3
HI-FANA-21	TIGGGTTAGGGTTAGGGTTA <u>F</u> GGA		-	-	-
HT-FANA-22	TTGGGTTAGGGTTAGGGTTAG <u>F</u> GA	53.5 ± 0.7	61.8	0.189	3.1 ± 0.1
HT-FANA-23	TT GGGTTAGGGTTAGGGTTAGG<u>F</u>A	51.9 ± 0.5	66.3	0.204	3.1 ± 0.2

Table S2. Thermodynamic Parameters of 2'-F- and2'-F-ANA-modified G-quadruplex

[a] The "HT-series" denotes sequences modified from the (3+1) G-quadruplex forming sequence, while the "PS-series" denotes sequences modified from a (4+0) G-quadruplex forming sequence.

[b] Residues with modified nucleotides are denoted as such: 2'F-guanosine (F) and 2'F-ANA-guanosine (F).

[c] Thermal stability data was obtained via UV melting experiments. Salt conditions were (5 mM KCl and 5 mM KPi) for the HT-

series and (1 mM KPi) for the PS-series. Data for the HT-series is presented for sequences which demonstrate a single species in NMR spectra. The uncertainties (± values) indicate the hysteresis between heating and cooling curves.

[d] The values of Δ H and Δ S were deduced from a slope analysis of fraction folded curves assuming a G-quadruplex to single strand transition (unfolding event). $\Delta G_{37^{\circ}C}$ was calculated from the relation $\Delta G(T) = \Delta$ H-T Δ S where T=310°K. The uncertainties (± values) indicate the difference between $\Delta G_{37^{\circ}C}$ calculated from heating and cooling curves.

¹H (p.p.m.) **Figure S10:** ¹H NMR imino proton spectra of ^{FANA}G modified (3+1) G-quadruplex-forming sequences

Figure S11: ¹H NMR imino proton spectra of ^FG modified (4+0) G-quadruplex-forming sequences

Figure S12: ¹H NMR imino proton spectra of ^{FANA}G modified (4+0) G-quadruplex-forming sequences

Figure S13: CD spectra (black) of ^FG-modified HT-series. Native (3+1) G-quadruplex is shown as a reference (grey). Difference spectra (red) compare the modified sequence to the native one.

Figure S14: CD spectra (black) of ^{FANA}G-modified HT-series. Native (3+1) G-quadruplex is shown as a reference (grey). Difference spectra (red) compare the modified sequence to the native one.

Figure S15: CD spectra (black) of ^FG-modified PS-series. Native (4+0) G-quadruplex is shown as a reference (grey).

Figure S16: CD spectra (black) of ^{FANA}G-modified PS-series. Native (4+0) G-quadruplex is shown as a reference (grey).

Figure S17: UV absorbance spectra at 295 nm of thermal denaturing experiments of ^FG-modified HT-series sequences. Both heating (red) and cooling (blue) curves are shown.

Figure S18: Fraction folded UV spectra of thermal denaturing experiments of ^FG-modified HT-series sequences. Heating (red) and cooling (blue) curves are shown. The native sequence (back line) is shown for reference

Figure S19: UV absorbance spectra at 295 nm of thermal denaturing experiments of TAVAGmodified (solid line) HT-series sequences. Both heating (red) and cooling (blue) curves are shown.

Figure S20: Fraction folded UV spectra of thermal denaturing experiments of ^{FANA}G-modified HT-series sequences. Heating (red) and cooling (blue) curves are shown. The native sequence (back line) is shown for reference

Figure S21: UV absorbance spectra at 295 nm of thermal denaturing experiments of ^FG-modified PS-series sequences. Both heating (red) and cooling (blue) curves are shown.

Figure S22: Fraction folded UV spectra of thermal denaturing experiments of ^FG-modified PSseries sequences. Heating (red) and cooling (blue) curves are shown. The native sequence (back line) is shown for reference

Figure S23: UV absorbance spectra at 295 nm of thermal denaturing experiments of ^{FANA}G-modified PS-series sequences. Both heating (red) and cooling (blue) curves are shown.

Figure S24: Fraction folded UV spectra of thermal denaturing experiments of ^{FANA}G-modified PS-series sequences. Heating (red) and cooling (blue) curves are shown. The native sequence (back line) is shown for reference