Structural, Spectroscopic, and Computational Characterization of the Azide Adduct of $Fe^{III}(2,6-diacetylpyridinebis(semioxamazide))$, a Functional Analogue of Iron Superoxide Dismutase

Craig T. Gutman, Ilia A. Guzei, and Thomas C. Brunold*

Supporting Information.

Figure S1: Variable temperature Abs and MCD spectra of frozen solution $Na[Fe^{III}(dapsox)(N_3)_2]$

Figure S2: Variable temperature MCD spectra of solid state $(Na[Fe^{III}(dapsox)(N_3)_2] \cdot DMF)_2$

Figure S3: Frozen-solution rR spectra of 1 obtained with 19 460 cm^{-1} (514 nm) laser excitation

Figure S4: Frozen-solution rR spectra of 1 obtained with 21 830 $\rm cm^{-1}$ (458 nm) laser excitation

Figure S5: Solid state rR spectra of 2 obtained with 20 490 cm⁻¹ (488 nm) laser excitation

Table S1: Cartesian coordinates (Å) of $\mathbf{1_{opt}}$

Table S2: Cartesian coordinates (Å) of $\mathbf{1}_{\mathbf{xtal}}$

Table S3: Cartesian coordinates (Å) of $1_{opt} \cdot H_2O$

Figure S1: RT (red) and 4.5 K (blue, dotted) Abs (top) and variable temperature (4.5 [blue], 15 [green], and 25 K [red]) MCD (bottom) spectra of frozen solution $Na[Fe^{III}(dapsox)(N_3)_2]$. All MCD features decrease with increasing temperature, consistent with their expected C-term behavior.

Figure S2: 4.5 (blue, dotted) and 15 K (red) 7 T MCD spectra of a solid state mull of $(Na[Fe^{III}(dapsox)(N_3)_2] \cdot DMF)_2$ in polydimethylsiloxane.

Figure S3: Frozen-solution rR spectra of 1 at 77 K obtained with 19 460 cm⁻¹ (514 nm) laser excitation. Spectra of 1 synthesized with natural abundance azide are shown in black while spectra of 1 prepared with ¹⁵N terminally labeled azide are shown as dashed, red lines. Selected regions are shown to highlight the four isotopically sensitive features arising from the $\nu_{as}(N_3^-)$ stretches (top), the $\nu_s(N_3^-)$ stretch (middle), and the ν (Fe – N₃) stretch (bottom). For ease of comparison the spectra have been normalized using the ν (Fe – N₃) peak.

Figure S4: Frozen-solution rR spectra of 1 at 77 K obtained with 21 830 cm⁻¹ (458 nm) laser excitation. Spectra of 1 synthesized with natural abundance azide are shown in black while spectra of 1 prepared with ¹⁵N terminally labeled azide are shown as dashed, red lines. Selected regions are shown to highlight the four isotopically sensitive features arising from the $\nu_{as}(N_3^-)$ stretches (top), the $\nu_s(N_3^-)$ stretch (middle), and the ν (Fe – N₃) stretch (bottom). For ease of comparison the spectra have been normalized using the ν (Fe – N₃) peak.

Figure S5: Solid state rR spectra of **2** at 77 K obtained with 20 490 cm⁻¹ (488 nm) laser excitation. Selected regions are shown to highlight the four isotopically sensitive features arising from the $\nu_{as}(N_3^-)$ stretches (top), the $\nu_s(N_3^-)$ stretch (middle), and the ν (Fe – N₃) stretch (bottom).

Atom	x	У	z	Atom	x	У	Z
C	-1.734	3.933	3.361	С	5.244	1.787	1.369
N	-2.715	4.179	2.444	N	3.043	5.934	0.244
0	0.577	3.252	3.451	С	6.681	1.350	1.321
С	-0.399	3.514	2.712	N	1.842	0.720	2.364
Ν	-0.411	3.469	1.367	С	4.283	2.201	4.628
0	-1.883	4.030	4.561	N	1.517	0.065	1.416
С	1.002	2.998	-0.366	С	4.819	2.091	6.070
N	0.794	3.095	0.914	N	1.203	-0.584	0.510
0	3.094	2.561	4.455	Fe	2.397	2.683	2.456
С	-0.080	3.299	-1.363	Н	2.160	2.555	-2.896
N	3.188	2.366	0.314	Н	4.516	1.833	-3.264
0	4.153	2.375	7.044	Н	6.015	1.455	-1.292
С	2.365	2.576	-0.726	Н	7.077	1.280	2.344
N	4.591	2.025	2.464	Н	7.300	2.067	0.749
С	2.823	2.389	-2.046	Н	6.785	0.362	0.832
N	5.168	1.893	3.667	Н	-3.630	4.462	2.774
С	4.140	1.984	-2.247	Н	-2.499	4.074	1.458
N	6.106	1.639	6.129	Н	-0.467	4.319	-1.195
С	4.980	1.772	-1.153	Н	-0.931	2.609	-1.218
Ν	2.985	4.622	2.199	Н	0.263	3.220	-2.405
С	4.460	1.977	0.138	Н	6.550	1.551	7.035
N	3.012	5.282	1.200	Н	6.598	1.448	5.262

Table S1: Cartesian coordinates (Å) of $\mathbf{1_{opt}}$

Atom	x	У	z	Atom	x	У	z
С	-1.506	3.632	3.413	С	5.288	1.646	1.2
N	-2.476	4.206	2.715	N	2.991	5.667	0.2
0	0.700	2.731	3.319	С	6.706	1.207	1.2
С	-0.277	3.184	2.632	N	2.007	0.413	2.0
Ν	-0.312	3.337	1.332	С	4.247	2.052	4.4
0	-1.516	3.476	4.641	N	0.875	0.059	1.8
С	1.112	3.027	-0.441	С	4.596	2.155	5.9
Ν	0.919	2.950	0.831	Ν	-0.195	-0.313	1.6
0	3.010	2.253	4.207	Fe	2.477	2.401	2.2
С	0.067	3.484	-1.406	Н	2.407	2.830	-2.8
Ν	3.268	2.309	0.205	Н	4.590	2.061	-3.2
0	3.685	2.025	6.771	Н	5.938	1.443	-1.4
С	2.475	2.627	-0.835	Н	7.018	0.987	2.1
Ν	4.594	1.880	2.323	Н	7.256	1.929	0.8
С	2.954	2.570	-2.146	Н	6.779	0.415	0.6
Ν	5.187	1.802	3.588	Н	-3.194	4.508	3.1
С	4.249	2.124	-2.351	Н	-2.403	4.284	1.8
Ν	5.858	2.417	6.264	Н	-0.143	4.427	-1.2
С	5.055	1.766	-1.273	Н	-0.743	2.944	-1.2
Ν	2.974	4.440	2.288	Н	0.401	3.383	-2.3
С	4.526	1.898	0.009	Н	6.093	2.509	7.1
Ν	2.986	5.069	1.257	Н	6.461	2.497	5.6

Table S2: Cartesian coordinates (Å) of $\mathbf{1_{xtal}}$

Atom	x	У	Z	Atom	x	У	Z
Fe	-0.255	0.169	0.254	N	1.861	1.194	3.442
С	-2.587	3.897	0.554	С	2.330	-3.655	-0.002
Ν	-2.077	5.162	0.584	N	-0.276	0.222	-1.776
0	-1.842	1.608	0.427	С	-1.610	-2.389	0.515
С	-1.498	2.813	0.428	N	0.520	0.690	-2.541
Ν	-0.240	3.277	0.325	С	-2.765	-3.359	0.815
0	-3.771	3.636	0.620	N	1.277	1.135	-3.294
С	1.890	2.479	0.102	Н	-2.717	5.944	0.659
Ν	0.616	2.250	0.220	Н	-1.073	5.287	0.511
0	-1.871	-1.159	0.455	Н	2.191	4.389	1.029
С	2.439	3.876	0.082	Н	1.960	4.455	-0.727
Ν	2.030	0.108	0.053	Н	3.530	3.907	-0.059
0	-3.880	-2.970	1.101	Н	4.676	2.190	-0.199
С	2.713	1.264	-0.004	Н	5.859	0.003	-0.371
N	0.517	-1.982	0.210	Н	-3.071	-5.367	1.044
С	4.114	1.256	-0.155	Н	-1.423	-4.892	0.621
Ν	-0.403	-2.946	0.360	Н	4.542	-2.125	-0.266
С	4.771	0.032	-0.251	Н	1.508	-4.380	0.084
Ν	-2.409	-4.672	0.718	Н	3.049	-3.835	0.819
С	4.043	-1.158	-0.193	Н	2.865	-3.834	-0.954
N	0.062	0.183	2.305	0	-2.024	-1.680	3.379
С	2.648	-1.081	-0.035	Н	-1.294	-1.082	3.113
Ν	0.981	0.699	2.881	Н	-2.734	-1.462	2.749
С	1.774	-2.261	0.057				

Table S3: Cartesian coordinates (Å) of $\mathbf{1_{opt}} \cdot \mathbf{H_2O}$