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ABSTRACT A solution of the problem of calculating car-
tesian coordinates from a matrix of interpoint distances (the
embedding problem) is reported. An efficient and numerically
stable algorithm for the transformation of distances to coordi-
nates is then obtained. It is shown that the embedding problem
is intimately related to the theory of symmetric matrices, since
every symmetric matrix is related to a general distance matrix
by a one-to-one transformation. Embedding of a distance ma-
trix yields a decomposition of the associated symmetric, matrix
in the form of a sum over outer products of a linear indepen-
dent system of coordinate vectors. It is shown that such a de-
composition exists for every symmetric matrix and that it is
numerically stable. From this decomposition, the rank and the
numbers of positive, negative, and zero eigenvalues of the sym-
metric matrix are obtained directly.

The embedding problem can be stated as follows: Given a
complete set of distances between points of known connex-
ity, calculate cartesian coordinates for the associated set of
points. A solution to the embedding problem would also
yield the dimension-i.e., the number of coordinate axes-
occupied by the system of points. In addition to theoretical
interest in the embedding problem, procedures for its solu-
tion have important applications in various fields of applied
mathematics. In the field of molecular structure, for exam-
ple, a number of experimental procedures yield interatomic
distances as primary data.
The origin of distance geometry dates back to the work of

Menger (1), who coined the term metric geometry. He pro-
posed that geometry should be studied in terms of distances,
in addition to the more traditional approaches of axiomatic
and analytical geometry. This branch of geometry rapidly
expanded, especially as a consequence of the work of Blu-
menthal (2).
A useful theorem in distance geometry was proven by

Schoenberg (3):
THEOREM 1: A necessary and sufficient condition that the

matrix D = {d1.} represents the distances ofa system ofN +
1 points PO, P1.PN in euclidian space EM but not in EM-1
is that the quadratic form

N

F(xl, x2 .,X)=2E(di + doj - di~)xjxj

= >E vjxIxj = xTVx [1]
i,j=1

be positive and of rank M, where V = {vij} is a symmetric
matrix, with Vj, = (do, + 4j - d?2)/2. The special point PO is
at the origin. All vectors are column vectors unless their
transpose is indicated.

Schoenberg showed that the actual construction of the co-

ordinates of the N + 1 points is equivalent to reducing F to
its canonical form

M

F(Xlq X2,..., XN)=:-- 9

Then the elements of an M x N matrix C such that
y = C x

[2]

[3]
represent the coordinates of the points P1, P2, ..., PN-ixe.,
Pj = (Clj, C2j, ..., CMj) is identical to thejth column of C, and
Po = (0, 0,...., 0) is at the origin. The vectors cT = (CAl, CM2,
..., CMN) formed by the rows of C represent the coordinates
of all points along the dimension pu.
Schoenberg also investigated the case in which F is indefi-

nite. In this case F can always be reduced to
M

F(x1, x2, ..., XN) = E ECYA EM = ±1.
= 1

[4]

The points PO, P1, ..., PN are then embeddable in a pseudo-
euclidian space qpq with p real and q imaginary dimensions,
where p and q are equal to the numbers of positive and nega-
tive E's, respectively, in Eq. 4 (3). The case of positive F is
then the special one with q = 0. In the pseudo-euclidian
space, the calculation of coordinates is again reduced to the
problem of finding a linear transformation y = C x such that
F is in the canonical form (Eq. 4).
Such a transformation C is obtained with the help of Lem-

ma 1.
LEMMA 1: F(x1, X2, ..., XN) is reduced to its canonical

form (Eq. 4) if the matrix V ofcoefficients vjj ofF is decom-
posed to the outer product form

M

V = Z C-c c .

Making use of Eqs. 1 and 5, the proof is
M M

F(x) = xIE AC ,CTcX = E EA(CTX) =
U= 1A A

A,1

[5]

m
2

A~
[6]

From Eq. 6, we immediately find the transformation C, since
the rows of C are the (C)1.2CT in Eq. 6.

In .this paper, we present an algorithm for the calculation
of coordinates for the general pseudo-euclidian embedding
problem and for the decomposition of V in the form of Eq. 5.
The algorithm will decompose a matrix D2 of squared dis-
tances dj,2 to the form

M

d,2= E(i-jA)2
A=1

p M

= E (ci - cj) - 1 (ci -cj),
,U=1 A=p+l

[7]
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where *p,, is the space of smallest dimension in which the
points P0, P1, ..., PN are embeddable and the ci,, are their
cartesian coordinates.
Embedding of D2 immediately yields the decomposition of

V in the form of Eq. 5. Since any decomposition (Eq. 5) of V
is equivalent to a factorization of V in the form

M

V = X TCyCT = CTC,
jL=1

A

Pi

[8]

where vij = X, E, ci,,cj,, and the rows of C are the vectors
(E,,)1/2cT, we can factor every symmetric matrix by embed-
ding. If V is the matrix of coefficients of Schoenberg's qua-
dratic form F, then the embedding algorithm yields a canoni-
cal transformation y = C x. In most cases, we are able to
obtain C in lower triangular form. In fact, a variant of the
embedding algorithm is identical to the Cholesky factoriza-
tion of V. The Cholesky factorization does not exist if the
diagonal elements of V are zero, or it is unstable if these
elements are very small. We shall show that we can always
obtain a stable factorization of V in the form of Eq. 8 by
embedding, although the factors are generally not triangular.

The Embedding Procedure

We now develop an algorithm for the embedding of a dis-
tance matrix whose associated quadratic form (Eq. 1) is posi-
tive definite. The solution for the pseudo-euclidian problem
will then follow from a generalization of the euclidian em-
bedding.
From Schoenberg's theorem 1, it follows that every (N +

1) X (N + 1) distance matrix with positive quadratic form F,
with matrix of coefficients V = {vv}, corresponds to an N +
1 simplex with vertices Po, Pi, ..., PN and edges dij = JPi -
PjI, which is embeddable in euclidian space EM where M <
N. Therefore, there exists a representation of D2 (in fact infi-
nitely many) of the form

M

Ij =E(i cj)2 i, 0O 1, ..., N [9]
A=1

and we shall now derive such a decomposition (i.e., Eq. 9).
The three distances di,, dik, and djk define a triangle with

vertices Pi, Pj, and Pk (Fig. LA). These distances are related
by the cosine law

cosPi = (dW1 + d, - djk)/2dijdik. [10]

We therefore are able to calculate the projection 3ij of dij on
the axis defined by dik

3ij = dij(cospi) = (dh + d- dk)12dik. [11]
Since

< 0 for 3i > ir/2
cosi = ° Pi = 7r/2 with (0 - pi nir,

> 0 fi <<r/2
the projection 3ij on dik has the sign of cos/3i and therefore
has magnitude and direction. Forming all possible triangles
with the distance dik, we calculate the projections 3ij of all
distances di, for j = 0, 1, 2, ..., N on dik. Specifically,

hii= (di + d2- d2)/2dik = 0

and
dik (dik + dik dkk)/2dik dik.

Pi

FIG. 1. Geometric relationships involved in the resolution of dis-
tances into parallel and orthogonal components relative to a generat-
ing distance dik. (A) Resolution of distances dij and djk into parallel
components 3ij and ajk, respectively, and orthogonal components
d9- = dj°k, along the generating distance dik. See Eq. 11. (B) Projec-
tion of distance dy, (which is not directly connected to the generating
distance dik) on dik. It should be noted that the four points Pi, Pj, Pk,
and PI generally are not in a plane. See Eqs. 14 and 15.

Eq. 14 defines the parallel components of any distance dj,
along dik. The orthogonal component dj° of dj, relative to dik
is defined by

[15](djo) = dj, ()2 = - (31 - j

Comparison of Eqs. 9 and 15 yields

dj2= (din- j)2 + (djo,)I
M

= (CI1-Cc)2 + > (C1. -C
ao16 issati=2 i

and it follows that Eq. 16 is satisfied if we set

cjl = 3ij j = 0, 1, 29 ...,9 N. [17]

We therefore obtain the vector c1 = (c0o, c11, c2, ..., CN1) of
cartesian coordinates of the N + 1 points along the axis de-
fined by dik. Note that we can choose any dik + 0 to generate
a vector cl. For further reference, we use the term generat-
ing distance for dik. From Eq. 11, it follows that only col-
umns (or rows) i and k of the matrix D are needed to calcu-
late cl.

Obviously, the matrix with the orthogonal components djZ
(j, 1 = 0, 1, ..., N) is either a distance matrix or all of its
elements are zero. In the latter case, the system of points is
embeddable along dik-i.e. in a space of dimension M = 1-
and the embedding is completed. Otherwise, we can treat the
orthogonal matrix as described above.
We observe that do'k = 0. Geometrically, this means that

the points i and k have fused upon the projection along dik so
that d9, = djok (j = 0, 1, 2, ..., N) (Fig. 1A); i.e., the rows (and
columns) i and k of Do are identical. This follows from

(djok)2 = djk - (3jk)2 = djk - (3ik - 3ij)
= dik - -d ,k + 23ijdk

since 2ik = dik. Insertion of Eq. 11 for dij then yields

(dk)2 = dj2k - - d ,2 + d,2j + di,, - dk

=d? -2 (d=W)2.
[12]

[13]

As shown in Fig. 1B, the projections of all remaining dis-
tances dj, (1, j + i, k) on dik are obtained by

ail, = (6iJ 301) [14]

[18]

[19]

We use the following notation: dij = dij(1), 3ij - 3ij(1),
and d9j = dij(2), where the integer in parentheses refers to
the number of projections. D(1) = {dij(1)} is the original dis-
tance matrix D, used for the first projection. D(2) = {d?,} =
{dij(2)} is used in the second projection, and so on.

[16]
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The resolution of the distances dij(2) into orthogonal and
parallel components along a generating distance dik(2)
(which must not be zero) yields a vector of coordinates c2
and the (N - 1) x (N - 1) matrix D(3). The process can be
repeated until all elements of the matrix D(M + 1) are zero.
This yields a solution of the embedding problem in terms of
M vectors c1, ..., CM and the dimension M of the space. The
elements dj(l) are now expressed as

M

d,2(1)=E(ci - j")2 i,j = O. 1, ..,N. [20]
;At= 1

Eq. 20 thus provides cartesian coordinates ci, and Cj,, from
the distances d?1(1).
Embedding in Pseudo-euclidian Spaces
In the euclidian problem the 6,'s in

M

d = I E,,(ciL - ci,)2 EC = ±1
A= 1

[21]

are all positive, and hence the squared distances d?- are also
positive. If some or all of the E,,s are equal to -1, then d,2
may be or has to be negative and the distances dij themselves
are imaginary. Therefore, if we take a negative d (m) as the
mth generating distance, the coordinates obtained from Eqs.
11 and 17 will be imaginary. The generalization of Eqs. 11
and 17 to the pseudo-euclidian problem therefore leads to

Cim = (Em)"12dij(m)
= [dh.(m) + d 2 (m) - dj2k(m)]/2(ld24(m)I)"12, [22]

where Em = sign[d2k(m)] and m is the projection number (i.e.,
m = 1, 2, ... in the first, second, etc., projection); similarly
Eqs. 15 and 17 lead to

dj(m + 1) = d?,(m)-m(Cim-Cjm)2. [23]
Eqs. 22 and 23 yield a decomposition of any matrix D2 whose
elements satisfy d4 = 0 and A = dj2i4 i, j = 0, 1, ..., N.
Therefore, every such matrix is embeddable in 1'pq with p +
q = M ' N. The coordinate vectors, c, (, = 1, 2, ..., M),
form a basis set of Jpq that is generally not orthogonal.
Embedding is not unique because different choices of gen-

erating distances yield different sets of coordinates. Howev-
er, we shall show that the vectors c, obtained from the em-
bedding algorithm (Eqs. 22 and 23 are linearly independent
so that the dimension M and the numbers p and q of real and
imaginary axes, respectively, are invariants of the embed-
ding.
THEOREM 2: The vectors cE, = (c01, cCl1, ..., CN1.), , = 1, 2,

..., M, obtained from the embedding algorithm are linearly
independent.
To show this we need Lemma 2.
LEMMA 2: Let dik(m) be the generating distance in step m.

Then ci, = Ck., A > m. From Eq. 19, which also holds for
the pseudo-euclidian case, we have, after including the step
parameter m,

dj2k(m + 1) = d2j(m + 1) = d?j(m + 1)
j = 0, 1. N, [24]

where dik(m) is the generator in step m. Let ds,(m + 1) be the
generating distance in step m + 1. Then, from Eq. 22,

cim+1 = (Em+1)"2 ds,(m + 1)

[d2(m + 1) + d2,(m + 1) - d2(m + 1)] [25]
2(lds,(m + 1)1)1/2

and

Ckm+l = (Em+)12 3sk(M + 1)

[d2(m + 1) + d2(m + 1) - d2(m + 1)]

2(Ids,(m + 1)1)1/2

so that, from Eq. 24, cim+l = Ck,m+l. Since (from Eqs. 23
and 24)

dj(m + 2) - d?.(m + 1) - +i(Cim+i-cjm+P2

= dk1(m + 1) - Em+l(Ckm+l - Cjm+)2

= dk1(m + 2) [261
forj = 0, 1, ..., N, we have Cim+2 = Ckm+2 and generally

Ci^, = Ck, ju = m + 1, m + 29 ...,9 M

and

dA(g) = d2 (A)
,u = m + 1, m + 29 ...,9 M; j = 0. 1, ..., N. [271

We can now prove Theorem 2. For this purpose we as-
sume the opposite-i.e., that cl can be expressed as a linear
combination

M

Cl = >1 a ,,.
IA=2

[28]

Then c1 is generated by dik(1) and, from Eqs. 13, 21, and 22,

d2 (1) = El 32k(1) = Cl[Z a2(c,- ck)1
M

+ I Eg(Cig - CkA) 2
IA=2

But ci, = ck,., ,u = 2, 3, ..., M, from Lemma 2, so that dik(l)
= 0, in contradiction to our assumption that dik(1) is the gen-
erator of c1. This also proves Theorem 3.
THEOREM 3: Different sequences of generating distances

yield the same numberM of independent coordinate vectors.
Otherwise, the coordinate vectors c,. would be linearily de-
pendent. Also, from the linear independence, M is the small-
est possible number of such vectors.
To show that the nature of the space Ipq is invariant under

embedding, we prove Theorem 4.
THEOREM 4: The numbers p and q of real and imaginary

axes are invariants of the embedding procedure-i.e., they
are independent of the specific sequence of generators.
Assume that two different decompositions yield

p M

d= (c,., - Cj)2 - : (Ci1 - C
A=1 A=P+l

r M

= I (bitL - bjg)2 - I (bi -b)2,
1=1 A=r+l

where the b's are a second set of coordinates. From Eq. 1,
we form the matrix vij = (d4i + d4 - d,2)/2. From Eq. 30,
this becomes

p

Vij = (co8C - C,1.COA -CjA1CO + C,1.C11)

M

- I (CO- Ci1CO- CjCO1 + CiACj)
A=P+l

(b2 - bj,1bO0A - bj11b0. + b,A bjA)O1
M

- I (b 2
- b 1.b01. - bjt.bol, + bitbj).

A=r+l
[31]

Set s,1 = (sm, S2A, ..., sN,1) where si,, = (co,, - ci,,) and t1. =

(tQl, t21,, ..., tN,/) where ti,, = (boA - bi,). Then, from Eq. 31,
p M r M

Vij = SiLsj
js

Sis>) = ti= Y tjA tjI [32]

[30]

[291
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and, from Eq. 8,
p M r M

V =E s~ls os =Ett, tjLt. [331
A=p+l A=1 A=r+l

Hence, the quadratic form F(x), with V as coefficient matrix,
is in its canonical form since it follows from Lemma 1 that

P M

XTVX = XT i S STX - XT E S SX
A=1 U=p+l

P M

- Z (XTSA)j - Z (xWS,)2
1-p+l

r M

E (xTtAj - X (x t,)2. [34]
A=1 1-=p+1

From Sylvester's law of inertia (see, for example, ref. 4), the
numbers of positive and negative squares in the canonical
representation (Eq. 34) of a quadratic form are invariant;
i.e., two different canonical forms of F(x) necessarily have
the same numbers of positive and negative squares. Hence,
p = r; i.e., any decomposition of D necessarily yields the
same numbers p and q of real and imaginary dimensions of
qpq'

Decomposition of Symmetric Matrices

The embedding algorithm yields a decomposition of D2:
M

~= E 6,L(CiA Cj

M M M

= Ei: ec, + E 2yCJz - 2 E,.cic,,. [35]

Each term on the right-hand side of Eq. 35 is of the form
M

Vij= E EAci,#CkL [36]

which may be regarded as the elements of a symmetric ma-
trix V; i.e., we have started with a matrix D2 and obtained
the symmetric matrix V. It is tempting to try to reverse the
process, to obtain a decomposition of any symmetric matrix
U in the form of Eq. 36 by transforming U to the associated
matrix of squared distances D2 (U) with

d,2j uji + ujj - 2uij [37]

and applying the embedding algorithm to D2 (U); uij is the
analog of vij of Eq. 36.

Eqs. 1 and 37 lead to the transformation

[38]
in which it can be seen that u0j is equal to zero forj = 0, 1,

N. From this, we see that, if the transformation of an
arbitrary symmetric N x N matrix U with elements uj (i,j =
1, 2, ..., N) to its associated distance matrix D2 (U) is to be
invertible in a unique way, we must border U by a 0th row
and 0th column of zeros. Then the elements doj uoo + yjj -
2uoj = ujj (j = 0, 1, ..., N) are the diagonal elements of U.
Their geometric meaning is that they. represent the squared
distances of the points P1, ..., PN (associated with U) to the
origin PO. Hence, for every symmetric matrix, we have a
unique origin defined by the diagonal elements of U.
The decomposition of D2 (U) then yields the coordinates

Zo!, of the origin of.U. But, generally, TO, # 0; i.e., the sys-
tem represented by U generally wigl be translated by the em-
bedding procedure so that

M1

Uoj~~~~~~~~=0,~,~,+O( , 1,9 ..., N) [391
A=1

and U 7 U. We then obtain a decomposition ofU by translat-
ing the coordinates so that

[40]

and U is decomposed to U = A=1 E,,CC. or, equivalently,
M

Uij = A EACiLcijy (i,j = 1, 2, ...,9 N).
JA=1

[41]

The embedding procedure therefore yields a decomposition
of every symmetric matrix U.

Several additional points follow from this result. First,
consider the eigenvalue decomposition of U and Eq. 41:

Al M AM

U = E A; x,.xH = E e,.y,.y~l = >E E,.c,.c,,C
y=1 =1g=1l

[42]

where the K, s are the nonzero eigenvalues of U with eigen-
vectors x,., ye =(IX,.I)112X,., and E,. = sign (Kx). Then, from
Sylvester's law of inertia (4), we have Corollary 1.
COROLLARY 1: The numbers of positive and negative ei-

genvalues ofU are equal to the numbers p and q of *pq ob-
tainedfrom embedding of D2(U), M - (p + q) is the number
of zero eigenvalues of U, and p + q is the rank of U.
As a second point, Eq. 8 indicates that the decomposition

of U (Eq. 41) is equivalent to a factorization of U:

U = CTC. [43]
IfU is a nonsingular matrix in the system of linear equations,
U x = y, a well-known procedure to solve for x in terms of y
is to factor U so that the factors in Eq. 43 are upper and
lower triangular. Under certain circumstances, embodied in
Theorem 5, embedding can produce triangular factors.
THEOREM 5: Ifthe sequence ofgenerating distances in the

embedding ofD2(U) is do,1(1), dl 2(2), ..., dmim(m), ... then
the factor C is upper triangular; i.e., c; = 0 i < ,.
From Eq. 22, we have cmlm = (Em)t2 3m_-,ml(m) = 0

and, from Lemma 2, cmil,, = cm,. for pi= m + 1, ..., M.
Hence, co l = cO;2 = cl,2 = c0,3 = ..., and enerally c;,, = 0, i
</A9, /. = 1, .;., M. But, then C and C are the Cholesky
factors of U (for a definition see, for example, ref. 5).
COROLLARY 2: Embedding of D2(U), using the specific se-

quence dm-im(m) ofgenerators, is identical to the Cholesky
factorization of U.

Hence, the Cholesky factorization is a special case of em-
bedding.

Numerical Performance of the Embedding Algorithm and
Examples

As an example, we decompose the matrix U =
101
(1 \

'000
which, when bordered by zeroes, becomes o O ) The

10
use of Eq. 37 to obtain the elements of D2(1) yields

D2(U) = D2(1) = O0 -2 .

0 -2 0
[44]

Using d12 as the only possible (i.e., nonzero) generator, em-
bedding (with Eq. 22) yields cl = (cOD, c11, c21) = [-1/(2) ,
0, -(2)1I2] and 'e = -1; Eq. 23 leads to the matrix

0 1/2 1/2

D2(2) = 1/2 0 0

1/2 0 0
[45]

CiA = CiA C%, (11 = 19 21 .., M)

uij = (d2 + d2
- di2j)/2,oi 0i
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and the vector c2 = (c02, c12, c22) = [0, (1/2)1/2, (1/2)1/2], E2 =
+1. Translation of the origin PO, whose coordinates are (co0,
c02) = [-(1/2)1I2, 0], to the point (0, 0) is accomplished by a
translation of (1/2)1/2 applied to c1, and we obtain cl = [0,
(1/2)1/2, -(1/2)1/ ] c2 = [0, (1/2)1/2, (1/2)1/2], and e1 = -1, E2 =
+ 1. Thus, we have obtained a decomposition of U in the
form of Eq. 41. Hence, p = q = 1, and U has rank 2 and one
negative and one positive eigenvalue. In this example, cl =
[(1/2)1/2, -(1/2)1/2] and c2 = [(1/2)1/2, (1/2)1/21, being the rows
of C, are the eigenvectors of U.
We chose the above example to demonstrate an important

fact. From Theorem 5, it follows that the sequence of genera-
tors dm-1im(m) yields the factor C in triangular form, and the
decomposition is equivalent to a Cholesky factorization of
U. However, in this example, U cannot be factored by means
of the Cholesky method because all diagonal elements are
equal to zero. Nevertheless, the matrix U can be factored by
the embedding of D2(U), but C is not triangular.

Generally, if the diagonal elements of U are very small
with respect to unity, then the Cholesky factorization cannot
be guaranteed to be stable, as discussed by Gill et al. (6). For
such matrices, the embedding of D2(U) still produces a stable
factorization. Consider the matrix (6)

/e 1
V = ( with e close to zero. [46]

Embedding of

tO e e

D2 (V) = e 0 2(e - 1) [471
e2(e - 1) 0

using do, as the first generator, yields the vectors (El)"2cl =
(e1/2, 1/e1/2) and (E2)"12c2 = (0, [(e2 - 1)/e]l"2). The factor C is
triangular but the decomposition is very unstable. We obtain
a stable factorization by using d12 as the generator in step 1;
i.e., cl = (-[(e - 1)/211/2, [(e - 1)/211/2 and c2 = ([(e +
1)/211/2, [(e + 1)/211/2).

Stability of the embedding algorithm is ensured if, in each
step, m, the maximal element d 2 (m) = max{ldj23J, 1 = 0, 1,

N}, is used as the generator. Then

Cjm|= 1d3i(m)l

- Id?(m) + d,2(m) - dj2k(m)J/2di2k(m)3 Idik(m)l [48]
12

and the magnitude of Cjm as well as the growth of d <m + 1)
is bounded in each step.
Embedding can be carried out very rapidly. The numbers

of arithmetic operations required are (N3/6) + (N2/2) +
(N/3) multiplications, (N3/3) + N2 + (2N/3) additions, and
N square roots so that the computational complexity is
O(N3), where N is the dimension of D2.
To evaluate the performance of the algorithm on a larger

matrix, we calculated the embedding of the 58 x 58 distance
matrix of the Ca atoms of the BPTI molecule. First, the ma-
trix was generated using the coordinates obtained from the
Protein Data Bank (7). Embedding of this distance matrix
stopped correctly after three projections, yielding three co-
ordinate vectors, with 58 components each. Recalculation of
the distance matrix from these vectors showed no detectable
error; i.e., IdJ'9 - d j"`I was zero within the precision of the
original coordinates (<0.001 A). The execution time on a
Prime 550 computer was 0.4 sec. For comparison, the em-
bedding of an arbitrary 58 x 58 matrix D2 with full rank M =

57 (with its elements, between 0 and 1, generated randomly)
took 7.1 sec for the 57 projections.T
Conclusion

Recently, interest in the embedding problem has arisen from
experimental techniques, especially in the field of two-di-
mensional NMR of biological macromolecules (8). Experi-
mental techniques usually yield only partial information
about the distances between atoms of a molecule, so that the
distance matrices obtained are incomplete and the measured
distances are known to lie in a certain range. A review of the
recently developed techniques to solve the embedding of
such matrices in euclidian three-dimensional space has been
presented in ref. 9. Generally, one tries to derive a complete-
ly specified matrix that is consistent with the measured dis-
tances, by applying triangle and higher order inequalities
[see also Braun et al. (10)]. The procedures used so far to
obtain such a matrix do not guarantee that the matrix is em-
beddable in euclidian three-dimensional space. Two meth-
ods have been proposed to calculate coordinates from such
matrices. MacKay (11) used the Cholesky factorization of
the matrix V of Schoenberg's quadratic form (he and others
use the term metric matrix for V). Since the Cholesky factor-
ization may be unstable for indefinite matrices, he recom-
mended the method only for positive V (11). Havel et al. (9)
used the spectral decomposition of the matrix V. As stated
by Schoenberg (3), the problem of finding a canonical repre-
sentation of V is a problem of second degree because the
coordinate vectors are not required to be orthogonal; hence,
the embedding problem can be solved by more efficient
techniques than by spectral decomposition. However, the
spectral decomposition seems to be useful in reducing the
dimensionality of V to obtain a three-dimensional structure.
The problem of calculating coordinates from an incom-

pletely defined distance matrix involves the recovering or
prediction of the missing or weakly defined elements of D.
This problem, therefore, cannot be treated directly by the
embedding procedure, but we hope that this problem will
become more tractable through the analysis presented here.

We are indebted to E. 0. Purisima for valuable discussions. This
work was supported by the Stiftungs und Foerderungsgesellschaft
der Paris Lodron Universitaet Salzburg, by the Max Kade Founda-
tion, and by research grants from the National Institute of General
Medical Sciences (GM-24893) and from the National Science Foun-
dation (DMB84-01811). M.J.S. was a fellow of the Max Kade Foun-
dation.

1. Menger, K. (1931) Jahresber. Deutsch. Math.-Verein. 40, 201-219.
2. Blumenthal, L. M. (1970) Theory and Applications of Distance Geome-

try (Chelsea, New York), pp. 90-161.
3. Schoenberg, I. J. (1935) Ann. Math. 36, 724-732.
4. Cartan, E. (1981) Theory of Spinors (Dover, New York), p. 4.
5. George, A. & Liu, J. W. H. (1981) Computer Solution of Large Sparse

Positive Definite Systems (Prentice-Hall, Englewood Cliffs, NJ), pp. 15-
25.

6. Gill, P. E., Murray, W. & Wright, M. H. (1981) Practical Optimization
(Academic, London), pp. 36-37.

7. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F.,
Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi,
M. (1977) J. Mol. Biol. 112, 535-542.

8. Wuthrich, K., Wider, G., Wagner, G. & Braun, W. (1982) J. Mol. Biol.
155, 311-319.

9. Havel, T. F., Kuntz, I. D. & Crippen, G. M. (1983) Bull. Math. Biol. 45,
665-720.

10. Braun, W., Bosch, C., Brown, L. R., G6, N. & Wuthrich, K. (1981)
Biochim. Biophys. Acta 667, 377-396.

11. MacKay, A. L. (1983) in Computing in Biological Sciences, eds. Gei-
sow, M. & Barret, A. (Elsevier Biomedical, Amsterdam), pp. 349-392.

$Photocopies or microfiche of the computer program are available.
See document no. NAPS 04264 of the ASIS National Auxiliary
Publication Service, c/o Microfiche Publications, P.O. Box 3513,
Grand Central Station, New York, NY 10017.

2201


