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Supplemental Results 

Here we describe seven additional control analyses that we performed to provide further support to 

the main findings described in the article. Each control analysis is linked to one of the main figures 

(in ascending order), and is accompanied by a supplemental figure summarising its results. 

Orthogonal contributions of successive elements to choice 

We performed an additional behavioural analysis to test whether successive decision updates con-

tributed independently to the final choice (Figure S1). To do so, we performed a logistic regression 

analysis where we entered the category of each element k (+1: cardinal or −1: diagonal) and tested 

whether not only the magnitude of the decision update DUk, but also the magnitudes of previous 

and next decision updates DUk−1 and DUk+1, influenced the contribution of element k to choice. We 

found that this was not the case: for any given element k, only DUk influenced its contribution to 

choice as measured by its parameter estimate (t-test against zero, t14 = 13.7, p < 0.001). Critically, 

DUk−1 and DUk+1 did not influence the contribution of element k to choice (k−1: t14 = 1.3, p > 0.2; 

k+1: t14 = 1.4, p = 0.2). 

 This additional finding is important, because it shows that the refractory pattern of decision 

weighting observed across successive elements cannot be due to the particular sequence of deci-

sion updates we provided to the participants, but only to the ongoing phase of endogenous cortical 

oscillations measured using EEG. 

Overlapping neural encoding of successive perceptual and decision updates 

We engineered our sequences so that successive perceptual/decision updates were uncorrelated 

(Figure S1). This feature not only ensured that we could regress individual decision weights with 

the highest statistical power, but also that we could regress the distinct contributions of successive 

decision updates against single-trial EEG signals without contamination between temporally adja-

cent elements. 

 Nevertheless, to confirm the fact the encoding time courses at t > tk + 250 ms were not con-

taminated by the overlapping encoding of element k+1 in single-trial EEG signals, we conducted 

an additional regression analysis where we regressed single-trial EEG signals not only against the 

perceptual/decision update corresponding to element k, but simultaneously against the percep-

tual/decision updates corresponding to previous (k−1) and next elements (k+1). If the encoding 

time courses shown on Figure 2 were contaminated by temporally adjacent elements, then this 

multiple regression analysis should reveal different temporal profiles. However, we found that this 

was not the case (Figure S2): the encoding of successive perceptual/decision updates followed the 

same temporal profile, shifted by 250 ms as expected by our 4 Hz presentation rate. This addi-

tional control analysis confirms that we could successfully regress the overlapping neural encoding 

of successive updates in single-trial EEG signals. 

Overlapping neural decoding of successive decision weights 

As described above, we found that successive elements contributed independently to the eventual 

choice – in other words, that the contribution of element k to choice depended solely on decision 

update DUk, not on previous and next decision updates DUk−1 and DUk+1. This observation rules 
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out the possibility that the refractory pattern of decision weighting we observed across successive 

elements (Figure 3C) could be explained by an exogenous influence of DUk−1 or DUk+1 on the deci-

sion weight wk rather than by an endogenous cortical rhythm. 

 Nevertheless, to confirm that the refractory pattern of decision weighting was due to ongoing 

fluctuations in EEG signals, we performed an additional control analysis where we estimated simul-

taneously the decoding time courses of successive decision weights assigned to previous (k−1), 

current (k) and next (k+1) elements in the final choice (Figure S3). To do so, we used a multiple 

psycho-physiological interaction for which the decision information corresponding to previous, cur-

rent and next elements was partialled out. The three successive decoding time courses show iden-

tical patterns shifted by 250 ms, confirming that the decoding results reported later than 250 ms 

following element k are not due to spurious interactions between choice and the decision informa-

tion provided by the next element. 

 Besides, in accordance with the pattern observed in Figure 3, Figure S3 depicts the relation-

ship between encoding residuals around 500 ms following element k and the decision weights 

assigned to previous (k−1), current (k) and next (k+1) elements in the final choice. Figure S3 

shows unambiguously that, at the same point in time, encoding residuals correlate positively with 

the decision weight assigned to the element k, and negatively with the decision weights assigned 

to element k−1 and k+1. Importantly, because encoding residuals reflect trial-to-trial EEG variability 

unexplained by the successive decision updates, variability in encoding residuals was fully uncor-

related (across trials) with variability in decision updates for every participant. Figure S3 also illus-

trates this pattern of results by showing the spatial distributions of neural encoding and decoding 

for successive decision updates and decision weights at the same point in time – at 500 ms follow-

ing element k, obtained using the same multivariate regression approach. 

Oscillatory properties of slow fluctuations in neural encoding 

We performed several control analyses to rule out the possibility that the modulation of neural en-

coding and decision weighting by slow EEG fluctuations could be due to a single-sided transient in 

broadband EEG signals, rather than to a genuine rhythmic process oscillating at about 2 Hz. 

 To do so, we tested whether the first (negative) encoding component of decision update DUk 

(Figure 2), peaking around 300 ms following element k, also depended on delta phase. We found 

that this was the case (Figure S4), and that the preferred phase for this first encoding component 

corresponded to the trough of the delta cycle – in other words, the anti-phase of the preferred 

phase for the second (positive) encoding component of decision update DUk peaking at 500 ms 

following element k. Because the two encoding components are separated in time by approxi-

mately 250 ms, this opposite phase relationship is fully predicted by a preferred delta oscillation 

reaching its trough at 250 ms, and then its peak at 500 ms following element k. 

 Furthermore, although both the P1-like encoding component of PUk (at 120 ms following ele-

ment k) and the P3-like encoding component of DUk (at 500 ms following element k) were positive-

going (Figure 2), their preferred delta phases were very different (Figure 4). Again, the phase rela-

tionship observed between these two encoding components is consistent with a preferred delta 

oscillation reaching its trough at 250 ms and its peak at 500 ms following element k. These findings 

thus argue in favour of a genuine rhythmic process modulating the neural encoding of successive 

perceptual/decision updates at approximately 2 Hz. Interestingly, the preferred delta oscillation 



Supplemental Information 

4/15 

predicted with respect to decision weight wk matches the preferred phase with respect to the neural 

encoding of both perceptual update PUk and decision update DUk (Figure S4). 

Oscillatory properties of slow fluctuations in decision weighting 

We also conducted additional control analyses to further show that the modulation of decision 

weighting followed the phase of a genuine rhythm reflected in the phase of slow EEG oscillations, 

not single-sided transients in broadband EEG signals as the ones corresponding to the steady-

state response depicted on Figure S5. 

 First, we observed that the latency t* at which delta phase, estimated analytically using the 

Hilbert transform applied to band-pass-filtered EEG signals between 1 and 4 Hz, predicted maxi-

mally the decision weight wk followed the onset of element k by 420 ms – i.e., significantly before 

the peak of the encoding component of DUk at 500 ms. Critically, the preferred delta phase found 

at t* was significantly different from zero (φ = -1.11 ± 0.13, circular t-test against zero, p < 0.001) – 

in the rising part of the delta cycle. If the effect of delta phase on decision weight wk was generated 

by the transient broadband responses triggered by successive decision updates, then the maximal 

effect of delta phase on wk should arguably coincide with the peak (or trough) of the delta cycle 

where broadband EEG signals correlate maximally with successive decision updates. 

 Another additional finding speaks in favour of a genuine rhythmic modulation of decision 

weighting: its narrow frequency selectivity (Figure S5). The spectral decomposition of transient 

events in broadband EEG signals typically shows a very broad frequency selectively, spanning 

multiple octaves. Here, by contrast, we found that the modulation of decision weighting depends 

selectively on the phase of EEG oscillations around 2 Hz. 

Preserved neural encoding and decoding profiles at a stimulation rate of 3 Hz 

To confirm that the time courses of neural encoding (Figure 2) and decision weighting (Figure 3) 

were not primarily driven by a fixed subharmonic of the 4 Hz stimulation frequency, we obtained 

additional EEG data from another group of seventeen participants who performed the same task at 

a different stimulation rate of 3 Hz (see Supplemental Experimental Procedures). 

 First, as in Figure S2, we entered previous, current and next decision updates as simultane-

ous parametric regressors of single-trial EEG signals and obtained three identical, overlapping time 

profiles, peaking positively at 550 ms after the corresponding element and shifted by 333 ms as 

predicted by the 3 Hz stimulation frequency (Figure S6). This first finding confirms that the neural 

encoding of element k after the onset of element k+1 was not contaminated in any way by the 

overlapping neural encoding of element k+1. Then, as in Figure S3, we estimated simultaneously 

the decoding time courses of successive decision weights assigned to previous, current and next 

elements and obtained, as above, three identical time profiles shifted by 333 ms (Figure S6). This 

second finding confirms that the neural decoding of decision weight wk following the onset of ele-

ment k+1 is not contaminated by the overlapping neural encoding of element k+1. 

 One last finding is strongly suggestive of a dissociation between the encoding/decoding pro-

files and the stimulation frequency: the preferred phase of the entrained f0 oscillation at which the 

two profiles peak varies across the two stimulation frequencies. The preferred f0 phase at the onset 

of each element was consistent across participants at both stimulation frequencies (Rayleigh test, 
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4 Hz: r14 = 0.76, p < 0.001, 3 Hz: r16 = 0.58, p = 0.002). Critically, however, the preferred f0 phase 

taken at the average peak of the encoding/decoding profiles differed significantly between the two 

stimulation frequencies (two-sample Watson-Williams test, F1,30 = 17.1, p < 0.001). The absence of 

a fixed relationship between the exogenous f0 oscillation and the encoding/decoding profiles further 

suggests that both profiles are governed by endogenous cortical dynamics rather than by a fixed 

subharmonic of the stimulation frequency f0. 

Motor beta-band activity shows key properties of the running decision variable 

We finally conducted additional analyses to show that motor beta-band activity shows all character-

istics of the running decision variable. If lateralised beta-band activity (10-30 Hz) at motor elec-

trodes truly reflects a response preparation signal, then it should allow to decode the eventual 

choice (i.e., a left- vs. right-handed response) on every trial, and only encode the objective/veridical 

decision information preceding correct choices, not errors. 

 To verify these predictions, we assessed how motor beta-band activity encoded the sum of 

response updates (Figure 7) separately preceding correct choices and errors (Figure S7). As ex-

pected, we found that the neural encoding of response updates was significantly stronger in the 

last 500 ms preceding the onset of the response period tR for correct choices than errors (paired t-

test, t14 = 4.4, p < 0.001). Nevertheless, as would be expected from a response preparation signal, 

it was possible to decode choice from motor beta-band activity for both correct choices and errors 

in the same time window (t-test against zero, correct choices: t14 = 5.2, p < 0.001; errors: t14 = 5.5, 

p < 0.001). Interestingly, decoding accuracy diverged between correct choices and errors before 

250 ms preceding the onset of the response period (t14 = 2.5, p < 0.05) – in other words, significant 

choice decoding (cluster-level p < 0.05) started more than 1 s earlier preceding correct choices (at 

tR minus 1540 ms) than errors (at tR minus 520 ms). This last finding suggests that errors were not 

primarily triggered by the neural encoding of inaccurate decision information in motor beta-band 

activity throughout the sequence, but rather by the lack of encoding of decision information until the 

end of the sequence. 
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Figure S1 – Experimental design and control behavioural analysis. (A) Folded decision-mapping rule relating the tilt 
of element k (perceptual variable, x-axis) to the cardinal-diagonal decision axis (decision variable, y-axis). Left panel: the 
decision-mapping rule follows a w-shaped profile (thick black line) and crosses four category boundaries (dashed lines). 
Right panel: geometric representation of perceptual update PUk and decision update DUk. PUk corresponds to the abso-
lute difference in tilt between element k and previous element k−1, shown as the thick horizontal line. By contrast, DUk 
corresponds to the absolute amount of categorical evidence provided by element k in isolation, shown as the thick verti-
cal line. (B) Cross-correlation between individual perceptual and decision updates. Left panel: diagonal cross-correlation 
matrix among perceptual updates. Middle panel: diagonal cross-correlation matrix among decision updates. Right panel: 
flat cross-correlation matrix between decision (x-axis) and perceptual (y-axis) updates. (C) Control behavioural analysis 
showing orthogonal contributions of previous (left), current (middle) and next (right) decision updates to the final choice. 
The effective decision update assigned to element k depends solely on DUk. Three stars indicate a significant interaction 
at p < 0.001, ns a non-significant interaction.  
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Figure S2 – Overlapping neural encoding of successive perceptual and decision updates. (A) Overlapping neural 
encoding of perceptual updates for previous (green), current (blue) and next (red) elements in EEG signals at occipital 
electrodes from 0 to 600 ms following element k, estimated simultaneously via a multivariate parametric regression. The 
shaded area highlights the negative encoding component peaking at 340 ms following element k. Shaded error bars 
indicate s.e.m. (B) Relationship between previous, current and next perceptual updates and occipital EEG activity around 
340 ms following element k. Shaded error bars indicate s.e.m. Three stars indicate a significant correlation at p < 0.001, 
ns a non-significant correlation. (C) Overlapping neural encoding of decision updates for previous, current and next 
elements in EEG signals at occipital electrodes from 0 to 600 ms following element k. The shaded area highlights the 
positive encoding component peaking at 500 ms following element k. Same conventions as in (A). (D) Relationship be-
tween previous, current and next decision updates and occipital EEG activity around 500 ms following element k. One 
star indicates a significant correlation at p < 0.05. Same conventions as in (B).  
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Figure S3 – Overlapping neural decoding of successive decision weights. (A) Overlapping neural decoding of 
decision weights assigned to previous (green), current (blue) and next (red) decision updates in EEG signals at parietal 
electrodes from 0 to 600 ms following element k, estimated simultaneously via a multivariate psycho-physiological inter-
action. The shaded area highlights the positive decoding component peaking at 500 ms following element k. Shaded 
error bars indicate s.e.m. (B) Relationship between encoding residuals at 500 ms following element k at parietal elec-
trodes and successive decision weights. Encoding residuals correspond to the residuals from the parametric regression 
of previous, current and next decision updates against parietal EEG signals. Shaded error bars indicate s.e.m. One star 
indicates a significant modulation at p < 0.05, two stars at p < 0.01, three stars at p < 0.001. (C) Encoding scalp topogra-
phies of previous (left), current (middle) and next (right) decision updates at 500 ms following element k. Same conven-
tions as in Figure 2. (D) Weight decoding scalp topographies of previous (left), current (middle) and next (right) decision 
weights at 500 ms following element k. Same conventions as in Figure 3.  
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Figure S4 – Oscillatory properties of slow fluctuations in neural encoding. (A) Estimation of phase-dependent 
modulation of neural encoding or decision weighting. Trial example of the ongoing phase of parietal EEG oscillations at 2 
Hz, estimated using a time-dependent wavelet transform. Coloured dots indicate EEG phase at 500 ms following the 
onset of each element. EEG phase is used, across trials, as a parametric modulator of the relationship between percep-
tual/decision updates and broadband EEG activity (neural encoding), or between decision updates and the eventual 
choice (weight decoding). (B) Oscillatory modulation of the neural encoding of perceptual (left) and decision (right) up-
dates. Upper panels: relationship between parietal delta phase, estimated as in (A), and the neural encoding of percep-
tual update PUk (left) and decision update DUk (right), from 0 to 600 ms following element k. The predicted best (resp., 
worst) phase with respect to the decision weight wk is shown as a thick (resp., thin) black line. Thick horizontal lines 
indicate time windows of significant phase-dependent modulations of neural encoding at p < 0.05 (two-tailed). Lower 
panels: encoding time courses of perceptual update PUk (left) and decision update DUk (right), following the predicted 
best (thick) and worst (thin) delta phase with respect to the decision weight wk. Shaded areas highlight positive and 
negative encoding components. Shaded error bars indicate s.e.m.  
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Figure S5 – Oscillatory properties of slow fluctuations in decision weighting. (A) Steady-state broadband response 
(1-16 Hz). Upper panel: steady-state response at occipital electrodes (above), and following the spatial antero-posterior 
gradient (below), showing a periodic time course at stimulation frequency f0 = 4 Hz. Shaded areas highlight positive and 
negative peaks respectively at 120 ms and 260 ms. Lower panel: steady-state scalp topographies at 120 ms (left) and 
260 ms (right). (B) Time-frequency profile of the phase modulation of the decision weight wk assigned to element k be-
tween 0 and 1000 ms following element k, and between 1 and 16 Hz. The phase modulation shows a narrow spectral 
specificity around 2 Hz, suggestive of a genuine rhythmic process and not of a single-sided transient in EEG activity. The 
dashed line indicates the stimulation frequency f0. (C) Time-frequency representation of the preferred oscillation with 
respect to the decision weight assigned to element k. Same conventions as in (B).  
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Figure S6 – Preserved neural encoding and decoding profiles at a stimulation rate of 3 Hz. (A) Overlapping neural 
encoding of decision updates for previous (green), current (blue) and next (red) elements in EEG signals at occipital 
electrodes from 0 to 800 ms following element k, estimated simultaneously via a multivariate parametric regression. The 
shaded area highlights the positive encoding component peaking at 550 ms following element k. Same conventions as in 
Figure S2. (B) Relationship between previous, current and next decision updates and occipital EEG activity around 550 
ms following element k. Same conventions as in Figure S2. (C) Overlapping neural decoding of decision weights as-
signed to previous, current and next decision updates in EEG signals at parietal electrodes from 0 to 800 ms following 
element k, estimated simultaneously via a multivariate psycho-physiological interaction. The shaded area highlights the 
positive decoding component peaking at 550 ms following element k. Same conventions as in Figure S3. (D) Relation-
ship between encoding residuals at 550 ms following element k at parietal electrodes and successive decision weights. 
Same conventions as in Figure S3.  
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Figure S7 – Motor beta-band activity shows key properties of the running decision variable. (A) The neural encod-
ing of the sum of response updates in motor beta-band activity (10-30 Hz) distinguishes correct choices (left) from errors 
(right) before the onset of the response period. Same conventions as in Figure 7. (B) By contrast, decoding choice from 
motor beta-band activity shows the same profile preceding correct choices (left) and errors (right). Same conventions as 
in Figure 7. (C) Single-subject, between-element correlation between the neural encoding profile of response updates in 
motor beta-band activity and the decision weighting profile. Left panel: neural encoding and decision weighting profiles 
correlate significantly from -280 ms preceding the onset of the response period. The shaded error bar indicates s.e.m. 
The thick horizontal line indicates significance (p < 0.05, two-tailed). Right panel: correlation profile at the onset of the 
response period tR ±250 ms. Each dot corresponds to one element, sorted by their encoding parameter estimate. Error 
bars indicate s.e.m. The thick black line shows the best-fitting regression line. The shaded error bar indicates the 95 % 
confidence interval for the regression line. Three stars indicate a significant correlation at p < 0.001. 
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Supplemental Experimental Procedures 

Here we provide a detailed comparison between our novel multi-sample categorisation task and 

previous decision-making studies. We also describe the procedures used for the acquisition of 

additional EEG data at a stimulation rate of 3 Hz (instead of 4 Hz for the original dataset). 

Task design 

Our multi-sample categorisation task differs in at least three main aspects from the dynamic ran-

dom-dot motion stimuli most commonly used in perceptual decision-making studies (e.g., Roitman 

and Shadlen, 2002; Gold and Shadlen, 2003). 

 1. We delivered sensory evidence in eight discrete pulses instead of continuously as it is clas-

sically the case when using random-dot motion stimuli. We used this discretisation of evidence 

delivery in order to recover the neural processing of momentary evidence (i.e., perceptual/decision 

updates) in EEG signals. We reasoned that since transients in sensory stimulation were commonly 

used in EEG studies as a temporal reference to estimate the dynamics of visual responses (i.e., 

event-related potentials), delivering sensory evidence in discrete pulses would allow us to estimate 

the dynamics of momentary evidence processing. Recent decision-making studies have used this 

discretisation of evidence delivery to investigate multi-sample integration in non-human primates 

(Yang and Shadlen, 2007) and humans (de Lange et al., 2010; de Lange et al., 2011). 

 2. We delivered sensory evidence in noiseless, supraliminal (i.e., high-contrast) pulses. This 

feature contrasts sharply with classical random-dot motion stimuli where sensory evidence is weak 

and corrupted by strong external noise (i.e., at low motion coherence). This means that, while sub-

jects cannot determine the main direction of motion from brief presentations of random-dot motion 

stimuli (e.g., Kiani et al., 2008), our participants could easily categorise each element in isolation 

as being cardinal or diagonal. Therefore, the difficulty of our multi-sample categorisation task did 

not arise from within-sample variability (i.e., external noise), but from a large between-sample vari-

ability on the cardinal-diagonal decision axis. In other words, cardinal elements could be followed 

by diagonal ones (Figure 1), such that the integration of sensory evidence across multiple samples 

was required – even from an optimal sensory observer – in order to perform the task accurately. By 

contrast, random-dot motion stimuli classically have a constant amount of coherently moving dots, 

such that integrating sensory evidence across time only serves to average out external noise due 

to suboptimal sensory processing (Mazurek et al., 2003). Here we went further by fully decorrelat-

ing successive decision updates across trials in order to perform regression-based analyses at the 

individual update level. This kind of analysis is precluded when using random-dot motion stimuli, 

because the amount of momentary evidence remains constant over the course of a single trial. 

Hence, only small fluctuations in external noise afford any within-trial leverage on brain activity or 

behaviour (Kiani et al., 2008). The large between-sample variability we used additionally ensures 

that the bottleneck on task performance is not set at the level of extracting low amounts of evi-

dence from noisy sensory samples, but rather at the level of integrating successive samples with 

variable amounts of evidence. 

 3. We used a categorisation task (cardinal vs. diagonal) associated with a folded (rather than 

linear) decision-mapping rule (Figure S1). This seemingly minor feature of our task required par-

ticipants to perform multi-sample integration in category (i.e., cardinal-diagonal) space, not in per-
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ceptual (i.e., orientation) space. This feature contrasts sharply with tilt discrimination tasks for 

which integrating in perceptual or decision space is usually equivalent. Accordingly, an ideal 

(noise-free) observer performing multi-sample integration in perceptual space was found to be 

much worse – in terms of sensitivity d’ – at predicting participants’ choice behaviour than an ideal 

observer performing integration in category space (perceptual space: 0.39 ± 0.04, category space: 

1.48 ± 0.11, paired t-test, t14 = 10.2, p < 0.001). The presence of a slow serial central bottleneck on 

evidence accumulation might be at least partially dependent on the required segregation between 

sensory and central stages of momentary evidence processing. 

Additional dataset at 3 Hz stimulation rate 

Additional EEG data was obtained at a different stimulation rate of 3 Hz from seventeen students 

recruited from the University of Oxford. No subject was previously recruited in the original study. All 

subjects had normal or corrected-to-normal vision, and reported no history of neurologic or psychi-

atric disorders. They provided written consent before the experiment and received £30 in compen-

sation for their participation. The experiment followed local ethics guidelines. 

 Participants were faced with two streams of oriented Gabor patterns presented synchronously 

at 4 degrees of visual angle on the left and right of the fixation point at a stimulation rate of 3 Hz 

(instead of 4 Hz in the original study). In a subset of trials, participants were attending to one and 

ignoring the other stream according to a fully predictive cue, corresponding to a colour change in 

the fixation point occurring 1333 ms before the onset of the first element. All other aspects of the 

task were identical to the original study: following each stream, participants reported whether, on 

average, the tilt of the eight elements in the attended stream fell closer to the cardinal or diagonal 

axes by pressing either of two response buttons with the left or right index finger (DirectIN high-

speed button box, Empirisoft, New York, NY), using a cardinal/diagonal response mapping fully 

counter-balanced across participants. 

 As in the original study, each participant undertook a short practice session prior to the ex-

periment, followed by a titration session during which his or her psychophysical threshold was es-

timated using the same adaptive staircase procedure. This threshold estimate was then used to 

determine the spread of the probability distribution function used to generate the successive deci-

sion updates, resulting in a categorisation sensitivity d’ of 1.48 ± 0.05. This sensitivity did not differ 

significantly from the categorisation sensitivity observed when pooling across easy/difficult trials in 

the original study (1.48 ± 0.11, two-sample t-test, t30 = 0.1, p > 0.5). The experiment consisted of 

400 trials, divided into 8 sessions of 50 trials. The experimental condition of interest described 

above consisted of 200 trials. 

 A Neuroscan system with NuAmps digital amplifiers was used to record EEG signals from 35 

Ag/AgCl electrodes, located at FP1, FP2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, 

Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, 

O2, plus four additional electrodes used in a bipolar montage as horizontal and vertical electro-

oculograms (EOG), and two electrodes located at the mastoids used as reference. All electrode 

impedances were kept below 5 kΩ. EEG signals were recorded at a sampling rate of 1000 Hz and 

high-pass filtered online at 0.1 Hz. We applied the same EEG pre-processing pipeline as for the 

original study, resulting in an average of 185 ± 5 trials per participant in the experimental condition 

of interest described above.  
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