Legends to Supplementary Figures

Legend to Figure S1. Analysis of the genetic interaction between 53BP1 and ATM in organismal growth and development. A, body weight of 8 week-old Trp53bp1^{-/-}/Atm^{-/-} and control female mice. Similar data was obtained for males (not shown). B, representative microphotographs of mice in A. C, thymi of the indicated genotypes were disaggregated and the number of cells counted. D, for immunophenotyping, thymocytes were stained with antibodies to CD4 and CD8 and analyzed by flow cytometry; a representative experiment is shown. The percentage of double positive $(CD4^+/CD8^+)$ thymocytes and more mature single-positive $(CD4^+ \text{ or } CD8^+)$ thymocytes are indicated. E. spleens were disaggregated and the number of splenocytes counted after red cell lysis. To calculate the number of T cells, splenocytes were stained with antibodies to CD4 and CD8 and the number of $CD4^+$ and $CD8^+$ cells was added. F. representative example of staining as described in F. G, to calculate the number of B cells, splenocytes were counted and stained with antibodies to B220 and IgM to determine the percentage of B220⁺/IgM⁺ cells (B cells) within the population. H, representative example of spleens stained as described in G. I, H/E staining of testis from 8 week-old Atm^{-/-} and Trp53bp1^{-/-} $/Atm^{-/-}$ mice reveals severe germ cell depletion. All bars in the figure represent the average and standard deviation of 3-5 mice per genotype.

Legend to Figure S2. Analysis of ploidy in $Trp53bp1^{-/-}/Atm^{-/-}$ lymphomas. A, histograms indicate the distribution of the number of chromosomes per metaphase in two $Atm^{-/-}$ and six $Trp53bp1^{-/-}/Atm^{-/-}$ thymic lymphomas. At least 20 metaphases per tumor were

analyzed. B, representative examples of euploid (top) or modestly an euploidy (bottom) $Trp53bp1^{-/-}/Atm^{-/-}$ tumor metaphases.

Legend to Figure S3. Analysis of $Trp53bp1^{-/-}/Atm^{-/-}$ thymic lymphomas by TCR α/δ locus FISH. Representative metaphases from a control $Atm^{-/-}$ lymphoma and five $Trp53bp1^{-/-}/Atm^{-/-}$ lymphomas hybridized with the indicated probes. "Split" BAC signals and amplification of sequences upstream to the TCR α/δ locus were found in all tumors.

Legend to Figure S4. SKY analysis of two $Trp53bp1^{-/-}/Atm^{-/-}$ lymphomas. A, representative SKY hybridization showing two clonal translocations: t(12,14) and t(14,15).

Legend to Figure S5. Cell cycle analysis of resting lymphocytes after IR. Splenocytes were exposed to IR (2 Gy) and harvested at the indicated timepoints for staining with propidium iodide and analysis by flow cytometry. Data from two independent experiments is shown. The percentage of cells in subG1 (blue) is an indicator of cell death.

Legend to Figure S6. Aberrant *Vd2-Dd1/Dd2-Jd1* coding junctions are not detected in $Trp53bp1^{-/-}/Atm^{-/-}$ mice. Coding junctions were PCR amplified from thymic DNA of 7-day old mice of the following genotypes: wt (n=3 mice), $Trp53bp1^{-/-}$ (n=4 mice), $Atm^{-/-}$ (n=3 mice) and $Trp53bp1^{-/-}/Atm^{-/-}$ (n=4 mice). For reference, a rearranged coding junction

is given at the top of the figure. Dd2 and Dd1 gene segments are in red; nucleotide additions are in blue. A single large deletion is indicated in parentheses.

Legend to Figure S7. Aberrant *Vd5-Dd2* Recombination Signal Junctions are not detected in *Trp53bp1^{-/-}/Atm^{-/-}* mice. Signal junctions were PCR amplified from thymic DNA of 7-day old mice of the following genotypes: wt (n=2 mice), *Trp53bp1^{-/-}* (n=2 mice), *Atm^{-/-}* (n=2 mice) and *Trp53bp1^{-/-}/Atm^{-/-}* (n=2 mice). Top, *Vd5* and *Dd2* RSSs and flanking coding sequences. Heptamer and nonamer elements are indicated in red; coding sequences are in boldface. Below, sets of sequences from wild-type, *Trp53bp1^{-/-}, Atm^{-/-}*, and *Trp53bp1^{-/-}/Atm^{-/-}* joints. The number of occurrences of each sequence is indicated at right. N additions are indicated in blue; deletions are indicated by parentheses.

Legend to Figure S8. Histograms showing the frequency distribution of deletions from each coding end (A-D) and signal end (E-F) analyzed. No clear differences across genotypes are observed. No imprecise recombinant junction was counted more than once, even if it was represented more than once among the PCR products.

Legend to Figure S9. Cell cycle analysis of activated (cycling) lymphocytes after IR. Splenocytes were activated with α -CD40+IL-4 for two days, exposed to IR (2 Gy) and harvested at the indicated timepoints. Cells were stained with propidium iodide and analyzed by flow cytometry. Data is representative of five independent experiments.

Legend to Figure S10. Analysis of genomic stability in splenic B or T cells treated with olaparib. Cells of the indicated genotypes were activated with either α -CD40+IL-4 (B cells) or concanavalin A (T cells) and treated with 1 μ M olaparib or vehicle for 24 hours prior to fixation. Colcemid was added in the last four hours. A, percentage of B cell metaphases containing chromosomal aberrations; B, number of aberrations per B cell metaphase. C, number of chromatid breaks per B cell metaphase. D, percentage of T cell metaphases containing chromosomal aberrations; E, number of aberrations per T cell metaphase. F, number of chromatid breaks per T cell metaphase. G, Representatie examples of olaparib-treated B cell metaphases. Yellow arrows point to chromosome breaks; white arrows point to chromatid breaks and fusions.

Legend to Figure S11. Analysis of the G2/M checkpoint. α -CD40/IL-4-activated B cells were harvested one hour after exposure to 2 Gy of IR, stained with a FITC-labeled antibody to phospho(P)-histone H3 (Ser10) and propidium iodide (PI) and analyzed by flow cytometry. Mock-irradiated controls were harvested in parallel. A, Percentage of P-H3(Ser10)⁺ cells in irradiated cultures, normalized to mock-irradiated controls. Individual dotplots for the same cultures are shown in (B). The average and standard deviation of the number of P-H3(Ser10)⁺ cells in the 3 *Atm*^{-/-} and the 3 *Trp53bp1*^{-/-}/*Atm*^{-/-} mice in A-B is shown in C. Data was normalized to untreated cells.

Legend to Figure S12. A second primer set detects deletions at hybrid V(D)J recombination junctions in $Trp53bp1^{-/-}/Atm^{-/-}$ thymic DNA from 7 day-old mice. A, assay

for $D\beta 2-V\beta 14$ hybrid joints in $Trp53bp1^{-/-}/Atm^{-/-}$ DNA using a primer set in which nested primer pairs are equidistant from the expected recombinant junction (see methods). Representative assays for two mice of each genotype are shown, representing 3 experiments. B-C, diagrams and sequences of aberrant hybrid joints, respectively, as described in Figure 5. N additions are shown in blue; potential microhomologies are underlined and size of deletions is shown in parenthesis.

Atm^{-/-}

Trp53bp1^{-/-}/Atm^{-/-}

Trp53bp1^{-/-}/Atm^{-/-}

Trp53bp1-'-/Atm-'-

Cα RP23-304L21

Trp53bp1-'-/Atm-'-

В

Α

Karyotype of *Trp53bp1^{-/-}/Atm^{-/-}* lymphomas

Tumor ID	# metaphases	clonal translocations (# metaphases)
TL #37	7	t(12;14) ⁽⁷⁾ ; t(14;15) ⁽⁷⁾
TL #27	7	t(12;14) ⁽⁷⁾ ; t(14;15) ⁽⁷⁾

experiment#1

DNA content (propidium iodide)

DNA content (propidium iodide)

Vδ2–1-Dδ1/Dδ2-Jδ1

 $CTCAGGCACTTACCTCTGTGGAGGGAAAG-----GTGGCATAT----CTACCGACAAACTCGTCTTTGGACAAGGA D\delta 2 ATCGGAGGGATACGAG$

wt (17)

CTCAGGCACTTACCTCTGTGGAGGGAAAC—ATCGGAGGGATACGAG—CTCCCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGCTTACCCGGAGGGATACGAGCACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGG-ATATCGGAGGGGGCGG-CTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAGCGAGGCGGAGGGATGGCTACCGACAAACTCGTCTTTGGACAAGGA
$CTCAGGCACTTACCTCTGTGGAGGGAAAG- {\tt TGGCATATCCCCCAAAT {\tt ATCGGAGGGATACGAG} - {\tt CTACCGACAAACTCGTCTTTGGACAAGGAGGAAAG} = {\tt CTACCGACAAACTCGTCTTTGGACAAGGAGGAAAG} = {\tt CTACCGACAAACTCGTCTTTGGACAAGGAGGAAAG} = {\tt CTACCGACAAACTCGTCTTTGGACAAGGAGGAAAG} = {\tt CTACCGACAAACTCGTCTTTGGACAAGGAAAG} = {\tt CTACCGACAAACTCGTCTTTGGACAAGGAAAG} = {\tt CTACCGACAAACTCGTCTTTGGACAAGGAAAG} = {\tt CTACCGACAAACTCGTCTTTGGACAAGGAAAGGAAAGAAGAAGGAAAGAAGAAGAAGAAG$
CTCAGGCACTTACCTCTGTGGAGGGAAAG-GC-GGCAT-ATCGGAGGGATACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGCTCCTCGGAGGGATACGAGTTCCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGCGACGGAGGGATACGAGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGGGGAGGGCCCTCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGATCGGAGGGATACGAGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGGGCCTCCGGAGGGATACGAGCTACCGACAAACTCGTCCTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGATATCGGAGGGATACGG
CTCAGGCACTTACCTCTGTGGAGGGAG
CTCAGGCACTTACCTCTGTGGAGGGAAGTGGCAT-ATCGGAGGGATACGAGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGACGTGGCATAT-GG-GGGATACGAG-CTTGG-TACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGTGAGACCGACAAACTCGTCTTTGGACAAGGA

Atm-/- (18)

CTCAGGCACTTACCTCTGTGGGAGATCGGAGGGAT	CGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAG-AG-GGCGGAGGGATA	TCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAG-TTTCG-GGC-CAT-ATCGGAGGGA	TACGAG-T—CGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAG-AT-G-ATCGGAGGGATA-G	CTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGCCCGGAGGGATACG	AGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAGGGATAC-	CGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGCTG	CTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGTATAT-CGGAGGGA	TACGA—AGGGCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAATCGGAGGGATAC	GAGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAGGCCGGAGGGATAC	GAGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAACAT-CGGAGG	CTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGTTTGGAAGGG	-CCCAGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAACGGAGGGATAC	CGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAGAT	GACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGCTCCGGGGGGATAC	GAGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGGGACATAT-CGGAGGGATA-	AGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGAGGGGCCGGAGGGATA-	GAGACGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAGAT	GACAAACTCGTCTTTGGACAAGGA

Trp53BP1-/- (8)

CTCAGGCACTTACCTCTGTGGAGGGAAAG—GCA-AATCGGAGGGATACGAGCTACCGACAAACTCGTCTTTGGACAAG
CTCAGGCACTTACCTCTGTGGAGGGAAAGACGGAGGGATACGAGCTACCGACAAACTCGTCTTTGGACAAG
CTCAGGCACTTACCTCTGTGGAGGGAGTGGCATATCGGAGGGATACGAGACCACCGACAAACTCGTCTTTGGACAAG
CTCAGGCACTTACCTCTGTGGAGGGAAAG-AGGGAAAACGGAGGGATACGAGCTGTCCGACAAACTCGTCTTTGGACAAG
CTCAGGCACTTACCTCTGTGGAGGGAAAGCTTTCCCG-AT-ATCGGAGGGATACGAGAATACCGACAAACTCGTCTTTGGACAAG
CTCAGGCACTTACCTCTGTGGAGGGCATATCGGAGGGATACGAGCTACCGACAAACTCGTCTTTGGACAAG
CTCAGGCACTTACCTCTGTGGAGGGAAA-C-GTGGCATATAGGGGATACGAGCTACCGACAAACTCGTCTTTGGACAAG
CTCAGGCACTTACCTCTGTGGGGGGGAAGTGGGGATACGAGCTACCGACAAACTCGTCTTTGGACAAG

Atm-/-, Trp53bp1-/- (18)

CTCAGGCACTTACCTCTGTGGAGGGAAAGC-CACGGAGGGATACGAGAGGGCCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAGGGCATATCGGAGGGATACTACCGACAAACTCGTCTTTGGACAAGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAAGACAAGACAAGACAAGACAAGGACAAACACAAGACAAGACAAGACAAGACAAGACAAACACAAGACAAACACAAGACAAGACAACA
CTCAGGCACTTACCTCTGTGGAGGGAAAGATATCGGAGGGATACG-CCTCTCG-CTACCGACAAACTCGTCTTTGGACAAGACAAAGACAAGACAAGACAAGACAAGACAAGACAAGACAAGACAAGACAAGACAAGACAAGACAAGACAAGACAAAGACAAAGACAAAGACAAAGACAAAGACAAAGACAAAGACAAAGACAAAGACAAAACACAAAGAACAAAGACAAAGACAAAGACAAAGACAAAGAAACAAGAAACACAAAGAAG
CTCAGGCACTTACCTCTGTGGAGGGATCGGAGGGATACGCTACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAA-TTGGGGAGGGTGGCATAT-ATCGGAGGGATACCGACAAACTCGTCTTTGGACAAGGA
${\tt CTCAGGCACTTACCTCTGTGGAGGGAAAGA{\tt GGC}{\tt CGGAGGGATACG}{\tt CCG}{\tt CTACCGACAAACTCGTCTTTGGACAAGGA}$
CTCAGGCACTTACCTCTGTGGAGGGAAAGCTGGCCCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAAAAGAGATCGGAGGACCGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAATATCGGAGGGATACGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTNCCTCTGTGGAGGGAAA————————————————————————
CTCAGGCACTTACCTCTGTGGAGGGAATAT-CGGAGGGATACGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAGGTGG-T-ATCGGAGGGATAAAGAACACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGCCTATATCGGAGGGATACGAGAACGACAAACTCGTCTTTGGACAAGGA
CTCAGGCACTTACCTCTGTGGAGGGAA–GAACGGGGGGCACCCCGAGGGTCGACAAACTCGTCTTTGGACAAGGA
eq:ctcangcacttacctctgtggagggaaag-ctggcatatcggagggatacgagctaccgacaaactcgtctttggacaaggaaggaaagga
$CTCAGGCACTTACCTCTGTGGAGGGAAAG-CCCCGCC \\ TATCGGAGGG \\ TTCCCG \\ CTACCGACAAACTCGTCTTTGGACAAGGACAAGGACAAGGACAAACTCGTCTTTGGACAAGACAAGACAAGACAAGAACAAGAAG$
CTCAGGCACTTACCTCTGTGGAGGGAAAGATCG-ATTTGGCCCATAT-ATCGGAGGGATGACAAACTCGTCTTTGGACAAGGA
$GTGGGTTGATATAATGATGCTATCACTTGGGAAATATGGAGTAGGGGGATTCACCATCT (-351) \\ CTACCGACAAACTCGTCTTTGGACAAGGA$

Vδ5RSS	coding	N	coding		Dô2RSS
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG	TACCCCGA.	c	TCGTATCCC	CCGA	CACGGTG CTACAGAGCTTT GCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG
wt (106)					
CTCCTAAACTGTGCTCCAGGGGTTTGGGTACAGGCTCCCTGGGCACCTGCAC CACAGTG					CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 78
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		С			CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC ACAGTG		т			CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		A			CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC ACAGTG		CG			CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC AGTG		GT			CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGGGGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		GA			CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
		AG			
CTCCTARACIGICTCCACGGGIIIGGGI ACAGGCICCCIGGGCACCIGCACCACIG		GG			
CTCCTAAACTGTGCTCCAGGGGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGGG		CC			CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 6
CTCCTAAACTGTGCTCCAGGGGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCACAGTG		GG	A		CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		GC	r		CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC ACAGTG		AA	СТ		CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		GG	GT		CACGGTG CTACAGAGCTTTGCAAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 2
CTCCTAAACTGTGCTCCAGG GGTTTGGGTACAGGCTCCCTGGGCACCTGCACCACAGTG		GG	ICI		CACGGTG CTACAGAGCTTTGCAAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGT .	(-1)	A			CACGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG1
CTCCTAAACTGTGCTCCAGGGGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		TG		(-2)	CGGTG CTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
		GG		(-2)	
		GI		(-2)	
	(-3)	<u>т</u> т		(-2)	
	(-6)	CC	CTT.	(-2)	
	(-)				
Trp53bp1-/- (113)					
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG					CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 90
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		С			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		GG			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		TC			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		CT			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 4
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		CC			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 5
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		GA			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 3
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		TC	С		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG1
CTCCTAAACTGTGCTCCAGGGGTTTGGGTACAGGCTCCCTGGGCACCTGCACCAGTG		GT	т	(CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG I
	())	CG	~~	(-2)	CGGTGCTACAGAGCTTTGCAAAAACCTTTCCCTGGGCTTTGTATCACGTGTCTCTGAG2
	(-2)	AA		(2)	
CTCCTAAACTGTGCTCCAGGGGTTTGGGTACAGGCTCCCTGGGCACCTGCACCACA	(-3)			(-2)	CGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACT	(-49)	AGC	TCGTATCCCI	CCGAI	CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG1
<i>Atm</i> ^{-/-} (96)					
CTCCTAAACTGTGCTCCAGGGGTTTGGGTACAGGCTCCCTGGGCACCTGCACCACAGTG					CACGGTGCTACAGAGCTTTGCAAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG81
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		С			CACGGTGCTACAGAGCTTTGCAAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 2
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACAGTG		CC			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 3
CTCCTAAACTGTGCTCCAGGGGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		GG			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 2
		CG	i I		
		CI			
		GI			
		GC A C	CCA		
CTCCTAAACIGIGCICCAGGGGTIIGGGIACAGGCICCCIGGGCACCIGCACCAGIG		AC	CGA	(-80)	
				(00)	
<i>Trp53bp1</i> ^{-/-} , <i>Atm</i> ^{-/-} (109)					
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACAGTG		_			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 84
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		G			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTUUTAAAUTGTGUTUUAGG GGTTTGGGT AUAGGUTUUUTGGGUAUUTGUAUCAUGAGG					
		A	*		
		C	•		
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACAGGG		C	- P		
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		T			CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCACAGTG		G	3		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 2
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCACAG.	(-2)	G	3		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCACAGTG		A	GC		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		T	ľG		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC CACAGTG		GI	ATTT		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		A	AACT		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCACAGTG		C	CCCGC		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		G	TTA		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAGTG		AZ	AA	(-1)	.ACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACCAC (-4)	G	FTGCC		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 2
CTCCTAAACTGTGCTCCAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCACC(-6)	CO	JC DECARCO		CACGGTGCTACAGAGCTTTGCAAAAACCTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CICCIAAAUIGTGUTCUAGG GGTTTGGGT ACAGGCTCCCTGGGCACCTGCAC	-/)	- T (FIGATCC	()	CALGGIGUTALAGAGUTTTGCAAAAACUTTCCCTGGGCTTTGTATCACGTGTCTCTGAG 1
CICCIAAACIGTGUTULAGG GGTTTGGGT ACAGGUTUCUTGG	/)			(-3)	Geigeialagagettt <mark>gcaaaaa</mark> cetteeetgggetttgtateaegtgTCTCTGAG I

DNA content (propidium iodide)

(TTAGGG)₃ DAPI

В

DNA content (propidium iodide)

experiment #2

DNA content (propidium iodide)

Α

Intererosses (II	17 Inters		
Genotype	Observed (%)	Expected (%)	Ratio
53BP1 ^{+/+}	5 (4.9%)	6.4 (6.25%)	1/16
^{′+} 53BP1 ^{+/-}	15 (14.7%)	12.8 (12.5%)	1/8
53BP1 ^{-/-}	4 (3.9%)	6.4 (6.25%)	1/16
. / .			
$53BP1^{+/+}$	7 (6.9%)	12.8 (12.5%)	1/8
⁻ 53BP1 ^{+/-}	30 (29.4%)	25.5 (25%)	1/4
53BP1 ^{-/-}	13 (12.7%)	12.8 (12.5%)	1/8
53BP1 ^{+/+}	5 (4 9%)	64(625%)	1/16
53BP1 ^{+/-}	13 (12.7%)	12.8 (12.5%)	1/8
53BP1 ^{-/-}	10 (9.8%)	6.4 (6.25%)	1/16
Total	102		
	Genotype 53BP1 ^{+/+} 53BP1 ^{+/-} 53BP1 ^{-/-} 53BP1 ^{+/+} 53BP1 ^{+/-} 53BP1 ^{-/-} 53BP1 ^{+/+} 53BP1 ^{-/-} 53BP1 ^{-/-} 53BP1^{-/-} 53BP1^{-/-} 53BP1^{-/-}	Intererosses (n 15 interest Genotype Observed (%) $53BP1^{+/+}$ 5 (4.9%) $+$ $53BP1^{+/-}$ 15 (14.7%) $53BP1^{-/-}$ 4 (3.9%) $ 53BP1^{+/-}$ 30 (29.4%) $53BP1^{-/-}$ 13 (12.7%) $ 53BP1^{+/-}$ 13 (12.7%) $ 53BP1^{+/-}$ 13 (12.7%) $ 53BP1^{-/-}$ 10 (9.8%) Total 102	Intererosses (n 1) inters)GenotypeObserved (%)Expected (%) $53BP1^{+/+}$ 5 (4.9%)6.4 (6.25%) $53BP1^{+/-}$ 15 (14.7%)12.8 (12.5%) $53BP1^{-/-}$ 4 (3.9%)6.4 (6.25%) $53BP1^{+/+}$ 30 (29.4%)25.5 (25%) $53BP1^{+/-}$ 13 (12.7%)12.8 (12.5%) $53BP1^{+/+}$ 13 (12.7%)12.8 (12.5%) $53BP1^{+/+}$ 13 (12.7%)12.8 (12.5%) $53BP1^{+/-}$ 13 (12.7%)6.4 (6.25%) $53BP1^{+/-}$ 10 (9.8%)6.4 (6.25%)Total102

Table S1. Mendelian ratios in liveborn mice from $53BP1^{+/-}$ /ATM^{+/-} intercrosses (n=19 litters)

Mouse ID	Genotype	HU dose (mM)	# metaphases analyzed	# metaphases with aberrations (%)	total # aberrations (aberrations per metaphase)	types of aberrations ^a	
Stimulation	#1				F m F		
M#1	wt	-	30	0 (0.0%)	0 (0.0)	-	
M#2	$Atm^{-/-}$	-	30	19 (63.3%)	36 (1.2)	19 CB, 17 cb	
M#1	wt	0.25 mM	30	5 (16.7%)	6 (0.2)	5 CB, 1 cb	
M#2	Atm ^{-/-}	0.25 mM	30	21 (70.0%)	76 (2.5)	24 CB, 52 cb	
Stimulation	#2						
M#32	wt	-	30	0 (0.0%)	0 (0.0)	-	
M#28	Trp53bp1 ^{-/-}	-	30	6 (20.0%)	6 (0.2)	6 CB	
M#30	Atm	-	30	16 (53.3 %)	20 (0.7)	12 CB, 7 cb, 1 CR	
M#34	Trp53bp1 ^{-/-} /Atm ^{-/-}	-	30	21 (70.0%)	43 (1.4)	27 CB, 16 cb	
M#32	wt	0.25 mM	30	10 (33.3%)	14 (0.5)	10 CB, 4 cb	
M#28	Trp53bp1 ^{-/-}	0.25 mM	30	17 (56.7%)	29 (1.0)	15 CB, 13 cb, 1 CR	
M#30	Atm ²	0.25 mM	30	19 (63.3%)	49 (1.6)	20 CB, 29 cb	
M#34	Trp53bp1'/Atm'	0.25 mM	30	18 (60.0%)	42 (1.4)	15 CB, 27 cb	
Stimulation	#3						
M#1	wt	-	30	2 (6.7%)	2 (0.0)	1 CB, 1 CR	
M#52	Trp53bp1 ^{-/-}	-	30	4 (13.3%)	4 (0.1)	3 CB, 1 cb	
M#54	Atm ^{-/-}	-	30	16 (53.3%)	21 (0.7)	17 CB, 4 cb	
M#37	Trp53bp1 ^{-/-} /Atm ^{-/-}	-	30	13 (43.3%)	20 (0.7)	12 CB, 8 cb	
M#1	wt	0.25 mM	30	8 (26.7%)	13 (0.4)	6 CB, 7 cb	
M#52	Trp53bp1 ^{-/-}	0.25 mM	30	12 (40.0%)	17 (0.6)	12 CB, 5 cb	
M#54	Atm ^{-/-}	0.25 mM	30	17 (56.7%)	27 (0.9)	15 CB, 12 cb	
M#37	Trp53bp1 ^{-/-} /Atm ^{-/-}	0.25 mM	30	22 (73.3%)	61 (2.0)	18 CB, 43 cb	
Stimulation	#4						
M#1	wt	-	30	0 (0.0%)	0 (0.0)	-	
M#83	Trp53bp1 ^{-/-}	-	30	5 (16.7%)	5 (0.2)	4 CB, 1 cb	
M#82	Atm ^{-/-}	-	30	10 (33.3%)	11 (0.4)	6 CB, 2 cb, 3 CR	
M#72	$Trp53bp1^{-/-}/Atm^{-/-}$	-	30	15 (50.0%)	24 (0.8)	19 CB, 4 cb, 1 CR	
M#1	wt	0.25 mM	30	4 (13.3%)	5 (0.2)	1 CB, 1 cb	
M#83	Trp53bp1 ^{-/-}	0.25 mM	30	5 (16.7%)	5 (0.2)	4 CB, 1 cb	
M#82	$Atm^{-/-}$	0.25 mM	30	19 (63.3%)	67 (2.2)	10 CB, 57 cb	
M#72	Trp53bp1 ^{-/-} /Atm ^{-/-}	0.25 mM	30	19 (63.3%)	45 (1.5)	16 CB, 29 cb	
Summary (n=4 experiments)							
	wt	-	90	2 (2.2%)	6 (0.1)	3 CT, 2 ACT, 1 cb	
	Trp53bp1 ^{-/-}	-	90	15 (16.7%)	17 (0.2)	10 CT, 5 ACT, 2 cb	
	Atm ^{-/-}	-	90	42 (46.7%)	62 (0.7)	33 CT, 18 ACT, 11 cb	
	$Trp53bp1^{-/-}/Atm^{-/-}$	-	90	49 (54.4%)	95 (1.1)	43 CT, 24 ACT, 28 cb	
	wt	0.25 mM	120	27 (22.5%)	38 (0.32)	22 CB, 16 cb	
	Trp53bp1 ^{-/-}	0.25 mM	90	34 (37.8%)	52 (0.58)	33 CB, 19 cb	
	Atm ^{-/-}	0.25 mM	120	76 (63.3%)	219 (1.83)	69 CB, 150 cb	
	Trp53bp1 ^{-/-} /Atm ^{-/-}	0.25 mM	90	59 (65.6%)	148 (1.64)	49 CB, 99 cb	

Table S2. Analysis of genomic stability in HU-treated B lymphocytes deficient for 53BP1 and/or ATM. CD43⁻ splenocytes were activated with α -CD40+IL-4 and treated with HU for 16 hours prior to fixation. Metaphase spreads were stained with a telomere probe prior to quantification of aberrations

^aCB, chromosome break; cb, chromatid break; CR, chromosomal rearrangement

Table S3. Analysis of genomic stability in α -CD40+IL-4activated B lymphocytes deficient for 53BP1 and/or ATM. Metaphases were obtained 24 hr after IR and stained with a telomere probe. For data on indivual experiments, see Table S.

Genotype	IR dose (Gy)	# mice	# metaphases	% metaphases with aberrations	total # aberrations (aberrations per metaphase)	p value (# aberrations per metaphase)
wt	mock	6	180	2.8 ± 3.3	$0.0{\pm}0.0$	
Trp53bp1 ^{-/-}	mock	6	180	16.1 ± 3.3	0.2±0.1	p=0.004 (vs wt)
$Atm^{-/-}$	mock	6	180	45 ± 10.7	0.8±0.3	p=0.02 (vs wt)
<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	mock	6	180	46.1 ± 14.4	0.9±0.4	p=0.0019 (vs wt); p=0.005 (vs <i>Trp53bp1</i> ^{-/-}); p=0.74 (vs <i>Atm</i> ^{-/-})
wt	2 Gy	6	180	39.4 ± 8.5	0.9±0.2	
Trp53bp1 ^{-/-}	2 Gy	6	180	75.6 ± 8.6	3.6±1.5	p=0.006 (vs wt)
Atm ^{-/-}	2 Gy	6	172	93.3 ± 6.3	4.7±1.1	p=0.0002 (vs wt)
<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	2 Gy	6	180	96.1 ± 3.8	6.4±1.8	p=0.0006 (vs wt); p=0.01 (vs <i>Trp53bp1^{-/-}</i>); p=0.08 (vs <i>Atm^{-/-}</i>)

Table S4. Analysis of genomic stability in α -CD40/IL-4 activated B cells deficient for 53BP1 and/or ATM. Metaphase spreads were obtained 24 hr after IR and stained with a telomere probe.

Mouse ID	Genotype	IR dose (Gy)	# metaphase s analyzed	# metaphases with aberrations (%)	total # aberrations (aberrations per metaphase)	types of aberrations ^a
Stimulation	ı#1				• /	
M#32	wt	mock	30	0 (0.0%)	0 (0.0)	-
M#28	Trp53bp1 ^{-/-}	mock	30	6 (20.0%)	8 (0.3)	6 CT, 2 ACT
M#30	Atm ^{-/-}	mock	30	16 (53.3%)	21 (0.7)	11 CT, 5 ACT, 5 cb
M#34	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	mock	30	21 (70.0%)	44 (1.5)	16 CT, 12 ACT, 16 cb
M#32	wt	2 Gy	30	15 (50%)	24 (0.8)	15 CT, 9 ACT
M#28	Trp53bp1 ^{-/-}	2 Gy	30	23 (76.7%)	73 (2.4)	40 CT, 27 ACT, 6 cb
M#30	Atm	2 Gy	22	22 (100%)	117 (5.3)	62 CT, 43 ACT, 12 cb
M#34	Trp53bp1 Atm	2 Gy	30	30 (100%)	1890 (6.0)	/6 C1, 6/ AC1, 3/ cb
Stimulation	1#2		•			
M#1	wt	mock	30	2 (6.7%)	6 (0.2)	3 CT, 2 ACT, 1 cb
M#52	Trp53bp1	mock	30	4 (13.3%)	4(0.1)	1 CT, 2 ACT, 1 cb
M#34 M#37	$Atm T_{m} 52 hn 1^{-/-} \Lambda tm^{-/-}$	mock	30	10(33.3%) 12(42.2%)	24(0.8)	15 CI, 5 ACI, 4 cD
M#1	wt	2 Gy	30	$\frac{13(43.3\%)}{11(36.7\%)}$	$\frac{23(0.8)}{32(1.1)}$	<u>9 C1, 0 AC1, 8 c0</u>
M#52	$Trn 53hn 1^{-/-}$	2 Gy 2 Gy	30	25 (83 3%)	188(63)	92 CT 68 ACT 28 ch
M#54	$Atm^{-/-}$	2 Gy 2 Gy	30	27 (90.0%)	126(4.2)	64 CT 41 ACT 21 cb
M#37	$Trn53bn1^{-/-}$ Atm ^{-/-}	2 Gy	30	27 (90.0%)	159 (5.3)	72 CT, 53 ACT, 34 cb
Stimulation	ı#3	-)				, ,
M#1	wt	mock	30	0 (0.0%)	0 (0.0)	-
M#83	Trp53bp1 ^{-/-}	mock	30	5 (16.7%)	5 (0.2)	3 CT, 1 ACT, 1 cb
M#82	Atm ^{-/-}	mock	30	10 (33.3%)	17 (0.6)	7 CT, 8 ACT, 2 cb
M#72	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	mock	30	15 (50.0%)	28 (0.9)	18 CT, 6 ACT, 4 cb
M#1	wt	2 Gy	30	10 (33.3%)	15 (0.5)	11 CT, 3 ACT, 1 cb
M#83	Trp53bp1	2 Gy	30	25 (83.3%)	86 (2.9)	52 CT, 30 ACT, 4 cb
M#82	Atm	2 Gy	30	28 (93.3%)	94 (3.1)	48 CT, 28 ACT, 18 cb
M#/2 Stimulation	<i>Trp53bp1'</i> Atm'	2 Gy	30	29 (96.7%)	108 (3.6)	52 C1, 44 AC1, 12 cb
	1#4	1	20	0 (0 00()	0 (0 0)	
M#3 M#7	Wt Tun 5.2 hm 1 ^{-/-}	mock	30	0(0.0%)	0(0.0) 5(0.2)	-
IVI#/ M#8	1rp550p1 Atm ^{-/-}	mock	30	4(13.3%) 14(46.7%)	3(0.2)	2 CI, 2 ACI, 1 CO
M#5	$Trn 53hn l^{-/-} Atm^{-/-}$	mock	30	10(33.3%)	14(0.5)	6 CT 4 ACT 4 cb
M#3	wt	2 Gv	30	11 (36 7%)	34 (1 1)	17 CT 9 ACT 8 cb
M#7	$Trp53bp1^{-/-}$	2 Gy	30	19 (63.3%)	84 (2.8)	49 CT. 32 ACT. 3 cb
M#8	Atm ^{-/-}	2 Gy	30	30 (100%)	188 (6.3)	87 CT, 79 ACT, 22 cb
M#5	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	2 Gy	30	29 (96.7%)	254 (8.5)	136 CT, 92 ACT, 26 cb
Stimulation	n#5					
M#20	wt	mock	30	1 (3.3%)	1 (0.03)	1 CT
M#10	Trp53bp1 ^{-/-}	mock	30	4 (13.3%)	8 (0.3)	6 CT, 2 ACT
M#24	Atm ^{-/-}	mock	30	16 (53.3%)	32 (1.1)	15 CT, 6 ACT, 11 cb
M#27	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	mock	30	15 (50.0%)	31 (1.0)	22 CT, 7 ACT, 2 cb
M#20	wt	2 Gy	30	15 (50.0%)	30 (1.0)	19 CT, 11 ACT
M#10	Trp53bp1 ^{-/-}	2 Gy	30	24 (80.0%)	134 (4.5)	78 CT, 51 ACT, 5 cb
M#24	Atm	2 Gy	30	25 (83.3%)	145 (4.8)	84 CT, 58 ACT, 3 cb
M#27	Trp53bp1' Atm'	2 Gy	30	28 (93.3%)	241 (8.0)	131 CT, 86 ACT, 24 cb
Stimulatio	on #6		20	2 ((70/)	2 (0.0()	2 OT
IVI#1 M#44	Wl Trn 53hn 1 ^{-/-}	mock	30 20	2 (0.7%) 6 (20.0%)	2(0.06)	2 UI 7 CT 4 ACT
1V1#44 M#30	1 rp550p1 Atm ^{-/-}	mock	30 30	0 (20.0%) 9 (30.0%)	11(0.4) 16(0.5)	$7 \cup 1, 4 \cup 1$ 12 CT 2 ACT 2 ab
M#30	$Trn 53hn 1^{-/-} \Delta tm^{-/-}$	mock	30	9 (30.0%)	18 (0.5)	12 CI, 2 ACI, 2 CU 10 CT 5 ACT 3 ch
M#1	wt	2 Gv	30	9 (30.0%)	27 (0.9)	10 CT 9 ACT 8 ch
M#44	$Trn53hn1^{-/-}$	2 Gy 2 Gy	30	20 (66.7%)	83 (2.8)	36 CT, 32 ACT 15 ch
M#30	$Atm^{-/-}$	$\frac{1}{2}$ Gy	30	28 (93.3%)	138 (4.6)	74 CT, 61 ACT, 3 cb
M#39	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	2 Gy	30	30 (100.0%)	205 (6.8)	104 CT, 98ACT, 3 cb

^aCT, centric; ACT, acentric; cb, chromatid break

Mouse	Genotype	IR dose	# metaphases	# metaphases with	total # aberrations (aberrations	types of aberrations ^a		
ID		(09)	analyzed	aberrations	per metanhase)			
Stimulati	ion #1			(70)	inetapitase)			
M#3	wt	mock	30	0 (0.0%)	0 (0.0)	-		
M#7	$Trn53hn1^{-/-}$	mock	30	3 (10%)	3(01)	2CT 1 ACT		
M#8	$Atm^{-/-}$	mock	30	13 (43.3%)	23 (0.8)	13 CT. 7 ACT. 3 cb		
M#5	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	mock	30	14 (46.7%)	23 (0.8)	11 CT, 3 ACT, 9 cb		
M#3	wt	2 Gy	30	14 (46.7%)	38 (1.3)	18 CT, 19 ACT, 1 cb		
M#7	Trp53bp1-/-	$\frac{1}{2}$ Gy	30	18 (60.0%)	56 (1.9)	22 CT. 34 ACT		
M#8	$Atm^{-/-}$	2 Gy	30	27 (90%)	100 (3.3)	54 CT, 42 ACT, 4 cb		
M#5	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	2 Gy	30	30 (100%)	129 (4.3)	69 CT, 49 ACT, 11 cb		
Stimulati	ion #2			· · · ·		i		
M#20	wt	mock	30	1 (3.3%)	1 (0.03)	1 CT		
M#10	Trp53bp1 ^{-/-}	mock	30	2 (6.7%)	3 (0.1)	2 CT, 1 ACT		
M#24	$Atm^{-/-}$	mock	30	12 (40.0%)	17 (0.6)	12 CT, 4 ACT, 1 cb		
M#27	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	mock	30	14 (46.7%)	24 (0.8)	17 CT, 4 ACT, 3 cb		
M#20	wt	2 Gy	30	12 (40.0%)	29 (1.0)	21 CT, 8 ACT		
M#10	Trp53bp1 ^{-/-}	2 Gy	30	19 (63.3%)	110 (3.7)	59 CT, 38 ACT, 13 cb		
M#24	Atm ^{-/-}	2 Gy	30	27 (90.0%)	110 (3.7)	58 CT, 42 ACT, 10 cb		
M#27	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	2 Gy	30	24 (80%)	118 (3.9)	8 CT, 41 ACT, 9 cb		
Stimulati	ion #3							
M#1	wt	mock	30	3 (10%)	3 (0.1)	3 CT		
M#44	Trp53bp1 ^{-/-}	mock	30	4 (13.3%)	8 (0.3)	7 CT,1 ACT		
M#30	Atm ^{-/-}	mock	30	11 (36.7%)	16 (0.5)	10CT, 6 ACT		
M#39	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	mock	30	14 (46.7%)	18 (0.6)	12 CT, 6 ACT		
M#1	wt	2 Gy	30	13 (43.3%)	15 (0.5)	15 CT		
M#44	Trp53bp1 ^{-/-}	2 Gy	30	14 (46.7%)	41 (1.4)	22 CT, 19 ACT		
M#30	Atm ^{-/-}	2 Gy	30	28 (93.3%)	122 (4.1)	71 CT, 46 ACT, 5 cb		
M#39	<i>Trp53bp1</i> ^{-/-} Atm ^{-/-}	2 Gy	30	29 (96.7%)	145 (4.8)	87 CT, 57 ACT, 1 cb		
Summary $(n=3 \text{ experiments})$								
	wt	mock	90	4 (4.4%)	4 (0.04)	4 CT		
	Trp53bp1 ^{-/-}	mock	90	9 (10.0%)	14 (0.16)	11 CT, 3 ACT		
	$Atm^{-/-}$	mock	90	36 (40%)	56 (0.6)	35 CT, 17 ACT, 4 cb		
	$Trp53bp1^{-/-}/Atm^{-/-}$	mock	90	42 (46.7%)	65 (0.7)	40 CT, 13 ACT, 12 cb		
	wt	2 Gy	90	39 (43.3%)	82 (0.91)	54 CT, 27 ACT, 1 cb		
	Trp53bp1 ^{-/-}	2 Gy	90	51 (56.7%)	207 (2.3)	103 CT, 91 ACT, 13 cb		
	$Atm^{-/-}$	2 Gy	90	82 (91.1%)	332 (3.7)	183 CT, 130 ACT, 19 cb		
	$Trp53bp1^{-/-}/Atm^{-/-}$	2 Gy	90	83 (92.2%)	392 (4.4)	224 CT, 147 ACT, 21 cb		

Table S5. Analysis of genomic stability in LPS-activated B cells deficient for 53BP1 and/or ATM. Metaphases were obtained 24 hr after exposure to IR and stained with a telomere probe

^aCT, centric; ACT, acentric; cb, chromatid break

Table S6. Analysis of genomic stability in T lymphocytes deficient for 53BP1 and/or ATM. CD43⁺ splenocytes were activated with concanavalin A and, 24 hours after irradiation, fixed and analyzed by telomere FISH

Genotype	# mice	# metaphases analyzed	IR dose	# metaphases with aberrations (%)	total # aberrations (aberrations per metaphase)	types of aberrations ^a
wt	3	90	mock	2 (2.2%)	2 (0.02)	2 CT
Trp53bp1 ^{-/-}	3	80	mock	5 (6.3%)	5 (0.06)	3 CT, 1 ACT, 1cb
$Atm^{-/-}$	3	90	mock	30 (33.3%)	52 (0.5)	28 CT, 18 ACT, 6 cb
$Trp53bp1^{-/-}/Atm^{-/-}$	3	80	mock	23 (28.7%)	28 (0.3)	20 CT, 4 CT, 4 cb
wt	3	80	2 Gy	26 (32.5%)	36 (0.4)	28 CT, 8 ACT
Trp53bp1 ^{-/-}	3	90	2 Gy	46 (51.1%)	189 (2.1)	100 CT, 75 ACT, 14 cb
$Atm^{-/-}$	3	83	2 Gy	64 (77.1%)	257 (3.0)	123 CT, 107 ACT, 27 cb
Trp53bp1 ^{-/-} / Atm ^{-/-}	3	80	2 Gy	72 (90.0%)	277 (3.4)	146 CT, 84 ACT, 47 cb

^aCT, centric, ACT, acentric, cb, chromatid break