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Supplementary Information 

 
Supplementary Table 1. Clinical Information of MS subjects.  

 

Subject # 

Age 

(years) Gender EDSS 

Disease 

Duration 

(years) 

Disease 

Modifying 

Treatment 

Lesion 

Load 

(cm3) 

1 31 M 1.5 11 Yes 30.7 
2 46 F 3.0⸀ 7 Yes 31.4 
3 49 F 2.0 2 Yes 21.9 
4 30 F 3.5 10 Yes 17.6 
5 37 F 3.5 10 Yes 28.1 
6 42 F 0 14 No 8.7 
7 44 M 2.5 2 Yes 8.2 
8 43 F 2.0 20 Yes 7.3 
9 29 F 3.5 1 No 15.6 
10 47 F 2.0 12 Yes 11.2 
11 39 F 3.5 5 No 9.6 
12 26 F 2.0 3.5 No 23.8 
13 23 F 4.0 11 No 47.8 
14 39 F 3.5 0.2 No 18.6 
15 44 M 4.0 1 No 29.1 
16 62 F 3.0 40 No 18.8 
17 32 F 2.0 0.8 No 11.2 
18 62 F 4.0 14 Yes 31.7 
19 50 F 2.5 25 No 15.9 
20 32 M 2.0 0.6 Yes 4.0 
21 36 F 2.0 8 No 27.4 
22 26 F 0 1 No 6.9 
23 32 M 2.0 4 No 3.6 
24 37 F 2.0 3 No 8.9 
25 38 F 2.0 5 No 10.1 
26 25 F 0 6 No 12.2 
27 40 F 1.0 0.25 No 8.2 
Range 23-62   0-4 0.2 - 40   3.6 – 47.8 
Mean  38.6   2.3 8   17.3 
Median 38   2.0 5   15.6 

Adults diagnosed with RRMS and in remission at the time of imaging (N=27). The EDSS, a 
measure of neurological impairment ranging from 0 (none) to 10 (most severe), was performed 



within 7 days of neuroimaging. Control subjects (N=14) had an age range of 23-52 years, mean 
of 31.1, and median of 30 years. 

 

 

Supplementary Figure 1. Unsupervised PCA of all MRS data annotated by age. Age has no 
influence on the MRS data. CT = control white matter, NA = normal appearing white matter, NE 
= nonenhancing lesion. Colors represent different age groups. t[1] is the first principal 
component and t[2] is the second principal component. 

  



 

 

 

Supplementary Figure 2.  Scatter plots of key brain metabolites normalized to Creatine 
versus age. The analysis of individual metabolites was done using LCModel. No age effect is 
observed for NAA (NAA+NAAG), Choline (GPC+PC), myoInositol (mI), and macromolecules/ 
lipids (MM20+Lip20) in all experimental and control groups. 

 

Evaluation of Creatine and Water as References for Normalization. 

The absolute quantity of creatine and phosphocreatine (Cr+PCr) from the LCModel and 

signal from the unsuppressed water spectra were both considered as normalization factors. A t-

test was used to identify significant differences between groups (CTWM, NAWM, NELES) and 

Pearson’s correlation was used to determine if there was a relationship with age. The water 

signal was found to significantly differ between all three groups (mean ± SEM: CTWM: 1.71 ± 

0.06, NAWM: 1.91 ± 0.05, NELES: 2.06 ± 0.07; p-value CTWM vs. NAWM, 0.014; CTWM vs 

NELES, 0.001; NAWM vs NELES, 0.098), in addition to having a strong relationship with age 

(p= 0.009). The absolute concentration of Cr+PCr was significantly decreased in CTWM in 

comparison to NAWM (CTWM: 4.68 ± 0.158; NAWM 5.12 ± 0.08 6; 4.95 ± 0.081; p-values 

CTWM vs. NAWM, 0.025; CTWM vs NELES, 0.148; NAWM vs NELES, 0.167), and did not 



have a significant relationship with age (p = 0.083). This indicates that in our dataset, the levels 

of Cr+PCr are more consistent across groups than the water. Therefore, Cr+PCr was used as 

the normalization factor for the metabolomic analysis. 

          

Supplementary Figure 3. Absolute concentration of water and Cr+PCr signals in different 
tissue types. Bar graphs represent mean ± SEM of the unsuppressed water signal and Cr+PCr 
based on LCModel analysis. N=14 for CTWM, N=23 for NAWM, and N=19 for NELES.  

 

LCModel Analysis 

Supplementary Table 2. LCModel Quantification of Metabolites (mean ± SEM) 
Metabolite/ 
 Cr + PCr CTWM NAWM NELES 

ANOVA 
 

CTWM vs 
NAWM 

NAWM 
vs NELES 

CTWM  
vs NELES 

    
p-value Adjusted p-value 

NAA+NAAG 1.53 ± 0.26 1.33 ± 0.19 1.22 ± 0.19 >0.001 0.02 0.22 <0.001 

Cho 0.33 ± 0.04 0.30 ± 0.05 0.31 ± 0.04 0.16 ns ns ns 

Gua 0.43 ± 0.15 0.36 ± 0.10 0.34 ± 0.15 0.11 ns ns ns 

mI 1.09 ± 0.18 1.11 ± 0.17 1.25 ± 0.21 0.03 0.97 0.05 0.06 

Glu 1.31 ± 0.24 1.28 ± 0.23 1.11 ± 0.24 0.03 0.94 0.06 0.06 

Asp 0.21 ± 0.07 0.23 ± 0.10 0.15 ± 0.10 0.02 0.77 0.02 0.16 

GABA 0.09 ± 0.03 0.11 ± 0.05 0.12 ± 0.04 0.08 0.53 0.34 0.06 

Gln 0.29 ± 0.16 0.43 ± 0.22 0.34 ± 0.24 0.13 ns ns ns 

MM14+Lip13
a+Lip13b+M
M12 1.09 ± 0.41 1.41± 0.76 1.27 ± 0.56 0.34 ns ns ns 

MM17 0.32 ± 0.29 0.60 ± 0.35 0.51 ± 0.43 0.10 ns ns ns 



 

Metabolomics Statistical Methods. 

 Metabolomics typically uses multivariate regression to model nuclear magnetic 

resonance (NMR) or mass spectrometry data. The benefit of multivariate over univariate 

analysis is that one biomarker may be insufficient by itself to provide biologically meaningful 

knowledge. There are a variety of multivariate methods used for metabolomic analysis, for 

example unsupervised methods such as Principal Component Analysis (PCA); supervised linear 

methods such as Partial Least Squares (PLS) and various extensions of PLS; and supervised 

non-linear methods such as neural networks and support vector machines (Lindon and 

Nicholson, 2008; Smolinska et al., 2012). Linear methods are typically preferred over the non-

linear methods since the signals responsible are identifiable from the loading matrices, leading 

to easy interpretation.  

PCA is an unsupervised method as it does not use additional information about the data 

and models the innate variation of the dataset, hence providing an overview of the data. PLS 

and related methods are regression extensions of PCA, and model the variation in the data 

matrix X in response to additional variables in a response matrix Y. PLS can be described by 

the following equations where X is the descriptor matrix, Y is the response matrix, T the scores 

matrix of X, U the scores matrix of Y, P the PLS loadings matrix, C the weights expressing 

correlation between Y and T(X), and E and F are matrices of residuals (Wold et al., 2001). 

There are also additional loadings called weights, W, that express the correlation between U 

and X and are used to calculate T:   
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 Predictions, Ŷ, are used to predict the response of new observations with respect to the 

specified PLS model. The predicted values of y, ŷ, are calculated from the PLS model:  

 TUCŶ  (S.4) 
 

Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Partial Least 

Squares (O-PLS) are both extensions of PLS. In PLS-DA, the response matrix Y is an n x k 

matrix (with n observations and k number of classes), where Y is composed of dummy variables 

indicating class membership (Barker and Rayens, 2003). O-PLS models the variation in data 

matrix X into 2 components, one linearly related to the Y matrix and another that is orthogonal 

and associated with uncorrelated variation in the data, as described by equations S.5 and S.6 

(Trygg and Wold, 2002). This allows for easy interpretation of the metabolic contributions 

related to the response matrix since they all lie along one component. 
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where T represents the score matrices for X and Y, W and C are the orthonormal loading 

matrices, E and F are the respective residual matrices for X and Y. TYosc and PYosc are the score 

and loadings matrices orthogonal to Y, respectively. 

To describe the model validation procedures, we will consider the general case of 

predicting Y data from X data. As part of the modelling procedure, a component-wise cross 

validation is applied where 1/7th of the samples are randomly excluded from model building and 

used for predictions. This procedure is repeated until each sample is excluded from model 

building once. By this method, the y value for each sample is predicted using a model from 

which that sample has been excluded during the model building. All the predictions are pulled 



together to form the prediction error sum of squares (PRESS), which is indicative of the 

predictive ability of the model: 

 2)ˆ( ikik yyPRESS  (S.7) 

where yik is the observed value and ŷik is the predicted value.  

From PRESS, the cross validated R2, called Q2, can be calculated to provide an estimate of how 

well the model predicts the Y data: 

 

SS

PRESS
Q 12  (S.8) 

Where SS is the residual sum of squared deviations from the dataset means.  

Additionally, ‘internal’ model validation can be performed by randomizing the positions of 

the Y data in relation to their corresponding rows in the X matrix and observing the effect of the 

randomization on R2 and Q2 values, as illustrated in Supplementary Figure 4. If the original 

model was valid, randomization of the Y data would be expected to considerably reduce Q2.  

Further, a plot of observed vs. predicted (Supplementary Figure 4.) can be used to 

assess the model. If all predictions are perfect, this plot would be a straight line with a slope of 1 

going through the origin and the correlation coefficient would be 1. In addition to assessing the 

predictability of the model, this plot can be used to identify “outliers” which are predicted 

incorrectly and may be skewing the model.  

 



Supplementary Figure 4. Examples of validation tools for PLS models. A) The result of the 
permutation test performed to determine if the model is spurious by comparing the goodness of 
fit (R2 and Q2) of the original model with the goodness of fit of several models where the order of 
the Y-observations have been randomly permuted, while the X-matrix has been kept intact. B) 
The observed vs. predicted values of a selected y variable, with a regression line indicating the 
goodness of fit. In addition to assessing the predictability of the model, this plot can be used to 
identify “outliers” which are predicted incorrectly, for example the sample whose observed value 
is 20 and predicted value 40 in the above plot.  
 

‘External’ validation of PLS-DA models can also be performed by taking a test set of 

samples that did not form part of the model-building population. While this is the ultimate test of 

validation for statistical modelling, since it assesses how well the model can predict new data, it 

is not often performed due to a low number of available samples. Thus, it becomes a trade-off 

between using all of the data to build a better model and using less data to be able to validate 

the model, which may result in a poorer quality model. The problem with the former, even with 

the use of internal validation, is that the model may only describe the data it was built on and not 

be able to describe new samples.  

In PLS-DA, the dummy matrix containing class information is a matrix of zeros and ones, 

zero being defined as not belonging to the specified class, and a value of 1 being defined as 

belonging to the class. The cut-off value for accepting the sample as correctly being predicted is 

0.5; therefore a predicted value >0.5 indicates the spectrum belongs to that class, and a value 

<0.5 indicates that the spectrum does not belong to that class. Further, the predictive scores 

can be overlaid onto the scores plot of the PLS-DA model.  

 

Model summary statistics 

The PLS-DA model of metabolic differences between tissue types (CTWM, NAWM, 

NELES) had a R2X of 0.11 and R2Y of 0.63, indicating that 11% of the spectral data accounted 

for 63% of the variation in tissue type. The internal cross-validation resulted in 86% of the 

spectra (38 out of 44) being correctly predicted when left out of model building. Of the six 

misclassified spectra, two were classified as the wrong tissue type and four were not classified 



as any tissue type with the a priori cutoff of a value of 0.5 or greater indicating class 

membership. 

  The O-PLS for neurologic impairment measured by EDSS had a R2X of 0.21 and R2Y of 

0.86, indicating that 21% of the variation in the spectra explained 86% of the variation in EDSS 

score. The O-PLS model of verbal memory measured by RAVLT had a R2X of 0.22 and R2Y of 

0.91, representing 22% of the spectral variation accounting for the 91% of the variation in 

RAVLT score. Additionally, the O-PLS model of stress measured by SRRS had a R2X of 0.29 

and R2Y of 0.99, indicating 29% of the spectra variation explains 99% of the variation in SRRS.  

It is always worrisome that multivariate modeling techniques may overfit the data, even 

with the use of internal cross-validation tools. Therefore, we built an O-PLS model for the 

PASAT test, one of the cognitive measures for which we could not obtain an internally validated 

O-PLS model. The O-PLS model is summarized in Supplementary Figure 5. The scores plot 

does not show a distinctive trend, and the observed versus predicted plot is extremely poor, with 

a RMSE of 42.5 for a variable that has a range of 23 – 60. Further, the model summary 

statistics are R2X: 0.068, R2Y 0.038, indicating a poor model in which 6.8% of the spectral 

variation explains 3.8% of the variation in PASAT score. This indicates that the metabolic 

variation in the NAWM is not predictive of variation in working memory, as measured by the 

PASAT.  



 

Supplemental Figure 5. O-PLS does not produce an accurate model for working memory, 
which was unsuccessful in internal cross-validation, indicating that the metabolic patterns in the 
spectra do not describe the PASAT scores. The scores plot does not show a distinctive pattern 
of PASAT score, though it does show a slight trend from low to high. The observed vs. predicted 
plot, however, demonstrates that the model is not good, with a RMSE of 42.5.  
 

Supplementary Methods 

Comparisons of group means and standard errors were calculated using R version 2.15.3, using 

two-sample, two-sided t-tests.  
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