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S1.1. ONE-CLONE MODEL

S1.1.1. Model Rescaling. We first start by nondimensionalizing the model (4)–(9) in the main

text in order to reduce the number of parameters and simplify the analysis.

Since T-cell activation is regulated by the level of pMHC expression level on APCs, we expect

that
dF
dP

≥ 0.

Based on T-cell dose-response curves to growing level of pMHCs on APCs shown in [1], one can

typically describe the function F(P) by a Hill function with a Hill coefficient n = 1, given by

F (P) =
P

P + k
, (S1.1)

where k represents the expression level of pMHCs for 50% maximum activation of T-cells. The

larger the value of k, the higher the expression level of pMHCs required for T-cell activation,

which implies that k−1 can be used to quantify T-cell avidity. The empirical determination of the

Hill function that approximates T-cell activation (by measuring INFγ secretion from CD4+T-cells

in response to variations to GAD-expression level on APCs) was also done in [2]. As explained

in [3], the value of k for GAD-reactive T-cells was found to lie between [0.02,0.18] µM for high-

avidity T-cells [2], but this range was then extended to [0.1,9] µM for low-avidity T cells. We take

advantage of a broad spectrum for k (∈ [0,20] µM) in our analysis of the model (4)–(9) to study

the effects of T-cell avidity on disease onset and progression.

The function H1 in (8) determines β-cell killing by (CD8+and CD4+) T-cells occurring at an

effective rate κ in the range [10−11,10−7] (day·cell)−1 (which is expected to remain approximately

constant throughout disease progression for a given individual [4, 5]). On the other hand, the

function H2 in (9), which describes pMHC production from processing β-cell specific proteins in

APCs, is assumed to be proportional to H1(T, β). In other words,

H2(T, β) = RH1(T, β), (S1.2)

where R is the production rate of pMHC per T-cell per β-cell. By using mass-action kinetics to

describe the autoimmune attack by CD8+and CD4+T-cells and by assuming that β-cell killing is
1
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saturated by β-cell number, we arrive at the following formalism for H1

H1(T, β) = κ T
β

1 + µ β
, (S1.3)

where µ is the saturation parameter per β-cell for β-cell killing. In some special cases, we may

assume that the saturation parameter is identically zero to make H1 a bilinear function of T-cell

and β-cell population sizes. β-cell renewal (via β-cell replication or neogenesis) can be described

by (see [4])

G(β) = β

β + kβ
, (S1.4)

where kβ denotes the number of β-cells required for 50% maximal renewal.

In Eqn. (4), the source term ΣT represents the input of naïve cells from the thymus, which does

not necessarily remain constant throughout disease progression. The assumption here is to take the

source term ΣT to satisfy

ΣT = σF (P). (S1.5)

By making use of Eqns. (S1.1)–(S1.5), we can give a detailed and explicit mathematical descrip-

tion to the one-clone model (4)–(9) as follows

dT

dt
= σ

P

P + k
+ α T

P

P + k
− ǫ T2 − δT T (S1.6)

dB

dt
= γ +

[
(−η2T + η1)

P

P + k
− δB

]
B (S1.7)

dPc

dt
= η2T

P

P + k
B − δPc Pc (S1.8)

dIg

dt
= a1 B + a2Pc − δIg Ig (S1.9)

dβ

dt
= s

β

β + kβ
− κ T

β

1 + µ β
− δβ β (S1.10)

dP

dt
= Rκ T

β

1 + µ β
− δP P, (S1.11)

where s is the maximal rate of β-cell renewal per day, whereas δβ is the turnover (mortality) rate

of β-cells per day.

The new model (S1.6)–(S1.11) differ from the one presented in [3] in three main aspects;

namely, the presence of a term describing thymus input ΣT, the dependence of pMHC production

rate on κ (T-cell killing efficacy), and the dependence of B-cell activation on the pMHC-dependent

Hill function F . These modifications make the current model more physiological, especially the

latter one which makes T- and B-cell avidities more closely correlated via the parameter k than

previously assumed.
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In order to further reduce the complexity of the model or extent of the analysis, we simplify the

model (S1.6)–(S1.11) by making the following substitutions

T =
T

R̂
, B =

δB B

γ
, Pc =

δPc Pc

γ

Ig =
δIgδPc Ig

a2 γ
, β =

β

β0
, P =

δP P

Rκ R̂ β0





, (S1.12)

where β0 is the initial number of β-cells right before the autoimmune attack (with the ratio β/β0

denoted by a non-italicized variable β) and

R̂ =

(√
α −

√
δT

)2

ǫ
.

For simplicity, we assume that s = µ = δβ = 0. By applying the substitutions introduced in (S1.12)

to the model (S1.6)–(S1.11) and using non-italicized font for the newly generated parametric quan-

tities hereafter, we obtain

dT
dt

= σ
P

P + k
+ αT P

P + k
−
(√

α −
√

δT

)2
T 2 − δT T (S1.13)

dB
dt

= δB +

[
(−η2T + η1)

P
P + k

− δB

]
B (S1.14)

dPc

dt
= δPc

(
η2T
δB

P
P + k

B − Pc

)
(S1.15)

dIg

dt
= δIg

(
aB + Pc − Ig

)
(S1.16)

dβ

dt
= −κ R̂βT (S1.17)

dP
dt

= δP (βT − P) , (S1.18)

where the new parametric quantities are given by

σ=
σ

R̂
, k =

δP k

Rκ R̂β0

, η2 = η2R̂, a =
a1 δPc

a2 δB
.

Thus the number of parameters that need to be estimated have been reduced by introducing these

parametric quantities.

S1.1.2. Parameter Estimation. For the (scaled) one-clone model (S1.13)–(S1.18), we adopt the

parameter values that appeared in [3–10] to perform our simulations. These parameters were

estimated using a combination of fit and parsimony. For the definitions, values and units of all

these parameters, please see Table S1.1.

In brief, the kinetic parameters associated with B-cell and plasma-cell expansion and turnover

were previously determined using in vitro data from [10], whereas those associated with autoanti-

body release and degradation were determined based on IgG antibody isotype data from [11] and

model rescaling (see [3] for more details).
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Parameter Description Value Range Ref.

σ Influx rate of naïve T-cells from thymus ≈ 0 day−1 − [4]

α Expansion rate of T-cells 4 day−1 [2 − 20] [3, 4, 6–8]

δT Turnover rate of T-cells 0.1 day−1 [0.01− 0.3] [3, 4, 6–8]

k pMHC-expression level for 50% maximum

activation level of T-cells

0.26 [0 − 1] [1, 3, 9]

ǫ Competition parameter for T-cells 5 × 10−6 (day·cell)−1 − [3, 4, 6]

δB Turnover rate of B-cells 0.02 day−1 [0.017− 0.02] [3, 10]

η1 Expansion rate of B-cells 5.67 × 10−6 day−1 − [10]

η2 Maturation rate of B-cells 2.858 day−1 − [10]

δPc Turnover rate of plasma-cells 0.2 day−1 [0.116− 0.23] [3, 10]

δIg Degradation rate of autoantibodies 0.034 day−1 [0.001− 0.034] [10]

a Ratio of B-to-plasma autoantibody-release 0.1 − [10]

κ T-cell killing efficacy 7 × 10−10 (day·cell)−1 [10−11 − 10−7] [1, 3, 4]

R̂ Ratio of T-cell net growth rate to competi-

tion factor

5.6702× 105 cells − [1, 3, 4]

δP Degradation rate of autoantigen 0.1 day−1 − [3–7]

TABLE S1.1. Parameter values of the (scaled) one-clone model (S1.13)–(S1.18).

As for the kinetic parameters of T-cells, β-cells and autoantigen(s), we rely on previously esti-

mated values from [3–8]. These estimates were generated using experimental data available in the

literature on T1D. Where relevant, we assign similar values to the parameters listed here.

Because of heterogeneity in the avidities and killing efficacies of the different clones of T1D-

specific T-cells (and B-cells), physiologically reasonable ranges for these parameters are instead

considered in the simulations shown here. Experimental data from [1, 2] were used to determine

such ranges.

S1.1.3. Phase-Plane Analysis. In this section, we will study the global dynamics of the one

clone model (4)–(9), described in the paper, using steady state and stability analysis. We will

show that the full one clone model possesses a stable disease-free (healthy) steady state S0 =
(0, 1, 0, a, β∞, 0), with 0.3 ≤ β∞ ≤ 1, that corresponds to healthy individuals, and a transient

(quasi-stable) autoimmune state S2 (with elevated levels of autoreactive T-cells, B-cells, plasma-

cells and autoantibodies) that corresponds to type 1 diabetic patients, both separated by a transient

interior saddle point S1. Such behavior is similar to that observed in the one clone model of [3].

In the following, we use a reductionist approach to determine these steady states and analyze their

stability properties.

We begin first by noting that due to homeostatic mechanisms, β-cell loss happens at a very slow

time scale relative to T-cell dynamics and pMHC processing. Therefore, we may assume that the

scaled variable β is roughly a constant, i.e., β = 1. Furthermore, since T and P are decoupled

from B, Pc and Ig, we can ignore the differential equations of these latter variables and only focus

on the reduced (scaled one-clone) two-variable subsystem

dT
dt

= F(T ,P) := σ
P

P + k
+ αT P

P + k
−
(√

α −
√

δT

)2
T 2 − δT T (S1.19)

dP
dt

= G(T ,P) := δP (T − P) . (S1.20)
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To investigate the steady state dynamics of the reduced subsystem (S1.19)–(S1.20), we utilize

the phase portrait in Fig. S1.1 showing the T - and P-nullclines defined by the equations T ′ = 0

and P ′ = 0, respectively. These nullclines subdivide the positive quadrant of the P , T -plane into

regions where P ′ and T ′ have various signs. Figure S1.1 also shows the vector-field to illustrate

the overall flow pattern of solution trajectories of the reduced model. The steady states of the

reduced model lies at the intersection of these nullclines. The origin E
∗
0 = (0,0) is a steady state

representing the disease-free state, whereas the other steady states E
∗ = (T ∗,P∗), if they exist,

must satisfy

P∗ = T ∗ (S1.21)

and

σ
1

T ∗ + k
+ α

T ∗

T ∗ + k
= δT +

(√
α −

√
δT

)2
T ∗, (S1.22)

where T ∗
, 0. Figure S1.1 shows that when this equation is satisfied, at most two more interior

equilibria E
∗
1 = (T ∗

1 ,P∗
1 ) and E

∗
2 = (T ∗

2 ,P∗
2 ) must also be present, with the latter representing

the autoimmune state. In fact decreasing the value of k gradually shifts the T -nullcline upward

and increases the number of intersections between the two nullclines from zero to two. This is

illustrated in Fig. S1.1 in which we see either no intersection for k > kc (gray dashed-dotted line),

one intersection at k = kc (gray dashed line) and two intersections for k < kc (black solid line),

where kc is the critical value of k at which the two points E
∗
1 and the autoimmune state E

∗
2 merge.

The value of kc can be determined by solving for T ∗ from (S1.22) as follows

T ∗(k) =
(α − δT − ℓ2k)±

√
(α − δT − ℓ2k)2 + 4(σ− δTk)ℓ2

2ℓ2
, (S1.23)

where ℓ =
√

α −
√

δT (taken to be positive). Therefore to obtain one root to Eqn. (S1.23), kc

must satisfy the quadratic equation

(α − δT − ℓ
2k)2 + 4 (σ− δTk)ℓ2 = 0,

whose roots are

kc =
(α + δT)± 2

√
αδT − σℓ2

ℓ2
. (S1.24)

If we ignore thymus input by setting σ= 0, we obtain kc = 1 (or kc = RκR̂β0/δP for the nonscaled

parameter). [The second root kc = [(
√

α +
√

δT)/(
√

α −
√

δT)]
2 is rejected because T ∗(kc)<

0, unlike the first root for which T ∗(1) =
√

δT/ℓ > 0, where ℓ > 0.]

Because the thymus input does not alter the dynamics of the model significantly [7], we only

focus our analysis of the stability properties of all possible steady states hereafter and throughout

the paper to the case when σ = 0. This is done by evaluating the Jacobian matrix of the reduced
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T

P

E
1

k > k
c

E
2

E
0

k = k
c

k < k
c

FIGURE S1.1. The phase portrait of the reduced (scaled) one-clone model (S1.19)–

(S1.20), with σ = 0 and ℓ > 0, displaying the nullclines at different values of k.

The T - and P-nullclines are shown as solid black and gray lines, respectively, for

k< kc = 1 (the P-axis is also a T -nullcline). Increasing the value of k shifts the T -

nullcline downward, becoming first tangential to the P-nullcline at k = kc (dashed

gray line), then lying entirely below the P-nullcline when k > kc (dashed-dotted

gray line). The steady states, lying at the intersection of the T - and P-nullclines,

E
∗
0 and E

∗
2 (stable nodes) are shown as black dots and E

∗
1 (saddle) as hollow squares.

The stable manifold of the saddle point E
∗
1 (the black and gray dotted curves) is the

separatrix that demarcates the basin of attraction of E
∗
0 from that of E

∗
2 .

(scaled) one-clone model (S1.19)–(S1.20) at these steady states, as follows

J(T ,P) =




∂F(T ,P)

∂T
∂F(T ,P)

∂P
∂G(T ,P)

∂T
∂G(T ,P)

∂P




=




αP
P + k

− δT − 2
(√

α −
√

δT

)2
T αT

P + k
− αT P

(P + k)2

δP − δP


 . (S1.25)

The eigenvalues of the Jacobian matrix at the disease-free (healthy) state E
∗
0 = (0,0) are both

negative (λ1 = −δT and λ2 = −δP), which means that E
∗
0 is always a stable node. The other two

steady states E
∗
1 and the autoimmune state E

∗
2 , on the other hand, will only exist if k < kc = 1 and

ℓ > 0. Assuming that these two conditions are satisfied and noting that the trace of the Jacobian

matrix is always negative, it suffices to show that det(J(E∗
1))< 0 and det(J(E∗

2))> 0 to prove that

E
∗
1 is a saddle and E

∗
2 is a stable node [12]. To achieve this goal, we evaluate the determinant of the

Jacobian matrix and determine when it changes sign. Since every non-zero steady state (i.e., those

that are not E
∗
0 = (0,0), when σ = 0) of the reduced (scaled) one-clone model (S1.19)–(S1.20)



APPENDIX S1: PREDICTIVE MODELS OF TYPE 1 DIABETES PROGRESSION 7

must satisfy (S1.21) and (S1.22), then according to (S1.25), we have

det(J(T ,P)) = δP

(√
α −

√
δT

)2
T − δP

(
αT

P + k
− αT P

(P + k)2

)

= δP

(
−δT +

αT 2

(T + k)2

)

= δP


−δT +

(
δT +

(√
α −

√
δT

)2T
)2

α


 .

Thus det(J(T ,P)) = 0, when T = T =
√

δT/(
√

α −
√

δT) =
√

δT/ℓ, which is identical to

the value of T ∗(kc = 1). This means that if T > T , as is the case for the autoimmune state

E
∗
2 , then det(J(T ,P)) > 0 and E

∗
2 is a stable node, whereas if T < T , as is the case for E

∗
1 ,

then det(J(T ,P)) < 0 and E
∗
1 is a saddle. At T = T = T ∗(kc = 1), we have a saddle-node

bifurcation as demonstrated in Fig. S1.1.

These latter stability results illustrate the local behavior of the reduced (scaled) one-clone model

(S1.19)–(S1.20) near its steady states, when σ= 0. It remains to check if these results are globally

valid. In the following analysis, we show that they are indeed global. This is done by establishing

first that the solutions of the reduced (scaled) one-clone model, whose initial conditions belong to

the space R
+ × R

≥0, are bounded and nonnegative, and by taking advantage of Dulac’s Criterion

to rule out the existence of closed orbits in that space.

Theorem S.1 Let (T (t),P(t)) be a solution to the (decoupled) reduced (scaled) one-clone model

(S1.19)–(S1.20) satisfying σ = 0 and ℓ > 0, with initial condition (T (t0),P(t0)) ∈ R
+ × R

≥0.

Then (T (t),P(t)) is bounded and nonnegative in the state-space R
+ × R

≥0. [The result also

holds for σ , 0.]

We prove this by applying comparisons method. Since P/(P + k) ≤ 1, we conclude that

dT
dt

< αT −
(√

α −
√

δT

)2
T 2 − δT T .

This implies that T must be bounded by the solutions of the equation

dT̃
dt

= (α − δT)T̃ −
(√

α −
√

δT

)2
T̃ 2. (S1.26)

By analyzing the phase portrait of Eqn. (S1.26), we conclude that

T̃ ≤ C1 := max

(
T̃ (0),

√
α +

√
δT

ℓ

)
,

where T̃ (0) ≥ 0. It follows that T < C1. Substituting this upper bound into Eqn. (S1.20), we get

dP
dt

< δP (C1 −P) .
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Applying the same approach used above, we conclude that P is also bounded by the solutions of

the equation

dP̃
dt

= δP

(
C1 − P̃

)
,

where

P̃ ≤ C2 := max
(
P̃(0),C1 + C2

)

and P̃(0) ≥ 0. In other words, P < C2. This proves that T (t) and P(t) are both bounded above.

Finally, notice that if P(t∗) = 0 or T (t∗) = 0, for some t∗ ≥ t0, where (T (t0),P(t0)) ∈
R

+ × R
≥0, then, according to Eqns. (S1.19) and (S1.20), we have Ṗ(t∗) ≥ 0 or Ṫ (t∗) = 0,

respectively. This implies that solutions to system (S1.19)–(S1.20), with σ= 0 and ℓ > 0, starting

from the first quadrant will never leave the quadrant. In other words, T (t) and P(t) are both

bounded below by zero and that completes the proof.

We now show that no periodic orbits exist using Dulac’s Criterion.

Theorem S.2 [Dulac’s Criterion, see [13], pp 202] Let ẋ = f(x) be a continuously differentiable

vector field defined on a simply connected subset R of the plane. If there exists a continuously

differentiable, real-valued function g(x) such that ∇ · g(x) has one sign throughout R, then there

are no closed orbits lying entirely in R.

By choosing the continuously differentiable vector field g(T ,P) = 1/T in R
+ × R

≥0, and

applying Dulac’s Criterion on ẋ = (Ṫ , Ṗ) that satisfies the reduced (scaled) one-clone model

(S1.19)–(S1.20) (with σ= 0 and ℓ > 0), we obtain

∇ · (g ẋ) =

(
∂

∂T ,
∂

∂P

)
·
(

1

T
(
Ṫ , Ṗ

))

=

(
∂

∂T ,
∂

∂P

)
·
[

1

T

(
αT P

P + k
−
(√

α −
√

δT

)2
T 2 − δT T

)
,
δP

T (T − P)

]

= −
(√

α −
√

δT

)2
− δP

T < 0.

The control condition ∇ · (g ẋ) is always negative for T > 0 and P ≥ 0. As a result, there are

no closed orbits lying entirely in the space (T ,P) ∈ R
+ × R

≥0. Furthermore, we already know

from the previous result that solutions starting from R
+ × R

≥0 will never leave this space. Thus

no periodic orbits would lie partially within R
+ × R

≥0. These conclusions guarantee that the

local stability properties of the steady states E
∗
i , i = 0,1,2, are also global. [Similar result can be

obtained for σ , 0.] In this case, when k < kc, we have a bistable system with the stable manifold

of the saddle point E
∗
1 (plotted as a black dotted line in Fig. S1.1) is a separatrix that divides the two

basins of attraction of E
∗
0 and E

∗
2 . This configuration remains almost the same when k = kc. Here

the separatrix (plotted as a gray dotted line) becomes the boundary between the basin of attraction

of E
∗
0 and the basin of attraction of E

∗
1 = E

∗
2 , which is a half-stable steady state.

It is important to point out that when considering the full model (S1.13)–(S1.18), the steady

states E
∗
i , i = 0,1,2, automatically translate into the steady states Si introduced at the beginning

of this section. However, due to the fact that β̇ < 0 for T > 0 in Eqn. (S1.17), we expect β(t)
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to be an exponentially decaying function of time, and that the two steady states S1 and S2, which

both possess elevated levels of T-cells, to be transient steady states, whenever k < kc. In other

words, solution trajectories that start from the basin of attraction of S2 will initially approach S2,

but eventually turn towards S0 when the slope of the hyperplane T = P/β becomes large enough

that the two steady states S1 and S2 merge and disappear (i.e., k becomes larger than kc). Similar

behavior was previously observed in [3].

FIGURE S1.2. Heat-maps showing the response of the full (scaled) one clone

model (S1.13)–(S1.18) to variations in T-cell avidity (k−1) and killing efficacy (κ)

within the ranges [10−4, 1] and [10−11, 10−7] (day·cell)−1, respectively. (A1-A3)

The steady state level of β-cells (β) for n = 1 (A1) n = 2 (A2) and n = 3 (A3),

where n is the Hill coefficient in Eqn. (S1.27), showing the magnitude of β-cell

loss in each case. (B1-B3) The autoantibody level Ig after six months of the au-

toimmune attack (B1), at the onset of the disease (for those that develop it) (B2)

and at steady state (B3). (C1-C3) The time period between the start of the au-

toimmune attack and when Ig reaches the following detectability levels: Ig = 0.15
(C1), Ig = 0.55 (C2) and Ig = 0.95 (C3). The black line in each panel represents

the 30% threshold of surviving β-cells (0.3-critical threshold). The color-coding in

each panel is quantified by the color-bars on the right.

S1.1.4. Model Simulations. To illustrate the dynamics of the full (scaled) one-clone model in the

presence of all of its components, we simulate system (S1.13)–(S1.18) in response to variations

to two key parameters in the model; namely, the reciprocal of T-cell avidity k and T-cell killing

efficacy κ (other parameter values are available in Table S1.1). In these simulations, the scaled
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variables are used as representatives to the original variables of system (S1.6)–(S1.11). Further-

more, because thymus input is ignored, the initial T-cell level T is taken to be nonzero but ≪ 1.

Our goal in these simulations is to show that modifying the (scaled) one-clone model, by making

B-cell activation depend on k (or k in the nonscaled model (S1.6)–(S1.11)) via the Hill function

F(P) =
Pn

Pn + kn
, (S1.27)

where n = 1 is the Hill coefficient, will produce similar results to those obtained from the one-

clone model analyzed in [3] and to uncover other aspects of the model.

Figure S1.2(A1) shows the heat-map of the (scaled) level of β-cells (β) at steady state (i.e.,

after 30 years of the autoimmune attack) when k and κ are varied within the ranges [10−4,1] and

[10−11,10−7] (day·cell)−1, respectively. We see that the magnitude of β-cell loss (shown as a

gradual change in color from red to blue) increases steadily by increasing T-cell avidity and/or its

killing efficacy in a manner identical to what have been observed previously in [3]. The presence

of the red band on top of each panel demonstrates that if T-cell avidity is too small, then β-cells

are safe from T-cell destruction regardless of the level of T-cell killing efficacy κ. Increasing the

Hill-coefficient to n = 2, in panel (A2), or n = 3, in panel (A3), does not alter the heat-map of β

significantly. The only noticeable difference we observe is the increase in the width of the red band

as n increases. The increase in the steepness of the Hill function, described in (S1.27), for larger

n means higher pMHC expression level on APCs is required for T-cell activation and thus wider

red bands. The sudden change from red to blue when moving vertically downward across these

red bands, however, is caused by the presence of bistable nodes whose basins of attractions are

separated by the the stable manifold of the saddle point (the separatrix discussed in the previous

section) which generates the boundary of these red bands.

We also observe on the left side of panels (A1-A3) red bands that are less darker than those

on top. These red bands demonstrate that most β-cells survive the autoimmune attack whenever

T-cell killing efficacy is very small (i.e., when κ ∈ [10−11,5 × 10−10] (day·cell)−1). For larger

values of κ, on the other hand, a more significant decline in β is detected. In fact, increasing

the value of κ beyond the critical threshold, highlighted by the thick black lines, labeled 0.3,

makes β-cell survival below 30%, indicating clinical manifestation of the disease (through the

appearance of T1D-associated symptoms). In the extreme cases identified in the bottom right

corner of panels (A1-A3), the survival rate of β-cells is very small due to the effective autoimmune

assault dominated by high-avidity, high-killing efficacy T-cells.

Given that B-cell activation also depends on the Hill function described by (S1.27) with n = 1,

we further characterize the effect of k and κ on the level and survival of circulating autoantibodies.

To do so, we plot in panels (B1-B3) the heat-map of Ig at three successive time points: six months

after the inception of the autoimmune attack (B1), at the clinical onset of the disease when the

0.3-threshold is crossed (which applies only to the points to the right of the black line) (B2) and

at steady state (30 years after the inception of the autoimmune attack) (B3). Notice that model

outcomes here are almost identical to those observed by the one clone model described in [3]. In

brief, we observe four possible scenarios: Ig becomes elevated without reaching diagnostic T1D

(to the left of the black line), Ig becomes elevated while reaching diagnostic T1D (to the right of

the black line and with κ ≤ 10−9), Ig remains elevated until disease onset (to the right of the black
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line with κ ∈ [10−9, 8× 10−8]), Ig remains undetectable throughout disease progression (the blue

regimes close to the right edge of each panel). The high κ value in the latter case causes β-cell

destruction to be too fast for autoantibody accumulation. Most of these outcomes are consistent

with experimental observations in humans and animal models that screened positive for T1D-

specific autoantibodies [14, 15].

To determine how fast the level of autoantibodies rise with respect to time while varying k and κ,

we quantify in panels (B1-B3) the duration (in days) for the autoantibodies to reach the following

detectability levels: 0.15 (C1), 0.55 (C2) and 0.95 (C3). As demonstrated by these panels and the

color bar on the right, the rise in the level of autoantibodies in most cases is very fast and reaches

its maximal level of 0.95 in less than 200 days after the engagement of T-cells in the destruction

of β-cells. It should be mentioned here that the blue regime in panels (C2) and (C3) for large

κ, indicates that the maximal detectability levels chosen (0.55 and 0.95, respectively) are never

attained in these two cases. This result could be used as a criterion to determine when high risk

subjects could be tested for autoantibodies as a diagnostic tool.

The examination of the levels of β-cells (β) and autoantibodies (Ig) in Fig. S1.2 can be better

understood by tracking the time evolution of these two variables as well as T-cells (T ) in response

to variations to the same key parameters k and κ. As shown in Fig. S1.3, the 30-year time evolution

of T (A1-A4), Ig (B1-B4) and β (C1-C4), after the start of the autoimmune attack, are plotted

as heat-maps. These heat-maps are generated by taking k ∈ [10−4, 1] and choosing the following

values for the killing efficacy κ: 10−11 (A1-C1), 10−10 (A2-C2), 10−9 (A3-C3), 10−8 (A4-C4)

(day·cell)−1. The one consistent feature observed across all these panels is the absence of any

autoimmune attack at all time when k is close to 1 (i.e., T-cell avidity is too small to invoke an

autoimmune response or even illicit T-cell expansion). However, when k is large enough, T-cell

expansion becomes prominent as demonstrated by the fast increase (within few months) in T and

the appearance of red regimes in panels (A1-A4). The increase in T does not always imply a

significant loss in β-cells. In fact, panel (C1) shows that even after 30-years of follow up, we do

not see much loss in β-cells, because κ is too small for T-cells to cause any harm. By increasing

κ, β-cell loss becomes significant as demonstrated by the appearance of blue regimes in panels

(C2-C4). The bigger the value of κ, the faster the loss in β-cells and the quicker the manifestation

of the disease. T-cell survival, in these cases, is not maintained due to the decline in β-cell specific

peptides that are produced from apoptotic β-cells required for T-cell activation. The rise and

decline in T create these (red) “waves” that are induced by the transient bistability of the model.

This explains the appearance of blue regimes in panels (A3-A4) in later years which are compatible

with the blue regimes in panels (C3-C4). As for the level of circulating autoantibodies, panels (B1-

B4) show that the time evolution of Ig is similar to that of T , except for the delay in the rise of Ig

to its peak when compared to that of T . This delay suggests that a major damage to β-cells could

occur in susceptible individuals before they test positive for islet-specific autoantibodies.

One could interpret panels (A1-C1) and (A2-C2) to correspond to high risk subjects that test

positive to autoantibodies their entire lives but never develop the disease, panels (A3-C3) to corre-

spond to high risk subjects that become type 1 diabetic and test positive to autoantibodies almost

their entire life, and panels (A4-C4) to correspond to individuals that develop the disease very
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FIGURE S1.3. Time evolution of T1D disease progression in response to varia-

tions in T-cell avidity, within the range [10−4, 1], at various values of T-cell killing

efficacy: κ = 10−11 (A1-C1), = 10−10 (A2-C2), = 10−9 (A3-C3) and = 10−8 (A4-

C4) (day·cell)−1. The levels of autoreactive T-cells T (A1-A4), autoantibodies Ig

(B1-B4) and surviving β-cells (β) (C1-C4) are plotted as heat-maps with respect to

both T-cell avidity k−1 and time over 30 years. The color-coding in each panel is

quantified by the color-bars on top of each column. Notice here that increasing κ
gradually increases β-cell loss and decreases the time duration of T-cell (survival)

waves induced by the quasi-stability (transience) of the autoimmune state.

quickly (due to the presence of very potent and destructive T-cells), but test positive for autoan-

tibodies during only a short window of time. Such criterion can be used to determine the risk

associated with each clone of autoantibodies and the timing of T1D disease onset in individuals.

S1.2. TWO-CLONE MODEL

S1.2.1. Model Rescaling. We extend the one-clone model in Eqns. (S1.6)–(S1.11) by increasing

the number of clones of T-cells under consideration. However, to limit the complexity of the

model, we consider the simplest scenario possible in which we include two clones of T-cells with

distinct autoantigenic specificities and different levels of avidity. Each one of these two clones is

further divided into high and low avidity subclones. In other words, we assume that the model

consists of two subclones T11 and T12 that are reactive to one autoantigen (labeled P1) and two

other subclones that are reactive to another autoantigen (labeled P2), where k22 ≤ k21 ≤ k12 ≤ k11.
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According to this formalism, B-cells, plasma-cells and autoantibodies are also divided into two

clones or copies (B1, B2), (Pc1
, Pc2) and (Ig1

, Ig2), respectively. By ignoring thymus input and

setting s = µ = δβ = 0, the equations describing this model are therefore given by

dTji

dt
= αji Tji

Pj

Pj + kji
− ǫ Tji(T11 + T12 + T21 + T22)− δTji

Tji (S1.28)

dBj

dt
= γj +

[
(
−η2jH(T11, T12, T21, T22) + η1j

)
(

Pj

Pj + kj1
+

Pj

Pj + kj2

)
− δBj

]
Bj (S1.29)

dPcj

dt
= η2jH(T11, T12, T21, T22)

(
Pj

Pj + kj1
+

Pj

Pj + kj2

)
Bj − δPcj

Pcj
(S1.30)

dIgj

dt
= a1j Bj + a2j Pcj

− δIgj
Igj

(S1.31)

dβ

dt
= −κH(T11, T12, T21, T22) (S1.32)

dPj

dt
= Rj κH(T11, T12, T21, T22)β − δPj

Pj, (S1.33)

where j, i = 1,2, and

H(T11, T12, T21, T22) = r(T11 + φ1 T12) + (T21 + φ2 T22)

(r < 1 and φ1, φ2 > 1). Notice here that this model assumes the presence of not only intra-clonal

competition between T-cells reactive to the same autoantigen, but also cross-clonal competition

between T-cells that are reactive to two different autoantigens. The limited physical space available

for these T-cells to bind and expand makes this assumption valid.

We simplify the model (S1.28)–(S1.33) by making the following substitutions

Tji =
Tji

R̂
, Bj =

δBj
B

γj
, Pcj

=
δPcj

Pcj

γj

Igj
=

δIgj
δPcj

Igj

a2j γj
, β =

β

β0
, Pj =

δPj
Pj

Rj κ R̂ β0





, (S1.34)
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Parameter Description Default Value

α11,α12,α21,α22 Expansion rates of T11,T12,T21,T22, resp. 10,6,4,2 day−1

δT11
,δT12

,δT21
,δT22

Turnover rates of T11,T12,T21,T22, resp. 0.1,0.15,0.1,0.2 day−1

k11,k12,k21,k22
† pMHC-expression level for 50% maximum activation levels of

T11,T12,T21,T22, resp.

2,1.5,0.26,0.1

δB1
,δB2

Turnover rates of B1,B2, resp. 0.02,0.04 day−1

η11,η12 Expansion rates of B1,B2, resp. 9.1,4.55× 10−3 day−1

η21,η22 Maturation rates of B1,B2, resp. 7.36,8.28 day−1

δPc1
,δPc2

Turnover rates of Pc1 ,Pc2 , resp. 0.2,0.4 day−1

δIg1
,δIg1

Degradation rates of Ig1 ,Ig2 , resp. 0.001,0.034 day−1

a1,a2 B-to-plasma autoantibody-release ratios for Ig1 ,Ig2 , resp. 0.1,0.1

δP1
,δP2

Degradation rates of P1,P2, resp. 0.1,0.1 day−1

r Relative effects of T1i-to-T2i, (i = 1,2) 0.7

φ1,φ2 Relative effects of T11-to-T12 and T21-to-T22, resp. 1.25,3

TABLE S1.2. Parameter values of the (scaled) two-clone model (S1.35)–(S1.40).
†The ranges of pMHC-expression level are listed in (3) in the main text.

where R̂ = (α1/2
21 − δ1/2

21 )2/ǫ. The model then becomes

dTji

dt
= αji Tji

Pj

Pj + kji
− (α1/2

21 − δ1/2
21 )2Tji(T11 + T12 + T21 + T22)− δTji

Tji (S1.35)

dBj

dt
= δBj +

[
(
−η2jH(T11, T12, T21, T22) + η1j

)
(

Pj

Pj + kj1
+

Pj

Pj + kj2

)
− δBj

]
Bj

(S1.36)

dPcj

dt
= δPcj

[
η2j

δBj

H(T11, T12, T21, T22)

(
Pj

Pj + kj1
+

Pj

Pj + kj2

)
Bj −Pcj

]
(S1.37)

dIgj

dt
= δIgj

[
ajBj + Pcj

− Igj

]
(S1.38)

dβ

dt
= −κ R̂H(T11, T12, T21, T22)β (S1.39)

dPj

dt
= δPj

[
H(T11, T12, T21, T22)β−Pj

]
, (S1.40)

where the new non-italicized parametric quantities introduced into Eqns. (S1.35)–(S1.40) satisfy

kji =
δPj

kji

Rj κ R̂β0
, η2j = η2jR̂, aj =

a1jδPcj

a2jδBj

.

Once again, we assume here that k22 ≤ k21 ≤ k12 ≤ k11. The simulations presented in this paper

are all generated using these equations and parameter values listed in Table S1.2.
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FIGURE S1.4. Heat-map simulations of the (scaled) two-clone model (S1.35)–

(S1.40) for a high value of T-cell killing efficacy κ = 10−8 (day·cell)−1. The 30-

year time evolution of r(T11 + φ1T12) (A1-A4), T21 + φ2T22 (B1-B4), β (C1-C4),

Ig1
(D1-D4) and Ig2 (E1-E4). The colors in these panels represent the levels of

these quantities according to the color-bars on top of each column, whereas the

black lines in panels (C1-C4) represent the 0.3-critical threshold. The simulations

are performed over the following ranges of T-cell avidities: k11 ∈ [1.4,2.2] (A1-

E1), k12 ∈ [0.8,2] (A2-E2) k21 ∈ [0.026,1.5] (A3-E3) and k22 ∈ [10−4,0.8] (A4-

E4), where the inequality k11 ≥ k21 ≥ k12 ≥ k22 is always satisfied. As shown, the

oscillations in T-cell level persist at larger values of κ and the loss of β-cells is very

fast and substantial.

S1.2.2. Model Simulations. The heat-map simulations of the (scaled) two-clone model displayed

in Fig. S1.4 show how varying kji, j, i = 1,2, within their perspective ranges specified in the cap-

tion, affect the 30-year time evolution of the model. By taking κ = 10−8 (day·cell)−1, we find that

the scaled level of the effective population sizes of P1-specific T-cells: r(T11 + φ1T12) (A1-A4)

and P2-specific T-cells: T21 + φ2T22 (B1-B4) (both of which are measures of avidity maturation),

produce cyclic fluctuations and successive waves for certain kji values. Since T-cell killing effi-

cacy is assumed high here, the decline in the scaled level of β-cells β (C1-C4) is very prominent

and fast, crossing the 0.3-critical threshold, shown as black lines, in less than 1 year. Furthermore,

panels (E1-E4) show that the scaled level of P2-specific autoantibodies appear before P1-specific

autoantibodies (D1-D4) and survive longer in circulation.

Figure S1.4 also demonstrates that it is possible to improve disease outcomes (i.e., keep β above

0.3) by increasing the avidity of either T11 (C1) or T12 (C2), or by decreasing the avidity of T22
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(C4). The narrow regime with elevated level of β between the two black lines in (C3), represent-

ing the 0.3-critical threshold, is invoked by solution trajectories propagating close to the stable

manifold of the transient saddle point. Although it is possible theoretically to target this regime to

improve disease outcomes, its sensitivity to perturbations makes this clinically difficult, especially

in later years when the regime is narrower.
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