
Biophysical Journal Volume 106 April 2014 L25–L28 L25
Novel Growth Regime of MDCK II Model Tissues on Soft Substrates
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ABSTRACT It is well established that MDCK II cells grow in circular colonies that densify until contact inhibition takes place.
Here, we show that this behavior is only typical for colonies developing on hard substrates and report a new growth phase of
MDCK II cells on soft gels. At the onset, the new phase is characterized by small, three-dimensional droplets of cells attached
to the substrate. When the contact area between the agglomerate and the substrate becomes sufficiently large, a very dense
monolayer nucleates in the center of the colony. This monolayer, surrounded by a belt of three-dimensionally packed cells, has a
well-defined structure, independent of time and cluster size, as well as a density that is twice the steady-state density found on
hard substrates. To release stress in such dense packing, extrusions of viable cells take place several days after seeding. The
extruded cells create second-generation clusters, as evidenced by an archipelago of aggregates found in a vicinity of mother
colonies, which points to a mechanically regulated migratory behavior.
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Studying the growth of cell colonies is an important step in
the understanding of processes involving coordinated cell
behavior such as tissue development, wound healing, and
cancer progression. Apart from extremely challenging
in vivo studies, artificial tissue models are proven to be
very useful in determining the main physical factors that
affect the cooperativity of cells, simply because the condi-
tions of growth can be very well controlled. One of the
most established cell types in this field of research is the
Madin-Darby canine kidney epithelial cell (MDCK), origi-
nating from the kidney distal tube (1). A great advantage
of this polarized epithelial cell line is that it retained the
ability for contact inhibition (2), which makes it a perfect
model system for studies of epithelial morphogenesis.

Organization of MDCK cells in colonies have been stud-
ied in a number of circumstances. For example, it was
shown that in three-dimensional soft Matrigel, MDCK cells
form a spherical enclosure of a lumen that is enfolded by
one layer of polarized cells with an apical membrane
exposed to the lumen side (3). These structures can be
altered by introducing the hepatocyte growth factor, which
induces the formation of linear tubes (4). However, the
best-studied regime of growth is performed on two-dimen-
sional surfaces where MDCK II cells form sheets and
exhibit contact inhibition. Consequently, the obtained
monolayers are well characterized in context of develop-
ment (5), mechanical properties (6), and obstructed cell
migration (7–9).

Surprisingly, in the context of mechanics, several studies
of monolayer formation showed that different rigidities of
polydimethylsiloxane gels (5) and polyacrylamide (PA)
gels (9) do not influence the nature of monolayer formation
nor the attainable steady-state density. This is supposedly
due to long-range forces between cells transmitted by the
underlying elastic substrate (9). These results were found
to agree well with earlier works on bovine aortic endothelial
cells (10) and vascular smooth muscle cells (11), both re-
porting a lack of sensitivity of monolayers to substrate elas-
ticity. Yet, these results are in stark contrast with single-cell
experiments (12–15) that show a clear response of cell
morphology, focal adhesions, and cytoskeleton organization
to substrate elasticity. Furthermore, sensitivity to the pres-
ence of growth factors that are dependent on the elasticity
of the substrate in two (16) and three dimensions (4) makes
this result even more astonishing. Therefore, we readdress
the issue of sensitivity of tissues to the elasticity of the un-
derlying substrate and show that sufficiently soft gels induce
a clearly different tissue organization.

We plated MDCK II cells on soft PA gels (Young’s
modulus E ¼ 0.6 5 0.2 kPa), harder PA gels (E ¼ 5, 11,
20, 34 kPa), and glass, all coated with Collagen-I. Gels
were prepared following the procedure described in Re-
hfeldt et al. (17); rigidity and homogeneity of the gels was
confirmed by bulk and microrheology (see the Supporting
Material for comparison). Seeding of MDCK II cells
involved a highly concentrated solution dropped in the mid-
dle of a hydrated gel or glass sample. For single-cell
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FIGURE 2 Early phase of cluster growth on soft substrates. (A)

Twelve hours after seeding, single cells remain mostly round

and small. They are found as individual, or within small, three-

dimensional structures (top). The latter nucleate a monolayer

in their center (bottom), if the contact area with the substrate ex-

ceeds ~5� 10�3 mm2. (B) Irregularly-shaped clusters appear due

to merging of smaller droplets. A stable monolayer surrounded

by a three-dimensional belt of densely packed cells is clearly

visible, even in larger structures. (C) All colonies are recorded

on Day 4.
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experiments, cells were dispersed over the entire dish. Sam-
ples were periodically fixed up to Day 12, stained for nuclei
and actin, and imaged with an epifluorescence microscope.
Details are described in the Supporting Material.

On hard substrates and glass it was found previously that
the area of small clusters expands exponentially until the
movement of the edge cannot keep up with the proliferation
in the bulk (5). Consequently, the bulk density increases
toward the steady state, whereas the density of the edge re-
mains low. At the same time, the colony size grows subexpo-
nentially (5). This is what we denote ‘‘the classical regime of
growth’’. Our experiments support these observations for
substrates with E R 5 kPa. Specifically, on glass, colonies
start as small clusters of very low density of 700 5 200
cells/mm2 (Fig. 1, A and B), typically surrounded by a strong
actin cable (Fig. 1, B and C). Interestingly, the spreading
area of single cells (Fig. 1 A) on glass was found to be signif-
icantly larger, i.e., (2.0 5 0.9) � 10�3 mm2. After Day 4
(corresponding cluster area of 6005 100 mm2), the density
in the center of the colony reached the steady state with
6,800 5 500 cells/mm2, whereas the mean density of the
edge profile grew to 4,000 5 500 cells/mm2. This density
was retained until Day 12 (cluster area 1800 5 100 mm2),
which is in agreement with previous work (9).

In colonies grown on 0.6 kPa gels, however, we encounter
a very different growth scenario. The average spreading area
of single cells is (0.34 5 0.3) � 10�3 mm2, which is six
times smaller than on glass substrates (Fig. 2 A). Clusters
of only few cells show that cells have a preference for
cell-cell contacts (a well-established flat contact zone can
be seen at the cell-cell interface in Fig. 2 A) rather than
for cell-substrate contacts (contact zone is diffusive and
the shape of the cells appears curved). The same conclusion
FIGURE 1 Early phase of cluster growth on hard substrates.

(A) Well-spread single cells, and small clusters with a visible

actin cable 6 h after seeding. (B) Within one day, clusters densify

and merge, making small colonies. (C) Edge of clusters from

panel B.
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emerges from the fact that dropletlike agglomerates, resting
on the substrate, form spontaneously (Fig. 2 A), and that at-
tempts to seed one single cluster of 90,000 cells fail, result-
ing in a number of three-dimensional colonies (Fig. 2 A).
When the contact area with the substrate exceeds 4.7 �
10�3 mm2, a monolayer appears in the center of such col-
onies (Fig. 2 B). The colonies can merge, and if individual
colonies are small, the collapse into a single domain is asso-
ciated with the formation of transient irregular structures
(Fig. 2 B). Ultimately, large elliptical colonies (average
major/minor axis of e ¼ 1.8 5 0.6) with a smooth edge
are formed (Fig. 2 C), unlike on hard substrates where circu-
lar clusters (e ¼ 1.06 5 0.06) with a ragged edge comprise
the characteristic phenotype.

Irrespective of cluster size, in the new regime of growth,
the internal structure is built of two compartments (Fig. 2 B):

1. The first is the edge (0.019 5 0.05-mm wide), a three-
dimensional structure of densely packed cells. This belt
is a signature of the new regime because on hard sub-
strates the edge is strictly two-dimensional (Fig. 1 C).

2. The other is the centrally placed monolayer with a
spatially constant density that is very weakly dependent
on cluster size and age (Fig. 3). The mean monolayer
density is 13,0005 2,000 cells/mm2, which is an average
over 130 clusters that are up to 12 days old and have a
size in the range of 10�3 to 10 mm2, each shown by a
data point in Fig. 3. This density is twice the steady-state
density of the bulk tissue in the classical regime of growth.



FIGURE 3 Monolayer densities in colonies grown on 0.6 kPa

substrates, as a function of the cluster size and age. Each clus-

ter is represented by a single data point signifying its mean

monolayer density. (Black lines) Bulk and (red dashed lines)

edge of steady-state densities from monolayers grown on glass

substrates. Error bars are omitted for clarity, but are discussed

in the Supporting Material.
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Until Day 4, the monolayer is very homogeneous,
showing a nearly hexagonal arrangement of cells. From
Day 4, however, defects start to appear in the form of small
holes (typical size of (0.35 0.1)� 10�3 mm2). These could
be attributed to the extrusions of viable cells, from either the
belt or areas of increased local density in the monolayer
(inset in Fig. 4). This suggests that extrusions serve to
release stress built in the tissue, and, as a consequence,
the overall density is decreased.

Previous reports suggest that isolated MDCK cells un-
dergo anoikis 8 h after losing contact with their neighbors
FIGURE 4 Cell nuclei within the mother colony and in the

neighboring archipelago of second-generation clusters grown

on 0.6 kPa gels at Day 12. (Inset; scale bar ¼ 10 mm) Scar in

the tissue, a result of a cell-extrusion event. (Main image; scale

bar ¼ 100 mm) From the image of cell nuclei (left), it is clear that

there are no cells within the scar, whereas the image of actin

(right) shows that the cytoplasm of the cells at the edge has

closed the hole.
(18). However, in this case, it appears that instead of dying,
the extruded cells create new colonies, which can be seen as
an archipelago surrounding the mother cluster (Fig. 4). The
viability of off-cast cells is further evidenced by the appear-
ance of single cells and second-generation colonies with
sizes varying over five orders of magnitude, from Day 4
until the end of the experiment, Day 12. Importantly, no
morphological differences were found in the first- and sec-
ond-generation colonies.

In conclusion, we show what we believe to be a novel
phase of growth of MDCK model tissue on soft PA gels
(E ¼ 0.6 kPa) that, to our knowledge, despite previous
similar efforts (9), has not been observed before. This
finding is especially interesting in the context of elasticity
of real kidneys, for which a Young’s modulus has been
found to be between 0.05 and 5 kPa (19,20). This coincides
with the elasticity of substrates studied herein, and opens the
possibility that the newly found phase of growth has a
particular biological relevance. Likewise, the ability to
extrude viable cells may point to a new migratory pathway
regulated mechanically by the stresses in the tissue, the
implication of which we hope to investigate in the future.
SUPPORTING MATERIAL

Materials and Methods (including one equation), Data Analysis (with sub-
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MATERIALS AND METHODS 
MDCK II cells (#00062107) were obtained from ECACC 
(UK) and cultured in MEM with Earle´s Salts (# F0325, 
Biochrom) supplemented with 2mM L-glutamin (# G7513, 
Sigma-Aldrich), 5% FBS (#F0804, Sigma-Aldrich) and 1% 
Penn/Strep (#15070-063, Gibco, LifeTechnologies) at 37° 
C and 5 % CO2. Cells were split and passaged every other 
day to keep them sub-confluent (< 80%).   

   Collagen-I (BD Biosciences) coated elastic 
polyacrylamide (PA) gels were prepared as described 
earlier [Ref 15 in the main text] adapted from the original 
protocol by Pelham and Wang [Ref 11 in the main text]. 
The Young’s elastic modulus E was measured by macro 
rheology (MCR 501, Anton Paar, Austria) using a cone and 
plate geometry (Ø = 25 mm, 2°) A typical gelation curve of 
PA yielding a shear storage modulus G’ = after 1h (3,600 
s), the usual polymerization time for PA gels is shown in 
Fig S1A. This is converted to the Young’s modulus E using 
a Poisson’s ratio of ν = 0.45 (Engler et al., Meth Cell Biol, 
83 (2007) 521). To ensure a homogeneous elastic hydrogel, 
the macroscopic rheology measurements were 
complemented with microrheology using atomic force 
microscopy (AFM, MFP-3D, Asylum Research, Santa 
Barbara, USA). The resulting force-indentation curves were 
fitted using a modified Hertz model  
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2
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as described in (Engler et al., Meth Cell Biol, 83 (2007) 
521) and shown in Fig S1B (black line depicts 
experimental data, dotted red line shows the fitted Hertz 
model). 

To assure similar collagen-I coating, glass slides were 
cleaned and treated with the same cross-linker (Sulfo-
SANPAH, Pierce, Thermo Scientific) before collagen 
incubation as described.  

   MDCK II cells were seeded in two different ways on 
substrates. First, 30,000 cells were dispersed over the 
whole area of the substrate to investigate single cell 
behaviour and the onset of cluster formation. Second, cells 
were seeded as a highly concentrated (90,000 cells in 7 µL) 
drop in the middle of the sample, subsequently incubated 
for one hour before gently adding 2 mL of medium. 

   Filamentous actin was stained using phalloidin–
tetramethylrhodamine B isothiocyanate (#77418-100UG, 
Sigma-Aldrich) and the nucleus was labelled with Hoechst 
33342 trihydrochloride trihydrate (Molecular Probes, Life 
Technologies). Fluorescence microscopy was performed on 
a Zeiss Cell Obsever Z1 using 5 x, 20 x and 32 x objectives 
and images were recorded with a Zeiss AxioCam M3 and 
the Zeiss AxioVision software package (all Zeiss, 
Göttingen). 

 

 

 

Fig. S1. A) A typical polymerization curve of PA yielding a 
shear storage modulus. B) Atomic force microscopy force-
indentation curves. The black line depicts experimental 
data, dotted red line shows the fitted Hertz model. 
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DATA ANALYSIS 

SINGLE CELLS 

Single cell area was determined after segmentation of actin 
images as the area of white objects. Error in threshold 
procedure is negligible compared to variation of the cell 
size. There are 50 cells in statistics for glass substrate and 
90 cells for 0.6 kPa PA gels.  

GLASS AND HARD SUBSTRATES 

Image analysis was performed with self-developed routines 
in MALAB (The MathWorks, Natick, MA, USA). The 
density of large colonies was obtained from an automated 
procedure whereby the number of objects in a given area 
was determined from segmented fluorescence images of 
cell nuclei (Fig SI2A). The reported values are spatial 
averages from the bulk and the edge parts of the cluster 
performed independently at a fixed instance of time (days 
4-12). The averaging is performed over images of a colony 
on a given day (4, 6,...12) and then over all days.   

   The error in determination of density emerges when two 
nuclei are recognized as one (green ellipse in Fig. S2A), or 
when one nuclei is recognized as two (yellow ellipses in 
Fig. S2A). The relative error in cell density arising from 
this effects amounts to 2%, which is calculated after 
determining the density from images with corrected nuclei 
recognition step. Since this induces a small error, the 
reported standard deviation entirely reflects the fluctuations 
of the cell density within the respective colony 
compartments. Another reason for a large deviation is that 
the data set includes colonies of different age.  On a level 
of a single colony at a particular day, the bulk density is at 
least fifty percent larger than the density in the edge of the 
cluster.  

   The area of a large colony is determined by 
approximating the shape of the cluster by an ellipse, and 
measuring the minor and major axis. The reported error 
corresponds to the standard deviation of cluster sizes from 
several experiments, which is again significantly larger 
than the error in determining the area of a single colony.  

SOFT SUBSTRATES  

The density and the monolayer area in small clusters was 
determined with ImageJ (Rasband, W.S., ImageJ, U. S. 
National Institutes of Health, Bethesda, Maryland, USA, 
http://imagej.nih.gov/ij/, 1997-2012). Thereby, the number 
of cell nuclei was counted within area of interest, the latter 
being determined with a freehand selection tool (Fig S2B). 
Deviation arising from repeatedly selecting the same area is 
less than 1%. The main contribution to the reported 
deviation comes from the variation in density when 
changing the area of interest. Examples of areas of interest 
are shown in different colours in Fig. S2B. Nevertheless, 
the relative uncertainly in density remains below 10%, and 
naturally becomes smaller as the size of the monolayer 

increases. For example, the area of the monolayer of the 
colony shown in Fig S2B is determined with the 6% 
relative uncertainty.  

   For bigger clusters the same procedure to determine the 
number of cells in a given image was used as for colonies 
on hard substrates. On the other hand, the size of the colony 
was determined after segmenting the images using the 
Otsu’s method (for details see Otsu, N. 1979. A Threshold 
Selection Method from Gray-Level Histograms. IEEE 
Transactions on Systems, Man, and Cybernetics. 9:62-66). 
For very large colonies a collage of images was made prior 
to segmentation. In total, 130 colonies were analysed with 
sizes differing over five orders of magnitude.  

 

FIGURE S2 Sources of errors in determining the cell
density. (A) The MATLAB routine may recognize two
nuclei as one object (green) or divide one nucleus into
two objects (yellow). This leads to total error of 2%. (B)
Freehand selection tool in ImageJ and four possible
monolayer areas of interest. The four selections lead to
a 6% relative uncertainty in determining the cell density.  
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