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SI Data
This section reports a note on the outlier exclusion procedure
during region of interest analyses.
Outliers were defined as 3 SDs above or below the mean of the

difference between a priori contrasts of conditions of interest.
One outlier participant was identified during the analysis of the
think/no-think phase. This participant was an outlier in three
regions of interest: the left and right hippocampus and the right
fusiform. During the think/no-think phase, we observed increased
activity for think relative to no-think items in both left [t(22) =
2.75, P < 0.01] and right [t(22) = 1.79, P < 0.05] hippocampus
when this outlier was excluded from the analysis; when the
outlier was included, this effect was marginal in the left hippo-
campus [t(23) = 1.41, P = 0.086] and absent in the right [t(23) =
0.61, P = 0.27]. In the right fusiform gyrus, we observed in-
creased activity for think relative to no-think items [t(22) = 1.95,
P < 0.05] when excluding this outlier; when included, this effect
was no longer significant [t(23) = 0.92, P = 0.18]. Note that we
did not exclude this outlier participant from the analyses re-
ported in the manuscript. Rather, we report them here for
reader consideration.

SI Simulation Methods
This section reports in detail (i) the models used to simulate
fusiform activity under different suppression accounts, (ii) the
Markov chain Monte Carlo (MCMC) algorithm to sample the
entire space of parameter values for each simulated model and
to approximate the posterior distribution of these parameters,
and (iii) the method to test goodness of fit (GOF) of each model
across participants, as well as (iv) evidence of MCMC convergence.

General Overview. The goal of these simulations was to compute
the theoretical representational dissimilarity matrix (RDM-t) for
a simulated fusiform cortex under different assumptions of
about how memory is suppressed. A first factor distinguishing the
models corresponded to how voxels were selected and modu-
lated (i.e., voxel selection): (i) targeted (i.e., activity dependent,
in which a subset of voxels is modulated for each item based on
their higher degree of initial activation), (ii) random (in which
a randomly chosen subset of voxels is selected for each item),
and (iii) fixed (in which a randomly selected set of voxels is
consistently modulated across items). A second factor captured
how memory suppression was implemented via (i) inhibition (in
which voxel activity is divided by some factor), (ii) truncated
activation (in which memory reinstatement is stopped but not
directly inhibited, resulting in fewer voxels remaining active),
and (iii) retrieval alone (in which activity for no-think items is
not modulated at all (and only think items were modulated; see
Model Construction). After fitting model parameters for each of
these models and each participant, and generating the corre-
sponding RDM-t, we compared which RDM-t provided the best
fit to the RDM observed in the real fusiform gyrus (RDM-fus) for
each participant. GOF values were then entered into a second-
level analysis treating participants as a random effect variable.
To generate the critical theoretical RDM-t for each account,

we constructed a model M (e.g., targeted inhibition) given some
parameters θ1, θ2,..., θN, which can be formulated as RDM-t = M
(θ1, θ2,..., θN). For each generative model M, we estimated the
values of the parameters that best fit the data. Here, we used
a MCMC approach to sample the entire space of parameter
values and to approximate the posterior distribution of each
parameter. Then, the maximum a posteriori estimate (MAP)

(i.e., the mode of the posterior distribution) was taken as the best
fit of each parameter and these estimates used to establish the
GOF of each model. Note that we repeatedly split the observed
RDM-fus into two halves so that one half provided a training
set used to fit model parameters, and the other half provided
a test set to calculate the GOF of the model (i.e., a cross-
validation approach).
In this section, we first detail how RDM-t was generated under

the different theoretical accounts of memory suppression. We
then present the MCMC algorithm used to fit model parameters.
Finally, we report the cross-validation method used to estimate
the GOF distribution of each theoretical model. All these sim-
ulations were performed in MATLAB (MathWorks).

Model Construction. To perform this simulation, we first created
a Gvi grid (with rows corresponding to voxels, v, and columns to
items, i) of random values drawn for each voxel from a multi-
variate normal distribution x ∼ Ɲ (μ, Σ), where μ was drawn from
a standard uniform distribution across the open interval {0 1} for
each item and the off-diagonal elements of i × i covariance
matrix Σ were set to a free parameter c. G was divided into 12
think (T) and 12 no-think (NT) items such that Gvi = [Tvi, NTvi].
Note here that we used 12 items in each condition instead of 24
because of the cross-validation procedure, which assigned half of
the items in the RDM-fus to a training set and the other half to
a test set. The parameter c determines the mean correlation
across all patterns (i.e., items). Each column in this initial grid
represents the initial pattern of activity triggered by a memory
cue paired with a stored object. From this initial pattern, activity
was then modulated differently for think and no-think items.
Memory suppression type: Inhibition versus truncated activation versus
retrieval alone. For both think and no-think trials, a proportion
(x and y, respectively; see voxel selection type) of voxels was first
selected. Think trials were enhanced by an enhancement factor
(e), such that Txi = Txi · e (e.g., doubled when e = 2).

� Inhibition: no-think selected voxels were down-scaled by a sup-
pression factor (s) such that NTyi = NTyi · s (e.g., halved when
s = 0.5).

� Truncated activation: the number of selected voxels whose
reactivation was truncated in no-think trials corresponded to
a ratio, r, of the number of selected voxels in the think condi-
tion, i.e., a proportion x · r of all voxels (e.g., 25% of voxels
when r = 0.5 and x = 0.5). Activity of this subset of voxels
during no-think trials was up-scaled by the same e as for
think trials.

� Retrieval alone: the initial grid of activity was not modulated
for no-think trials.

Voxel selection type: Targeted versus random versus fixed voxel selection.

� Targeted: for both think and no-think trials, a proportion
(x and y, respectively) of voxels that were most highly activated
were selected (e.g., the top 30% when x = 0.3). This selective
mechanism was applied separately for each item.

� Random: for both think and no-think trials, a proportion
(x and y, respectively) of voxels were randomly selected. This
random selection was applied separately for each item.

� Fixed: the same proportions of voxels (x and y) were selected
as in other models, in a random fashion (regardless of activity
level), but this selection was fixed across items within a condi-
tion. Note that under this account, an additional overlapping
factor (o) was introduced to control for the degree of overlap
between voxels selected in the think and no-think conditions,
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such that o = 0.5 means that half the voxels selected in the no-
think condition were the same voxels as selected for the think
condition.

Finally, for all models, once activity was modulated for think
and no-think items, noise randomly drawn from a standard uniform
distribution on the open interval {0 1*n}, with n < 1, was added
to each voxel and pattern such that Gvi = Gvi + Rvi.
The goal of the next MCMC step was then to sample the entire

parameter space and to identify which parameter values were
most likely to fit to the observed RDM-fus.

MCMCAlgorithm.Our goal was to sample from the unknown target
(i.e., posterior) distribution p(θj) of each of the j = 1...N pa-
rameters presented above. Here we used a Metropolis sampler,
which creates a Markov chain that produces a sequence of values

θð1Þj → θð2Þj → θð3Þj → . . . → θðtÞj ;

where θj
(t) represents the state of a Markov chain at iteration t.

In the Metropolis procedure, we initialize the first state, θj
(1) to

some initial random value. For each parameter, we then used
a standard uniform (see below) proposal distribution q(θj) to
generate new candidate θj*. The use of a uniform distribution
is convenient as it makes no assumption about the shape of the
target distribution, and it satisfies a key requirement of the Me-
tropolis sampler, which is to have a symmetrical proposal distri-
bution such that q(θj*j θj(t−1)) = q(θj

(t−1)j θj*). The next step is
then to either accept or reject the new proposal θj*, with the
probability of accepting the new proposal being
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To compute this acceptance probability, we calculated for a given
model M (see General Overview), RDM-t with the new proposal,
such that new RDM-t = M (θ1*, θ2

(t−1),..., θN
(t−1)), as well as

RDM-t at the state of the chain t − 1, such that old RDM-t =
M (θ1

(t−1), θ2
(t−1),..., θN

(t−1)). Then we computed the cost of both
the new proposal and old state such that new cost = 1 − r(new
RDM-t, RDM-fus) and old cost = 1 − r (old RDM-t, RDM-fus),
with r being the Spearman rank correlation between the two
vectorized RDMs. The probability of accepting the new proposal
becomes then:

α=minð1; expð−ðnew  cost=old  costÞÞÞ:

Hence, when a new cost value decreases relative to the old cost
after a new proposed parameter (i.e., better fit), α increases to-
ward 1 [i.e., new parameter θj* is more likely than the old one
θj
(t−1)]. To make a decision on whether to accept or reject the

new proposal, we draw a value, u, from a uniform standard distri-
bution on the open interval {0 1}. If u < α or if the new cost value
decreases relative to old cost, we accept the proposal θj* and
the next state is then set to θj

(t) = θj*. If u > α, we reject the new
proposal and the next state is set to be equal to the old state,
θj
(t) = θj

(t−1).
At each iteration t, we generate independently a new proposal

for each parameter entering our model M and either accept or
reject the proposal. Here is a summary of the steps of the Me-
tropolis sampler:

i) Set t = 1.
ii) Generate an initial value drawn from a uniform proposal

distribution (see below) for each parameter θ1, θ2, θ3, ..., θN.
iii) Generate a proposal θ1*, from q(θ1) which is the uniform

proposal distribution of θ1, with θ1min < θ1 < θ1 max .

iv) Evaluate the acceptance probability α=minð1; pðθ1*; θ t−1
2 ; . . . ;

θ t−1
N Þ=pðθ t−1

1 ; θ t−1
2 ; . . . ; θ t−1

N ÞÞ, with α = min(1, exp(−(new cost/
old cost))).

v) Generate u from a uniform {0 1}. If u < α or new cost < old
cost, accept the proposal and set θ1

(t) = θ1*; else set θ1
(t) =

θ1
(t−1). Apply the same process for θ2, . . ., θN.

vi) Repeat until t = T.

When t reaches the number of iterations specified (here T =
5,000), we then have an approximation of the posterior distri-
bution of each parameter θ. Because this Metropolis algorithm
always accepts a new proposal when it is more likely under the
posterior distribution than the old state, the sampler will move
toward the regions of the state space where the posterior dis-
tribution has high density (in other words, toward parameter
values which are more likely to explain the data, i.e., RDM-fus;
Fig. S5). However, even if the new proposal provides a worse fit
to the data than the current state, it might still be accepted be-
cause u < α could arise by chance (if the drawn value is very low).
This process of always accepting a new parameter value that
improves model fit but occasionally accepting other values to
ensure that the sampler explores the whole state space, i.e., sam-
ples all parts of the posterior distribution (including the tails).
However, this parameter space is limited by the open interval

chosen for the uniform proposal distribution, so it is important
that these proposal distributions cover the entire space of possible
values, bound by some limits. Here we used the following uniform
discrete distributions for the parameters described in the above
model construction section:

� Average correlation across all patterns, c = U(0.1,0.9), step =
0.05.

� Number of voxels composing the grid G, v = U(20,1000),
step = 20.

� Proportion of noise added to the data, n = U(0.05, 0.9), step =
0.05.

� Suppression factor, s = U(0.05, 0.9), step = 0.05 (inhibition
accounts only).

� Retrieval factor, e = U(1/max(s), 1/min(s)), i.e., e = U(1.1, 20),
step = 0.05.

� Proportion of modulated voxels for think items, x = U(0.05,
0.9), step = 0.05.

� Proportion of modulated voxels for no-think items, y =
U(0.05, 0.9), step = 0.05.

� Ratio of modulated voxels for no-think items compared with
think items, r =U(0.05, 0.95), step = 0.05 (truncated activation
accounts only).

� Proportion of overlapping voxels between think and no-think
condition, o = U(0, 1), step = 0.05 (fixed voxel selection ac-
counts only).

Note that for the retrieval alone model, s and y were not
relevant and hence not sampled by the Metropolis algorithm.

Random-Effect Analysis and Cross-Validation.TheMCMC algorithm
presented above allows us to sample from the posterior distri-
bution of each parameter and to identify the regions of the state
space where the posterior distribution has high density for the
RDM of a given participant. Once the initial samples of the
MCMC algorithm have been discarded (the burn-in period
was set to 250 samples; see MCMC Convergence), the mode of
this posterior distribution hence reflects a reasonable estimate of
the most likely parameter values under the posterior distribution
(MAP estimation), i.e., providing the best fit to the data. How-
ever, with so many parameters to each model, and relatively few
data, there is a danger that the models will overfit the data (i.e.,
fit the noise in the data, rather than the true signal). To evaluate
this, we used cross-validation to select the model that best gen-
eralizes from one half of the data (training set) to the other half
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of the data (test set). We randomly split the RDM-fus of each
participant into two independent halves 100 times, each time
fitting the training half using the above MCMC algorithm, and
using the posterior mode of each parameter to estimate the GOF
for the test half. GOF was defined as r(RDM-t, RDM-fus), where
r is the Spearman correlation between the two vectorized RDMs.
These 100 GOF values for each participant and the models were
then averaged, resulting in a 24-participant × 9-model data set.
Statistical differences between models were then tested with
a bootstrap with replacement approach on the mean difference
between pairs or families of models (using 2,000 bootstraps),
allowing us to compute the confidence intervals for the differ-
ences between models (corresponding to bias-corrected and ac-
celerated percentile method).
Fig. 5C in the main text reports the mean GOF across par-

ticipants. The cross-validation approach used for model fitting
and testing is illustrated in Fig. S4.

MCMC Convergence. The first 250 samples of the MCMC chains
were discarded and not collected. Different diagnostic tests were
performed to check whether the chains have converged to their
stationary distributions. Those tests were performed on each
sampled parameter for each model and each participant, dis-
carding the first 250 initial samples. One way to assess conver-
gence is to compute the autocorrelations between the draws of the
Markov chain. The lag k autocorrelation ρk is the correlation
between every draw i of the chain x and its kth lag:

ρk =
Pn−k

i=1 ðxi − xÞðxi+k − xÞPn
i=1ðxi − xÞ2 :

Fig. S6 illustrates how kth lag autocorrelation is smaller as k
increases for a given participant and random split, indicating that
the chains have mixed quickly to their stationary distribution.
This pattern was true across all participants and random splits.
Another assessment of stationary distribution is the Gelman–

Rubin diagnostic which can be performed by running the same
Markov chain multiple times (as was done for the cross-valida-
tion approach above) and to estimate the variance of the pa-
rameter as a weighted sum of the within-chain and between-

chain variance. The within variance (W) is the mean of the variance
of m chains, such that

W =
1
m

Xm
j=1

s2j ;

where s2j is the variance of the jth chain x with n samples, such that

s2j =
1

n− 1

Xn
i=1

�
xij − xj

�2
:

The between variance (B) is given by

B=
n

m− 1

Xm
j=1

�
xj − x

�2
;  where x=

1
m

Xm
j=1

xj:

We can then estimate the variance of the stationary distribution as
a weighted average of W and B:

dVarðxÞ=�1− 1
n

�
W +

1
n
B:

The estimated potential scale reduction factor (EPSR) corre-
sponds then to

R̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffidVarðxÞ
W

s
:

EPSR measures the degree to which the posterior variance
would decrease if we were to continue sampling to infinity.
If EPSR ≈ 1, then that estimate is reliable, meaning the var-
iance between the chains is similar to the variance within
each chain, and that the chains have converged to the station-
ary distribution.
Here EPSR < 1.06 for all parameters of each model tested for

each participant and random split, indicating that the MCMC
algorithm converged well.

Fig. S1. Memory inhibition effect during the final priming test phase after controlling for mean identification time differences across conditions. Note that,
contrary to Fig. 3B, we did not mask this effect with the main effect of neural priming.
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Fig. S2. Dynamic causal modeling (DCM) model space and Bayesian model selection (BMS) procedures. (A) BMS was first applied on the direction (bilateral
versus unilateral intrinsic connections) family. The bilateral subgroup won (as indicated by red asterisk) against the unilateral subgroup with an exceedance
probability of 0.99, and an expected posterior probability of 0.77. Within the bilateral family of models, we then compared which driving input was more
likely. Models including a driving input in both the lateral occipital complex (LOC) and the middle frontal gyrus (MFG) won with an exceedance probability of
0.926 (against 0.0532 for the MFG only and 0.0208 for the LOC only), and an expected posterior probability of 0.5538 (against 0.2476 for the MFG only and
0.1986 for the LOC only). Finally, we compared the remaining seven modulatory models (i.e., including a top-down modulation of the coupling between the

Legend continued on following page
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MFG and posterior regions during no-think trials) to the seven null models that did not include any modulatory input on top-down connections. This analysis
overwhelmingly favored models with modulation over models without modulation (exceedance probability = 0.95, expected posterior probability = 0.73). (B)
The full space of DCM models. Gray arrows represent connections between nodes. Black arrows correspond to the driving inputs of the models. The red
arrowheads illustrate the presence of a modulatory input for no-think items on connection strength.

Fig. S3. Relationship between modulatory parameters for the MFG→fusiform DCM model and disrupted neural priming for no-think items (i.e., no-think −
baseline). Robust Spearman correlation (1) revealed the presence of two bivariate outliers consistently identified using box-plot rule, the median absolute
deviation to the median, and the median of absolute distances (S outlier; cf. ref. 1).

1. Pernet CR, Wilcox R, Rousselet GA (2013) Robust correlation analyses: False positive and power validation using a new open source Matlab toolbox. Front Psychol 3:a606.

Fig. S4. A visual illustration depicting the model fitting and testing procedures based on MCMC: a cross-validation approach. We randomly split the RDM-fus of
each participant into two independent halves 100 times, each time fitting the training half using the MCMC algorithm. The MCMC algorithm allows us to
sample from the posterior distribution of each parameter and to identify the regions of the state space where the posterior distribution has high density. Once
the initial samples of the MCMC algorithm have been discarded (the burn-in period was set to 250 samples, see MCMC Convergence), the mode of this
posterior distribution hence reflects a reasonable estimate of the parameter values providing the best fit to the data. We used the posterior mode of each
parameter to test how model fitting generalizes to the other half of the data (test set) and to estimate the GOF (i.e., Spearman correlation between the two
vectorized RDM-fus and RDM-t). The 100 GOF values computed were then averaged for each model and each participant, and entered into a second-level
analysis treating participants as a random effect variable.
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Fig. S5. Histogram of the sample distribution for each model free parameter obtained after MCMC convergence. The MCMC Metropolis algorithm ensures
that the whole state space of parameters is sampled, and the sampler will move toward the regions of the state space that provide a better fit to the data.
Hence, more frequent values represent a critical feature that is necessary to explain the data under a given model, while distributions that stay largely uniform
indicate that these parameters do not have much impact on model fit. For instance, the distribution of the suppression factor (S) is skewed toward lower
values, indicating that suppression has an impact on model fit. In contrast, the distribution of the number of voxels remains flat showing that our findings
generalize well across a range of voxel number values. These histograms were plotted after 100 repetitions of the MCMC Metropolis sampler comprising 4,750
iterations (i.e., discarding the first 250 burn-in samples) across 24 participants.
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Fig. S6. Autocorrelation between the draws of the Markov chains showing that the MCMC algorithm converged well. Autocorrelation is a cross-correlation of
the sample time series with itself as a function of a time separation (i.e., kth lag). A decrease in autocorrelation when k lag increases indicates a fast mixing of
the chain and a convergence to a stationary distribution. Here, these autocorrelations were plotted for one participant and for each model parameter after
a single random split of the MCMC Metropolis sampler comprising 4,750 iterations (i.e., discarding the first 250 burn-in samples), to illustrate that the MCMC
algorithm converged well. Note that the Gelman–Rubin diagnostic test also indicated a convergence of the Markov chains to stationary distribution (SI
Simulation Methods).

Table S1. Peak coordinates of the regions showing a think versus no-think difference at
PFWE < 0.05 (whole brain)

MNI coordinates, mm

Anatomical description No. of voxels x y z T PFWE

No-think > think
Right SFG 377 20 16 58 8.96 <0.001
Right IPC 705 44 −46 36 8.5 <0.001
Right MFG 331 44 24 46 8.37 <0.001
Right IFG 254 50 20 8 8.26 <0.01
Left IPC 68 −60 −52 38 6.8 <0.01
Right inferior orbitofrontal gyrus 25 42 46 −8 6.58 <0.05
Right SFG (anterior) 67 22 52 18 6.29 <0.05
Right medial SFG 45 10 36 42 6.23 <0.05
Left LOC 7 −46 −80 −4 6.22 <0.05
Left inferior temporal gyrus 7 −58 −28 −20 6.24 <0.05
Left MFG 5 −40 28 44 6.01 <0.05
Right superior parietal gyrus 7 34 −52 58 5.98 <0.05

Think > no-think
Left fusiform gyrus 52 −32 −32 −24 7.09 <0.01
Left IFG 49 −42 32 14 7.09 <0.01

The think > no-think difference observed in the hippocampus survived correction when the search volume
was restricted to the left [t(23) = 4.01, PFWE < 0.05, x = −32, y = −26, z = −14] and to the right [t(23) = 3.65,
PFWE < 0.05, x = 34, y = −8, z = −26] hippocampus. IFG, inferior frontal gyrus; IPC, inferior parietal cortex; MNI,
Montreal Neurological Institute; PFWE, P family-wise error; SFG, superior frontal gyrus.
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Table S2. Peak coordinates of the regions showing neural priming (think + no-think + baseline < unprimed) and
memory inhibition (no-think > think + baseline) during the final priming test phase at PFWE < 0.05

MNI coordinates, mm

Anatomical description No. of voxels x y z T PFWE

Think + no-think + baseline < unprimed
(whole-brain correction)
Right inferior temporal and fusiform gyri 442 46 −54 12 7.3 <0.001
Left LOC 679 −44 −68 −6 7.24 <0.001
Left fusiform gyrus −40 −54 −10 6.13 <0.01
Left fusiform gyrus −34 −44 −18 5.74 <0.01
Right inferior temporal gyrus 183 48 8 26 6.36 <0.01

No-think > think + baseline (main effect of
neural priming as restricted search volume)
Left LOC 243 −38 −76 −8 5.28 <0.001
Left fusiform gyrus −36 −60 −6 4.96 <0.01
Right fusiform gyrus 69 40 −58 −10 4.65 <0.01
Left fusiform gyrus 3 −34 −52 −16 3.42 0.059

An additional whole-brain correction showed a memory inhibition effect (no-think > think + baseline) in the right LOC [t(23) = 10.88,
PFWE < 0.05, x = 26, y = −84, z = −6], although this region did not show an initial neural priming effect (at least when P values were
whole-brain corrected). Fig. S1 also reports whole-brain memory inhibition effect (no-think > think + baseline) during the final priming
test phase after controlling for mean identification differences across conditions. Regions in italics correspond to submaxima peak
coordinates in the cluster.
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