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Material and Methods 
 
Protein preparation and labeling. Cysteine residues for the specific labeling of IDPs using 
maleimide chemistry were introduced by site-directed mutagenesis at the positions given in Table 
S1. ProTα (57) variants, IN (58) and ACTR (59) were produced in E. coli BL21 with an N-
terminal His-tag for purification. Cells were grown in LB medium and expression was induced 
with IPTG.  

Disruption of harvested cells and ammonium sulfate precipitation were carried out as 
described previously for ProTα (60). The protein was bound to a gravity flow Ni-NTA column 
(Thermo Scientific) and eluted with 20 mM Tris, 100 mM sodium chloride, and 500 mM 
imidazole, pH 7.5. The sample was dialyzed against 20 mM Tris, 100 mM sodium chloride, and 
20 mM imidazole, pH 7.5. The His-tag was cleaved off with HRV 3C protease, which also 
contained a His-tag; a second Ni-NTA chromatography run was used to remove the protease and 
the His-tag. The flow-through containing ProTα was concentrated with a YM-3 Centriprep 
centrifugal filter (Merck Millipore), reduced with 10 mM TCEP, and purified by reversed phase 
(RP) HPLC on a Reprosil Gold 200 column (Dr. Maisch, Germany) and elution with an 
acetonitrile gradient. Purified ProTα was lyophilized in a SpeedVac concentrator (Thermo 
Scientific), dissolved in 0.1 M sodium phosphate, pH 7.5, and labeled with Alexa Fluor 488 
maleimide (Invitrogen) at a molar ratio of dye to protein of 0.8:1. The reaction mixture was 
quenched with β-mercaptoethanol, reduced with 10 mM TCEP and purified by RP-HPLC on an 
XTerra C18 column (Waters). The fraction containing singly labeled ProTα was lyophilized in a 
SpeedVac concentrator, and labeled and purified analogously with a molar excess of Alexa Fluor 
594 maleimide (Invitrogen). The masses of the doubly labeled ProTα-N and ProTα-C were 
confirmed by electrospray ionization mass spectrometry (ESI-MS). 

IN was purified by Ni-NTA chromatography as described for ProTα. The  His-tag was 
removed by enzymatic cleavage with Thrombin protease after dialysis against 50 mM NaHCO3 
pH 9.3, 0.5 M Na2SO4, 0.1 M NaCl, 5 mM EDTA, 1 mM DTT. After reduction with 10 mM 
TCEP and purification by RP-HPLC, IN was lyophilized in a SpeedVac concentrator, dissolved 
in 50 mM HEPES, 0.5 mM ZnCl2, and 0.5 M arginine, pH 7.5, and labeled with Alexa Fluor 488 
maleimide at a molar ratio of dye to protein of 0.8:1. The reaction mixture was quenched with β-
mercaptoethanol, reduced with 10 mM TCEP and purified by RP-HPLC on a XTerra C18 
column. The fraction containing singly labeled IN was lyophilized in a SpeedVac concentrator, 
and labeled and purified analogously with Alexa Fluor 594 maleimide. The doubly labeled IN 
was purified by RP-HPLC on an XTerra C18 column. The correct mass of the labeled IN was 
confirmed by ESI-MS. 

ACTR was co-expressed with NCBD (nuclear co-activator binding domain of CREB) to 
improve the stability of ACTR during expression (59). The harvested cells were disrupted with a 
TS 1.1 cell disruption system (Constant Systems Ltd, England), the protein was bound to a Ni-
NTA column, and the His-tag was removed by enzymatic cleavage with HRV 3C protease. After 
reduction of the sample with β-mercaptoethanol, the protease and the His-tag were removed with 
a second Ni-NTA column. ACTR was separated from NCBD by RP-HPLC on a Reprosil Gold 
200 column by elution with an acetonitrile gradient. The fraction containing ACTR was 
lyophilized in a SpeedVac concentrator, dissolved in 0.1 M sodium phophate, pH 7.5, and labeled 
with Alexa Fluor 488 maleimide at a molar ratio of dye to protein of 0.8:1. The reaction mixture 
was again reduced with β-mercaptoethanol and purified by RP-HPLC on a Reprosil Gold 200 
column. The fraction with the singly labeled ACTR was lyophilized in a SpeedVac concentrator, 
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dissolved in labeling buffer and labeled with a molar excess of Alexa Fluor 594 maleimide. 
Doubly labeled ACTR was purified by RP-HPLC on a Reprosil Gold 200 column, and the correct 
mass was confirmed by ESI-MS. 

Analogously, the same IDP variants were labeled with a different FRET pair (ATTO 532 
and ATTO 647N, Atto-Tec, Germany) whose spectra are shifted towards higher wavelengths 
where the influence of fluorescent impurities on the transfer efficiency histograms at high PEG 
concentrations is strongly reduced.  
 
Preparation of crowding solutions. Crowding experiments were carried out in 50 mM sodium 
phosphate buffer, pH 7.0. Crowding solutions were prepared by mixing acidic (50 mM NaH2PO4 
+ crowding agent) and alkaline (50 mM Na2HPO4 + crowding agent) stock solutions to a final pH 
of 7.0 (+/- 0.2). The concentration of the stock solutions depended on the solubility and purity of 
the crowding agent used (between 10 % w/w and 40 % w/w crowding agent). Crowding solutions 
with lower concentrations were prepared by dilution of the corresponding stock solution to the 
desired concentration with 50 mM sodium phosphate buffer, pH 7.0. 
 
Single-molecule fluorescence spectroscopy. Single-molecule fluorescence measurements were 
performed with a MicroTime 200 confocal microscope (PicoQuant, Germany) equipped with a 
diode laser (LDH-D-C-485, PicoQuant, Germany), a 20 MHz supercontinuum laser (SC-450-4, 
Fianium, UK; wavelength selected with a z582/15 band pass filter (Chroma)) for pulsed 
interleaved excitation (PIE) (61), and an Olympus UplanApo 60x/1.20W objective (Olympus). 
Photons emitted from the sample were collected by the same objective. Remaining excitation 
light was eliminated by a filter (HQ500LP, Chroma Technology) before the emitted photons 
passed the confocal unit with a 100 m pinhole. The emitted photons were separated into four 
channels with a polarizing beam splitter and a dichroic mirror (585DCXR, Chroma). Donor 
photons were filtered (ET525/50m, Chroma Technology) and then focused on a τ-SPAD 
avalanche photodiode (PicoQuant). Acceptor photons were filtered (HQ650/100m, Chroma 
Technology) and detected by a τ-SPAD (PicoQuant). The arrival time of every detected photon 
was recorded with a HydraHarp 400 counting module (PicoQuant). 

All measurements were performed by exciting the donor dye with a laser power of 
100 μW at the back aperture of the objective. For PIE measurements, the power used for exciting 
the acceptor dye was adjusted to match the intensity of the donor emission (between 50 and 70 
W). Single-molecule FRET efficiency histograms were acquired in samples with protein 
concentrations of about 50 pM to 100 pM. The time between excitation pulse and photon 
detection was stored with 16 ps resolution, with the lasers pulsed at a repetition rate of 20 MHz. 
The measurements were performed in 50 mM sodium phosphate buffer, pH 7.0, 200 mM -
mercaptoethanol, and 0.001% Tween-20 with varying concentrations of crowding agents and/or 
denaturants (guanidinium chloride, urea) or potassium chloride. Each sample was measured for 
30 min to 1h at 295 K. 
 
Data Analysis  
 
FRET efficiency histograms. Fluorescence bursts from individual molecules were identified by 
combining successive photons separated by inter photon times of <100 μs and retaining the burst 
if the total number of photons detected after donor excitation was >50. Transfer efficiencies for 
each burst were calculated according to E=nA/(nA+nD), where nD and nA are the numbers of donor 
and acceptor photons, respectively. Corrections for background, acceptor direct excitation, 
channel crosstalk, differences in detector efficiencies, and quantum yields of the dyes were 
applied (6). The precision of the measurements as estimated from multiple independent 
measurements is typically ±0.01 transfer efficiency units and thus comparable to or smaller than 
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the data points reported in the figures, unless shown explicitly. We estimate a systematic error for 
Rg of less than ±0.2 nm for the entire dataset. However, a uniform shift of this magnitude for all 
data toward higher or lower values of Rg does not affect any of our conclusions.      

The changes in refractive index caused by increasing concentrations of crowding agents 
were measured with a digital Abbe refractometer (Krüss, Germany) and were used to recalculate 
the Förster radius (R0) for every sample under the assumption that the polymeric crowding agents 
pervade the solutions uniformly. This assumption does not affect our conclusions, since the 
narrow range of refractive indices between 1.34 and 1.39 for our experimental conditions has a 
minor effect on the dimensions of the proteins. Even if we assumed the extreme case that no 
refractive index change was experienced by the protein locally upon going from pure buffer to the 
highest volume fraction of PEG, the lack of a refractive index correction would correspond to an 
apparent compaction of the protein between 0.05 nm (at transfer efficiency of 0.8) and 0.1 nm (at 
transfer efficiency of 0.3) relative to the values reported here. 
 
Fluorescence lifetimes and anisotropy. Multiparameter detection allows us to exclude possible 
interfering artifacts, such as insufficient rotational averaging of the fluorophores or quenching of 
the dyes (62). The dependence of the fluorescence lifetimes on transfer efficiencies determined 
for each burst (Fig. S5) was compared with the behavior expected for fixed distances and for a 
chain sampling a broad distribution of distances. For a fixed distance, r, the mean donor lifetime 
in the presence of acceptor is given by τDA(r) = τD (1-E(r)), where τD is the lifetime in the absence 
of acceptor, and  E(r) = 1/(1+r6/R0

6). For a chain with a dye-to-dye distance distribution P(r), the 

donor lifetime is 
0 0

( ) / ( )DA tI t dt I t dt
 

   , where / ( )
0

0

( ) ( ) DAt rI t I P r e dr


   is the time-resolved 

fluorescence emission intensity following donor excitation. Donor and acceptor lifetimes at 
different concentrations of crowding agents were analyzed by fitting subpopulation-specific time-
correlated photon counting histograms after donor and acceptor excitation, respectively.  This 
allows us to also examine the dependence of donor and acceptor lifetimes on the solution 
conditions. A systematic decrease of both donor and acceptor lifetimes of up to 10 % was 
observed with increasing concentrations of crowding agents. These lifetime changes are 
consistent with the changes expected according to the Strickler-Berg equation (63) for solutions 
with different refractive indices. Since the changes in donor and acceptor lifetimes are very 
similar, the contribution of this effect to the observed transfer efficiencies cancels. The variation 
of the donor lifetime also has no significant impact on R0, since the donor quantum yield enters 
into the calculation of R0 with the power of 1/6, resulting in a maximum change in R0 of about 
2%, less than the statistical experimental uncertainty. 

Subpopulation-specific anisotropies were determined for both donor and acceptor, and 
values were found to vary between 0.03 and 0.08 for the donor and between 0.11 and 0.18 for the 
acceptor, consistent with values observed in ensemble measurements, and sufficiently low to 
assume as a good approximation for the orientational factor κ2 = 2/3. 
 
Quantifying the radius of gyration from transfer efficiencies. Essentially as described 
previously (27), FRET efficiencies are converted to radii of gyration according to  
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where lc is the contour length, and Rc is the radius of the sphere with volume equivalent to the 

sum of the volumes i
aaV  of all the amino acids, 
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 . We use the conditional 

probability density function for a certain end-to-end distance, r, given the radius of gyration, Rg, 
suggested by Ziv and Haran (35), which describes the distance distribution of two random points 

inside the sphere of radius 5 gr  ( 5 is a scaling factor used to satisfy the condition 

2 26 gR r ) , 

 

 
2 3 5

1 9 3
| 3 ,0 2 5

4 165 5 5 5
g g

g g g g

r r r
P r R r R

R R R R

      
                      

  (Eq. S2) 

 
( )FF gP R is the Flory-Fisk distribution for the radius of gyration 
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 ,    (Eq. S3) 

 

where 
1/22

gR  is the root-mean-squared radius of gyration of the chain, and Z is the normalization 

term. In contrast to previous works, we do not apply corrections to the Flory-Fisk distribution 
introduced by Sanchez theory (35, 64, 65), since the applied weighting proposed by Sanchez 
would be valid only for the measurements in absence of crowders and would be inconsistent with 
the other experimental conditions considered here (see Scaled-particle theory section). However, 
using the Sanchez distribution would result only in a systematic shift of all radii of gyration by 
approximately 0.1-0.2 nm, which does not affect any conclusions of this work. 
 
Scaled-particle theory (SPT). Following the approach proposed by Minton (37), the effect of 
macromolecular crowding on the unfolded state can be quantified by weighting the probability 
density function of the radius of gyration of the disordered ensemble, )( gRP , according to the 

chemical potential, ,( , )crd
g gR R     , obtained with SPT:  

 
( , , )

2

2

( , , )

( )

( )

crd
g g

B

crd
g g

B

R R

k T
g g g

g R R

k T
g g

R P R e dR
R

P R e dR

 

 







 


.     (Eq. S4) 

 

The simplest choice for )( gRP is the Flory-Fisk distribution (Eq. S3), where 
1/22

gR  is substituted 

by the root-mean-squared radius of gyration of the chain in absence of crowding agents, 
2/12

0gR . 

If we assume that both the unfolded protein and the crowding agent can be described as rigid 
spheres (as in the classic SPT), the excess chemical potential of the IDP in the presence of 
crowding can be written as:  
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where g

crd
g

R
R

R
 ;   is the volume fraction of crowding agent in solution; and crd

gR  the radius of 

gyration of the crowder. Consequently, an increase in   or gR lead to an increase in the excess 

chemical potential, whereas an increase in crd
gR causes a decrease in the excess chemical potential. 

Data reported in Fig. 2e are fitted globally to Eqs. S4 and S5 with a different 
2/12

0gR  for each 

IDP and a single effective crd
gR  as an adjustable parameter shared by all four proteins (Fig. S6). 

A modification of the classic SPT suggested by Minton (37) allows the polymeric nature 
of the IDP to be taken into account within the SPT framework. Here the unfolded state is 
represented as a Gaussian cloud where the average number density of residues can be described 
as a function of the distance from the center of the mass of the protein, pr , as 
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    (Eq. S6) 

 
For a system consisting of the protein and a single sphere in solution, pr  can be expressed in 

terms of the distance between the centers of mass of the two objects, sepr , and the radius of the 

sphere, which in this case is the radius of the crowding agent, crd
gR  (see Fig. S3). The probability, 

0P , that no chain segments of the IDP lie within the volume of an arbitrarily placed hard sphere is 

calculated as a function of gR  of the IDP,  
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Rescaling all distances relative to the size of the crowding agent, 
crd
gR , yields 
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By equating the co-volume of the Gaussian cloud and the crowding agent with the co-volume of 
two hard spheres, an equivalent effective hard-sphere radius, eff

gR , is obtained for each gR  

sampled by the IDP, leading to 
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      (Eq. S12) 

 

This rescaled 
eff

R can then be inserted in Eq. S5 (Fig. S7).  
 
Further extensions of SPT. In efforts to go beyond the simple description of a fluid of hard 
spheres, different extensions of the SPT have been implemented. SPT equations have been 
revised to account for ellipsoidal, cylindrical and infinite rod-like particles (37, 66-68). None of 
these corrections for different shapes can account for the trends observed in our experimental 
results. More recently, Qin and Zhou (69) have approached the problem of crowding on IDPs by 
calculating the co-volume on the basis of explicit simulations of the disordered protein and of the 
crowding agent in isolation. Even though this post-processing approach captures the effects 
induced by compact crowders on disordered proteins in their simulations, an extension of this 
method to polymeric expanded crowders as those used in our experiments has not yet been 
implemented. Complications in applying this approach come from the difficulty of calculating the 
correct co-volume between two disordered systems as well as taking into account the change in 
volume of the polymeric crowder at high concentrations (see the discussion about semidilute 
regime in the section Flory-Huggins theories).    

To account for interactions between the crowders and the protein (47), attractive free 
energy terms have been included in SPT (46, 48), which resulted in the successful description of 
simulated data (48). A similar approach can be implemented here by adding an attractive 
interaction between IDP and crowder in Eq. S4. However, even with the functional form 
suggested by Kim & Mittal (48), the energy parameter would need to be different for each 
polymer length and possibly for different concentrations to obtain a quantitative fit of our data. 
 
Flory-Huggins theories. A single polymer chain in good solvent adopts swollen conformations 
and follows a scaling exponent of 3/5, i.e. crd

gR ~ P3/5, where P is the number of Kuhn segments of 

the polymer. Three different concentration regimes need to be distinguished for a polymer in 
solution: the dilute regime, where the polymer chains are not overlapping; a semidilute regime, 
where the chains start to overlap and entangle; and a dense regime, where the chains are highly 
packed (Fig. S1 inset). *  is the overlap concentration, which separates the semidilute from the 

dilute regime. *  can be defined as the concentration of polymer where the volume fraction of the 
polymer chains in solution is equal to the volume fraction of a single polymer chain, i.e.  
 

3
* 4/5

9/5 3

Pb
P

P b
   .    (Eq. S13) 

 
Flory argued that in concentrated solutions and melts, the polymers exhibit the length scaling of 
an ideal chain (R ~ P1/2) (70). Let us consider the case of one long chain with N segments (the 
IDP) in a polymer melt of shorter chains with P segments (the crowder). For simplicity, the 
segment length, b, is assumed to be equal for N-chain and P-chains. By equating the chemical 
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potentials of crowders inside and outside the volume pervaded by the long chain, a relation 
between the end-to-end distance, R, of the long N-chain and the number of segments of the P-
chains can be obtained (39): 

R

Nb2 
N 2b3

PR4 
1

R
 0      (Eq. S14) 

 
If P << N, the third term in the equation can be neglected, and the size of the long chain can be 
described by the equation 
 

R  N 3 / 5P1/ 5b .    (Eq. S15) 
 

In the case of large P, the second term in Eq. S14 can be neglected, and ideal scaling is recovered: 
 

R  N1/ 2b.             (Eq. S16) 
 

The crossover between small and large P is determined by equating Eqs. S15 and S16, which 
results in the threshold given by the Flory criterion: P=N1/2 (39). 
 
In our experiments, we investigate a ternary system composed of 

- individual test chains with N segments (the IDP), 
- a volume fraction, ϕ, of polymer chains with P segments (the crowding agent),  
- and the solvent. 

Similar to the case of the polymer melt (39), it is possible to describe the interaction between the 
long chain (the IDP) and the other polymers (the crowding agent) in terms of an effective medium 
interaction parameter. This term is obtained in the mean field approach of Joanny et al. (39)  by 
equating the chemical potentials of the short chains (crowders) inside and outside the long chain 
(IDP). The effective medium interaction parameter is then given by: 
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     (Eq. S17) 

 
To study the effects of the crowder concentration on the size of the IDP, it is helpful to treat the 
IDP as a sequence of blobs of size RP. In dilute solution, on length scales smaller than RP, the N-
chain behaves in the same way as the P-chains, whereas on length scales greater than RP, the 
ternary properties of the system become relevant. In the latter case, the long chain formed by N/P 
blobs experiences the effective medium interaction that in rescaled units is (39) 
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For a chain in good solvent, the radius of gyration is 
 

3/5 1/5
gR bN u  (Eq. S19) 

 
And thus, in blob-rescaled units,  
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The equation can be further extended to the semidilute regime (45). However, since this theory is 
only valid for the case of a long chain in a solution of shorter chains, this regime will only be 
approached marginally in our experiments. 

For the data analysis presented in Figs. 3 and 4, we modified Eq. S20 by introducing a 
fitting parameter a, similar to the effective interaction term proposed by Nose (45):  
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   (Eq. 1a, see main text) 

 
All other parameters are not adjustable: * is given by Eq. S13, and Rg0 is obtained from the radius 
of gyration of each protein in the absence of crowding. a corresponds to a correction of the 
effective medium interaction term in Eq. S17, which is calculated for a very long chain in a bath 
of shorter chains, where the long chain is in good solvent and assumed to be large enough to 
accommodate the small chains (Fig. S8). The degree of expansion of the IDPs investigated here 
depends on their specific sequence (27), resulting in differences in the interaction term. The 
values of a obtained from the fits reflect the expected trend and exhibit an increasing deviation 
from a = 1 with increasing compactness of the protein (Table S4).  
 Extending the classical Flory-Huggins theory to the case of 1/2P N  requires a realistic 
estimate of the density fluctuations in the solution when the solution is no longer dilute. A 
corresponding quantitative description is provided by the renormalized Flory-Huggins theory 
derived by Schäfer and Kappeler (44). Renormalization group theory establishes equivalence 
between microscopically different systems through scaling laws. In doing so, it allows to map a 
system of long chains (where common perturbation theories break down) onto a system of 
effectively short chains (where perturbation theories hold).  

Here we introduce a length 0l , which defines a sort of lattice unit for the system and will 

be used to describe both the N-chain (the IDP) and the P-chains (the crowding agent). Following 
the treatment of Schäfer, we set 0l  equal to the length of the Kuhn segment of the N-chain. Here 

we adopted the same 0l  for all four proteins, according to the value obtained for ProT. All the 

other chemical differences in structure and flexibility between the two chains will be absorbed in 
specific parameters. The renormalization is then introduced via a renormalized length, 0 /Rl l  , 

where 1  .  Similarly, the number of segments of each chain and the volume fraction are 
rescaled as a function of the same parameter: 
 

( )RN N        (Eq. S21a) 

( )RP P        (Eq. S21b) 

( )R   .      (Eq. S21c) 

 
The connection between the microscopic information and the renormalized parameter is given by: 
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where ˆ 5.756u   is a parameter connected to the overlap probability of chains in the semidilute 
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.  The radius of gyration is then given by  

 
(Eq. S23) 
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  is formally similar to the result obtained with the 

uniform expansion model (71) when the expansions due to the renormalization are condensed in 
terms of   
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The term NPf  is obtained under the assumption that interactions between N- and P-chains are 

small (44), leading to the equation 
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,  where  NPs  is an invariant parameter 

with the dimensions of a length that quantifies the interactions between the N- and P-chains. NPf  

can be connected to the Flory interaction parameter,  , through the equation 1 NPf   . 

However, the parameter NPs  is preferred to  since the latter is not invariant in the 

renormalization flow.  
Note that in the global fit of the radii of gyration as a function of volume fraction of PEG 

for all IDPs (Fig. 3) with the renormalized Flory-Huggins theory (Fig. S9), the only adjustable 
parameter is sNP, which is taken to be identical for all PEG sizes, but allowed to vary from protein 
to protein (Table S4); BN and BP are well-defined by experimental observables: BN is calculated 
from the radius of gyration measured for each protein in the absence of crowding and BP from the 
reported values of the radii of gyration for PEG (see Fig. S1 and PEG scaling law). If sNP is close 
to zero, protein and crowding agent are indistinguishable in terms of inter- and intramolecular 
interactions.  In Fig. S4a, the robustness of the functional form of the fitting function at different 
values of the fitting parameter sNP is illustrated.  

sNP provides a new opportunity to quantify the interactions between protein and crowder 
beyond simple excluded volume effects, sometimes referred to as “chemical interactions”. The 
two variants of ProT are well fitted with almost identical values of sNP (see Table S4), whereas 
slightly different values were obtained for ACTR and IN, indicating small variations in the 
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interactions between PEG and proteins. The values obtained are of the same order of magnitude 
as those previously reported in the literature for ternary solutions of synthetic polymers (72). A 
conversion of sNP to the more intuitive parameter  yields repulsive interactions in the range of 
0.1-0.3 kBT  per segment between PEG and ProTor ACTR. Interestingly, the fitted values for 
the experiments with ProTα and other polymers (see Table S5) suggest lower or even 
undetectable chemical interactions between the protein and the polymers. The contribution to the 
overall effects observed here is small (Fig. S4), but this trend is consistent with previous  
suggestions that PEG may be less inert than other polymers commonly employed in crowding 
experiments (13). One of the strengths of the approach presented here is the possibility to model a 
complex polymeric solution including such repulsive (or attractive) interactions.     

In the application of the Flory-Huggins theories, we have approximated the length of a 
Kuhn segment by 0.76 nm for both protein and PEG according to previously reported persistence 
lengths (27, 73), which is equivalent to two bond segments. Consequently, the number of Kuhn 
segments of the N- and P-chains is given by half the degree of polymerization. In the case of 
PEG, the concentration in weight fraction was converted to volume fraction according to 

/ / / // ( (1 ) )v v w w w w w w        where 31.12  g/cm  is an average density for pure solutions of 

short PEGs. This approach is justified since no significant volume contraction is reported for 
solutions with the PEG concentrations used here. For the other crowding agents, where specific 
densities in solution were not reported, a direct correspondence between volume and weight 
fraction based on the densities of the pure substances was assumed.  
 
PEG scaling law. According to Devanand et al. (29), water is a good solvent for PEG. Fig. S1 
shows the scaling law obtained in (29) for long PEGs with the radii of gyration of PEGs used in 
the current study. The radii of gyration of PEGs are taken from (74, 75). In cases where only the 
hydrodynamic radius was determined experimentally, a conversion between hydrodynamic radius 
and radius of gyration was applied according to the ratio determined experimentally in (29). A 
deviation from the predicted scaling behavior (29) is visible for short PEGs, for which finite 
length effects start to dominate. 
 
Estimation of the radius of gyration of IDPs at the -state. An estimate of the radius of gyration 
for the four proteins in -state conditions is obtained according to the previous analysis of the 
scaling exponent of disordered and unfolded sequences presented by Hofmann et al. (27), where 
the radius of gyration is linked to the scaling exponent by (76)  
 

*2

(2 1)(2 2)
p

g

l b
R N

    
,    (Eq. S26) 

 
where *

pl  = 0.4 nm, b = 0.38nm, �= 0.5, and N is the number of amino acids of the respective 

protein. The resulting radii of gyration in -solvent are about 1.7 nm for IN, 1.8 nm for ProTC 
and ProTN, and 2 nm for ACTR. 
 
Estimation of scaling exponents of IDPs. Following the empirical relation for the scaling 
exponent as a function of the hydrophobicity and net charge of unfolded and disordered proteins 
obtained previously (27), we estimated the scaling exponent for all full-length disordered 
sequences longer than 25 amino acids deposited in the Disprot database (v6.01) (77).The 
exponent v is calculated according to 
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    1 1

0 0( ) 1/ 3 1 exp( ) / and ( ) 1/ 3 1 exp( ) /Q a x Q z H a x cH d z           ,  (Eq. S27) 

 
where H is the hydrophobicity according to the scale of Kyte and Doolittle (78), Q is the mean 
net charge of the sequence, a = 0.394, z = 0.09, x0 =  0.114, c = 1.72 and d = 0.9. 
The exponent is determined according to  
 

 
( ) * 0 0 0

( ) * 0 0 0

Q u f g

H u f g





    

      
,     (Eq. S28) 

 
where f and g are the fractions of positive and negative charges in the sequence, respectively, and 
u* is calculated according polyampholyte theory (11) as 
 

2 2 2

2

4 ( ) ( )
* b bl f g l f g

u
 

 
 

  ,     (Eq. S29) 

 
where lb is the Bjerrum length, and  is the Debye length.   

We note that a higher percentage of globule-like IDPs has been estimated from 
simulations for a different subset of the Disprot database (33, 34). However, taking into account 
polyampholyte effects and patterning, it has been predicted that the majority of IDPs will 
maintain coil-like properties (34), and consequently they should be susceptible to the effect of 
crowding described here.  
 
Physiological concentrations of IDPs in the nuclear pore complex and in RNA granules. A 
nuclear pore complex contains approximately 200 disordered nucleoporins containing FG-
repeats, each with a length of ~600 amino acids (79, 80). From the chain length of these 
sequences, the overlap concentrations can be estimated to be in the range between of volume 
fractions between 0.05% and 4%. Assuming the nuclear pore to have a diameter of 30 nm and a 
height of 40 to 80 nm (25, 80, 81), the volume fraction occupied by the disordered nucleoporins 

is easily estimated as aa
2

NP NPNP
NP

pore pore pore

n N vv

V r h



 

  , where vNP is the volume occupied by the 

nucleoporins; Vpore is the volume available in the pore; nNP is the number of nucleoporins; NNP is 
the sequence length of nucleoporins; vaa is the average volume of the amino acid residues 
(approximately 0.13 nm3); rpore and hpore are, respectively, the radius and the height of the pore. 
The volume fraction occupied by disordered nucleoporins is therefore between 25 and 55%, about 
an order of magnitude higher than the overlap concentration. The effects discussed in the main 
text are thus highly likely to be of importance for the conformational distributions of 
nucleoporins in vivo. 

Various IDPs have been identified in RNA granules (22, 82, 83). Recent work has shown 
that the multivalency of these proteins can control phase separation and therefore the assembly of 
RNA granules (23). Even though the mechanism is not fully understood, and the proteins can 
undergo different conformational changes during the phase-separation process, the mechanism 
suggested by Li et al. (23) can be taken as an example to test whether the polymeric nature of the 
proteins is expected to be important in that range of concentrations. For the case of the engineered 
proline-rich motives (PRM) (23), the sequence is likely to be almost completely disordered. The 
molar concentration of the protein at which a given volume is occupied entirely by those IDPs is 
given by 1/ ( )aa Ac N v N  , where N is the number of amino acids of the sequence, and NA is 

the Avogadro number. A calculation for the case of a sequence with 250 amino acids as those 



12 
 

considered in the work of Li et al. (23) result in a local protein concentration in the range of 
~50 mM. The corresponding overlap concentration is estimated to be between volume fractions 
of 1% and 6% or 0.5 and 3 mM. Considering that two different proteins are mixed in similar 
ratios in these experiments, a concentration of 0.25 to 1.5 mM is sufficient to reach the overlap 
regime. Phase separation for proteins of this length occurs at concentrations of approximately 50 
M, only 5 times less than the overlap concentration. However, due to phase separation, in the 
droplets, a concentration of proteins 100 times higher than the bulk solution is reported (23). The 
confinement in the droplet is therefore plausibly causing an increase of protein concentration 
significantly higher than the overlap concentration, and the overlap between disordered coils will 
affect the conformations of the disordered sequences. FUS and hnRNPA2, two disordered 
proteins identified in RNA granules, have been shown to exhibit a sol-gel transition in vitro (82) 
at a concentration above 1 mM with an overlap concentration ranging between 0.15 and 1 mM. 
Therefore, these proteins are expected to be in the semidilute regime before gelation.  
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Figure S1. Polymer properties of polyethylene glycol. (a) Radius of gyration of PEG as a 
function of molecular weight/degree of polymerization (74, 75) with a fit (black line) to the 
scaling law 0.5830.21nmpol

gR P  (26). The scaling exponent indicates that water is a good solvent 

for PEG. Deviations from the fit (which was obtained for PEG molecules over the entire range of 
lengths originally reported (29)) are due to finite length effects for small values of P. (b) Overlap 
concentration as obtained from Eq. S10, and schematic representation of a polymer solution in the 
dilute regime, at the overlap concentration, and in the semidilute regime. 
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Figure S2. FRET efficiency histograms obtained with FRET dyes shifted toward longer 
wavelengths compared to Fig. 2. Histograms for ProTα-C, ProTα-N, ACTR, and IN variants 
labeled with ATTO546 and ATTO647N in the absence and presence of high PEG concentration. 
The shift towards higher excitation and emission wavelengths reduces the contribution of 
fluorescence background from impurities in the PEG and provides additional evidence that the 
peak broadening at high PEG concentration observed in Fig. 2 is mainly due to impurities in the 
solution. Only in the case of IN, a second peak corresponding to the folded state is detected, 
consistent with the observations and data analysis in Fig. 2. Gaussian and lognormal distributions 
were used to fit the peaks (solid lines). The donor-only peaks originating from molecules lacking 
an active acceptor dye are shaded in grey. 
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Figure S3. Gaussian cloud model. Representation of the Gaussian Cloud with a disordered 
conformation of the protein (in red), with the center of mass positioned at distance rsep from a 
hard sphere (in green) with radius r. Adapted from (37). 
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Figure S4. Effects of model parameters in the Flory-Huggins theories. Upper panel: 
Calculated radius of gyration of ProT-C as a function of the degree of polymerization of PEG at 
a volume fraction of 15% according to Flory-Huggins theory (cyan) and renormalized Flory-
Huggins theory (blue). Dashed curves show the change in the prediction of Flory-Huggins theory 
if a deviation of ±50% from the fitted value for the parameter a is assumed, and the response of 
renormalized Flory-Huggins theory to the fitting parameter sNP between 0 (no interactions) and 
the upper limit of 0.1 nm (strong interactions). Lower Panel: estimation of the radius of gyration 
of ProT-C at different volume fractions for PEG 400 (green solid curve) and PEG 6000 (yellow 
curve). Dashed lines report the response to the fitting parameter of the Flory-Huggins theory for 
PEG 400 and of the renormalized Flory-Huggins theory for PEG 6000 at the same conditions 
described above. 
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Figure S5. Multiparameter single-molecule fluorescence analysis. Two-dimensional 
histograms of relative donor τDA/τD lifetime versus FRET efficiency measured between 0 and 30% 
volume fraction of PEG 6000 compared to the expected trend for a fixed distance (black dashed 
line) and for a chain reconfiguring over the distribution of distances P(r) given by Eq. S2 (black 
solid line), as described in detail in the section Fluorescence lifetimes and anisotropies. 



18 
 

 
Figure S6. Flowchart for the fitting procedure with scaled-particle theory  
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Figure S7. Flowchart for the fitting procedure with the Gaussian cloud model  
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Figure S8. Flowchart for the fitting procedure with Flory-Huggins theory. 
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Figure S9. Flowchart for the fitting procedure with the renormalized Flory-Huggins theory. 
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  Mol. Weight 
(Da) 

Average degree of 
polymerization 

Ethylene glycol* 62.07 1 

Diethylene glycol* 106.12 2 

Triethylene glycol* 150.17 3 

Polyethylene glycol 200* 190 - 210 4 

Polyethylene glycol 400* 380 - 420 9 

Polyethylene glycol 2050* 1900 - 2200 46 

Polyethylene glycol 4600* 4400 - 4800 104 

Polyethylene glycol 6000* 5000 - 7000 136 

Polyethylene glycol 8000Error! Bookmark 

not defined. 
7300 - 9000 185 

Polyethylene glycol 35'000* 35000 795 

Polyvinyl alcohol 10'000* 9000 - 10000 216 

Polyvinyl alcohol 40'000* 31000 - 50000 920 

Polyvinyl alcohol 90'000* 89000 - 98000 2125 

Polyvinylpyrrolidone K90* 360000 3243 

Polyvinylpyrrolidone 1.3M* 1300000 11712 

Dextran 6000* 6000 37 

Dextran 40'000* 40000 247 

Dextran 100'000* 100000 617 
                                                             

      *Sigma-Aldrich (Switzerland), Error! Bookmark not defined.Carl Roth (Germany) 

 
 
Table S1. Crowding agents used in this study.   
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ProTα-C 
(C56-C110) 

    1       10         20         30         40         50     56  60         70         80         90        100
 GP SDAAVDTSSE ITTKDLKEKK EVVEEAENGR DAPANGNAEN EENGEQEADN EVDEECEEGG EEEEEEEEGD GEEEDGDEDE EAESATGKRA AEDDEDDDVD
           110 
    TKKQKTDEDC 

ProTα-N 
(C2-C56) 

 

   1       10         20         30         40         50     56  60         70         80         90        100
 GP CDAAVDTSSE ITTKDLKEKK EVVEEAENGR DAPANGNAEN EENGEQEADN EVDEECEEGG EEEEEEEEGD GEEEDGDEDE EAESATGKRA AEDDEDDDVD
           110 
    TKKQKTDEDD 

ACTR 
(C1-C73) 

   1       10         20         30         40         50         60         70  73        
 GP CGTQNRPLLR NSLDDLVGPP SNLEGQSDER ALLDQLHTLL SNTDATGLEE IDRALGIPEL VNQGQALEPK QDC 

IN 
(C8-C57) 

   1       10         20         30         40         50      57
GSH MFLDGIDCAQ EEHEKAHSNF RAMASDFNLP PVVAKEIVAS CDKCQLKGEA MHGQVDC 

 
 
Table S2. Sequences of the proteins used in this study. 
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Table S3. Global fit of PEG 6000 data with scaled-particle theory. Parameters obtained from 

fitting the data in Fig. 2 with Eq. S4  

  

 ProTα-C ProTα-N ACTR IN 

Rg0    (nm) 3.46±0.02 3.03±0.02 2.47±0.02 1.95±0.02 
     

     

 PEG 6000    

Rg
crd

  (nm) 5.8±0.1      
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 P < N1/2 P > N1/2 

 a sNP (nm) 

ProT-C 1.18±0.05 0.032±0.004 

ProT-N 0.7±0.1 0.024±0.008 

ACTR 0.8±0.1 0.08±0.02 

IN 0.05±0.02 < 2∙10-6 (*) 
 

(*) sNP is sufficiently close to zero that the ternary system reduces to a binary 
system where the protein and the crowding agents cannot be distinguished 

 
 

Table S4. Global fit of Prot-C, Prot-N, ACTR and IN in the presence of PEG with Flory-

Huggins theories. Parameters obtained from fitting the complete dataset in Fig. 3 with Eqs. 1a 

and 1b.  
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 sNP (nm) 

PEG 0.032±0.004 

PVA < 4∙10-5 (*) 

PVP < 4∙10-6 (*) 

Dextran < 3∙10-5 (*) 
 

(*)sNP is sufficiently close to zero that the ternary system reduces to a binary 
system where the protein and the crowding agents cannot be distinguished 

 
 

 
Table S5. Fit results with Flory-Huggins theories of  ProTα-C collapse in presence of PVA, PVP 

and Dextran. Parameters obtained from fitting the datasets of ProTα-C in the presence of PEG 

(Fig. 3), PVA, PVP and Dextran (Fig. 5) with Eq. 1b.  
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