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I. Entropy of Sequences in the Absence of Selective Force
In the absence of selective force, our model for random codon
sequences is very simple. Consider a sequence of L amino acids
A= fa1; a2; . . . ; aLg. The probability of the ith codon, ci, in the
associated nucleotidic sequence is given by piðciÞ= pðcijaiÞ, where
pðcjaÞ is the (Human or segment) codon bias. The probability of
the sequence C= fc1; c2; . . . ; cLg is simply the product of the
probabilities of its codons ci. We readily compute the entropy σ0
of sequences with this model:

σ0 = −
XL
i=1

X
ci

piðciÞlog piðciÞ

=
X
a

Na

�
−
X
c

pðcjaÞlog pðcjaÞ
� [S1]

where Na is the number of occurrences of amino acid a in A.
Note that, by definition, σ0 coincides with the average entropy
σavðxs = 0Þ, and is the height of the maximum of the entropy
curve σavðxsÞ.
A simple upper bound to σ0 is σupper0 =L · log6, as amino acids

are at most sixfold degenerate. A slightly more complicated
upper bound would maximize the entropy expression for σ0 for
the same amino acid sequence but with a codon bias where all
codon for a given amino acid are equiprobable. In that case it is
straightforward to show that σupper0 =

P
aNa logðdegðaÞÞ, where, as

before, deg(a), is the degeneracy of amino acid a. For instance,
for the influenza B isolate analyzed in Fig. 1, the real value
maximum entropy is 4,342.6. The upper bound for this sequence
is 7,869.4 by the first method and 4,913.3 by the second.

II. Transfer Matrix Method
We calculate the normalization constant ZðxsÞ, Eq. 2, using the
transfer matrix formalism. We call K the number of nucleotides
in motif m: m= fm1;m2; . . . ;mKg. Let C= fc1; c2; . . . ; cLg be
a sequence of L codons; equivalently, C can be seen as a se-
quence of 3×L nucleotides. Let ci;ℓ denote the ℓth nucleotide in
codon i, with ℓ= 1; 2; 3. We denote by C½n : n+K − 1� the sub-
sequence of K nucleotides in C, starting at position n and ending
up at position n+K − 1. The number of occurrences of the motif
m in C can be written as the following sum:

NmðCÞ=
X3L−K+1
n=1

δ
�
C½n : n+K − 1�;m� [S2]

where δ denotes the Kronecker function: δðX ;XÞ= 1, and
δðX ;Y Þ= 0 if X ≠Y .
The subsequence C½n : n+K − 1� spreads over at most Kc =

IntððK + 1Þ=3Þ+ 1 contiguous codons ci in C, where Int denotes
the integer part. Consider for instance the case of dinucleo-
tide motifs m, for which K = 2 and Kc = 2 according to the
formula above. The two nucleotides of such a motif can indeed
be found

• at positions 1,2 of a single codon, say, ci; then we have
m1 = ci;1, m2 = ci;2.

• at positions 2,3 of codon ci; then we have m1 = ci;2, m2 = ci;3.
• at position 3 of codon ci and position 1 of codon ci+1; then we
have m1 = ci;3, m2 = ci+1;1.

For the sake of simplicity, we start by assuming that K = 2; the
case of longer motifs will be briefly discussed later on. According
to the discussion above we can write

NmðCÞ=
XL−1
i=1

Fðm; ci; ci+1Þ; [S3]

where

Fðm; ci; ci+1Þ= δ
�
m1; ci;1

�
δ
�
m2; ci;2

�
+ δ
�
m1; ci;2

�
δ
�
m2; ci;3

�
+ δ
�
m1; ci;3

�
δ
�
m2; ci+1;1

�
[S4]

for all i= 1; . . . ;L− 2 and

Fðm; cL−1; cLÞ= δ
�
m1; cL−1;1

�
δ
�
m2; cL−1;2

�
+ δ
�
m1; cL−1;2

�
δ
�
m2; cL−1;3

�
+ δ
�
m1; cL−1;3

�
δ
�
m2; cL;1

�
+ δ
�
m1; cL;1

�
δ
�
m2; cL;2

�
+ δ
�
m1; cL;2

�
δ
�
m2; cL;3

�
: [S5]

The expression for F in the bulk of the sequence ði≤L− 1Þ
avoids double counting of the motif occurrences.
We now rewrite ZðxsÞ as a sum over the possible codons cor-

responding to the same amino acids as in the viral sequence C0:

ZðxsÞ=
X
C

�
∏
L

i=1
piðciÞ

�
exp

"
xs
XL−1
i=1

Fðm; ci; ci+1Þ
#

[S6]

=
X
C

∏
L−1

i=1
ðpiðciÞ  exp

�
xs Fðm; ci; ci+1Þ

�Þ pLðcLÞ; [S7]

where piðciÞ is the codon bias for codon ci (synonymous to the ith
codon of sequence C0). Let us now define L transfer matrices Mi,
i= 1; . . . ;L. The dimension of matrix Mi is deg(ai) × deg(ai+1),
where deg(a) is the codon degeneracy for amino acid a. The entries
of Mi are given by, for all i= 1; . . . ;L− 2,

Miðci; ci+1Þ= piðciÞexp
�
xs Fðm; ci; ci+1Þ

�
; [S8]

and

ML−1ðcL−1; cLÞ= piðcL−1Þexp
�
xs   Fðm; cL−1; cLÞ

�
pðcLÞ: [S9]

Then, we observe that

ZðxsÞ=
X

c1;c2;...;cL− 2;cL− 1

M1ðc1; c2ÞM2ðc2; c3Þ . . .ML−2ðcL−2; cL−1Þ

×ML−1ðcL−1; cLÞ
=
X
c1 ;cL

ðM1 ×M2 × . . . ×ML−2 ×ML−1Þðc1; cLÞ;

[S10]

where × denotes the matrix product in the formula above. This
formula shows that Z can be computed in a time growing linearly
with L only. This is huge gain compared with the original expres-
sion of Z, Eq. 2, which sums up an exponentially large-in-L
number of codon configurations.
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In practice we define the deg(aL)-dimensional vector vL, with
entries vLðcLÞ= 1 for all codons cL coding for amino acid aL. Then
we compute the vector

vL−1ðcL−1Þ=
X
cL

ML−1ðcL−1; cLÞvLðcLÞ: [S11]

Then, we sum over all possible values for the ðL− 1Þth codon,
cL−1:

vL−2ðcL−2Þ=
X
cL− 1

ML−2ðcL−2; cL−1ÞvL−1ðcL−1Þ: [S12]

The process is iterated until the first codon

v1ðc1Þ=
X
c2

M1ðc1; c2Þv2ðc2Þ: [S13]

Finally, we obtain the value of the normalization constant through

ZðxsÞ=
X
c1

v1ðc1Þ: [S14]

For large values it is easier, and often practically necessary, to
work with the logarithm of the partition function, rather than with
the partition function itself.
When the motif is of longer length, and overlap with Kc con-

tiguous codons, expression S3 has to be modified. In general one
can write

NmðCÞ=
XL−1
i=1

Fðm; ci; ci+1; . . . ; ci+Kc−1Þ; [S15]

where function F is an obvious extension of [S4] and [S5]. The
transfer matrix method exposed above can still be used, but at
a price of introducing larger transfer matrices Mi.

III. Numerical Computation of the Legendre Transform
An important problem is to find the value of the selective force xs,
corresponding to the number NmðC0Þ of occurrences of the motif
m in the virus sequence C0. Let us call xsðC0Þ this force. One way
to find xsðC0Þ is to compute the average number of occurrences,
NavðxsÞ, for many values of xs on a grid and try to be as close as
possible to the data, i.e., choose xs such that NavðxsÞ ’ NmðC0Þ. A
much faster procedure is the following.
Consider the function (for a given C0)

GðxsÞ= logZðxsÞ− xsNmðC0Þ: [S16]

Two important facts about G are

• the first derivative of G vanishes when xs takes the value
xsðC0Þ we are looking for, because

d
dxs

GðxsÞ=NavðxsÞ−NmðC0Þ [S17]

• G is a convex function of xs, as its second derivative is positive:

d2

dx2s
GðxsÞ= d

dxs
NavðxsÞ=

X
C

PðCjxsÞNmðCÞ2 −
 X

C

PðCjxsÞNmðCÞ
!2

=
X
C

PðCjxsÞðNmðCÞ−NavðxsÞÞ2 ≥ 0:

[S18]

Hence, G has a single minimum in xs = xsðC0Þ, and we can find it
very quickly with standard optimization techniques, e.g., the
Newton–Raphson algorithm. The procedure is here below.

i) Start with xs = 0.
ii) Compute the first and second derivatives of G in xs, that

is, respectively d1 =NavðxsÞ−NmðC0Þ and d2 =P
C PðCjxsÞNmðCÞ2 −NavðxsÞ2.

iii) Compute the new value of xs [which would be equal to xsðC0Þ
if G were a parabolic function]

xs → xs −
d1
d2
: [S19]

iv) Iterate step ii until convergence is achieved.

As the parabolic approximation is generally good, the pro-
cedure generally converge very fast, in a few iterations.

IV. Illustrations on Very Short Sequences of Amino Acids
We illustrate the notion of entropy on two simple ad hoc se-
quences with L= 2 amino acids, Pro-Pro and Pro-Cys, and one
sequence with L= 3 amino acids, Pro-Pro-Cys. For all three se-
quences the motif considered is m = CT.

A. Case of Pro-Pro. Proline is a fourfold degenerate amino acid,
corresponding to codons c = CCA, CCC, CCG, CCT. For the
sake of simplicity we assume that each codon has probability 1=4.
The entropy of the random codon model in the absence of force
is σ0 = log 16= 4 log 2. The transfer matrix M1 is given by [S9],
with the result

M1 =
1
16

0
BB@

1 1 1 exs
1 1 1 exs
1 1 1 exs
exs exs exs e2xs

1
CCA: [S20]

The normalization constant is (refer to [S10]),

ZðxsÞ=
X
c1 ;c2

M1ðc1; c2Þ= 1
16
�
9+ 6exS + e2xs

�
=

1
16
ð3+ exsÞ2: [S21]

The average number of motifs and the entropy of sequences are
therefore given by

NavðxsÞ= d
dxs

logZðxsÞ= 2exs

3+ exs

σavðxsÞ= σ0 + logZðxsÞ− xsNavðxsÞ= 2 logð3+ exsÞ− 2xsexs

3+ exs
:

[S22]

In Fig. S1 we plot the entropy σav vs. the number Nav of occur-
rences of CT. The maximum of the entropy, σav = 4 log 2, always
corresponds to the unconstrained case xs = 0 (there are indeed
e4 log 2 = 16 possible nucleotidic sequences); the corresponding
average number of occurrences of the motif m=CT is 0.5 as
expected, as each one of the two codons can contain CT with
probability 1=4.
By varying the parameter xs, equal to minus the slope of σav as

function of Nav, we scan the entire entropy curve. Note that for
Nav = 0, i.e., xs → −∞, we obtain σav = 2 log 3; there are indeed
e2 log 3 = 9 nucleotidic sequences compatible with Pro-Pro without
CT. For Nav = 2, i.e., xs → +∞, we obtain σav = 0; there is e0 = 1
sequence compatible with Pro-Pro and including the motif twice,
namely CCTCCT.
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Remark that for Nav = 1 we obtain σav ’ 2:472; eσav is larger
than 6, the number of sequences compatible with Pro-Pro with
one CT. This is because our calculation gives the entropy of
sequences that contain on average (and not exactly) Nav repeti-
tions of the motif m. For large values of L we expect that Nav will
coincide with NmðCÞ (up to small relative fluctuations). For ex-
treme (minimal or maximal) values of the number of occur-
rences of the motifs fluctuations vanish even for small L. For
instance, if the number of motifs vanishes on average then all
sequences C with nonzero probability PðCÞ must be free of the
motif. This is why the entropies of sequences containing the
motif exactly 0 or 2 times coincide with the outcome of our
calculation.

B. Case of Pro-Cys. Cysteine is twofold degenerate, with corre-
sponding codons TGT and TGC. The motif CT can now be found
in the second and third positions of the Pro codon, or at the third
position of the Pro codon and the first position of the Cys codon.
We assume that there all four Pro codons are equally likely, and so
are the two Cys codons. The entropy of the random codon model
in the absence of force is σ0 = log 8= 3 log 2. The transfer matrix
is a 4× 2 matrix, given by

M1 =
1
8

0
BB@

1 1
1 1
exs exs
exs exs

1
CCA: [S23]

The normalization constant is (refer to [S10])

ZðxsÞ=
X
c1;c2

M1ðc1; c2Þ= 1
2
ð1+ exsÞ: [S24]

The average number of motifs and the entropy of sequences are
therefore given by

NavðxsÞ= exs

1+ exs
;  σavðxsÞ= 2 log 2+ logð1+ exsÞ− xsexs

1+ exs
: [S25]

The entropy σav when plotted vs. the average number of motifs
Nav is a bell-shaped curve with maximum in σav = log 8, equal to
the logarithm of the total number of nucleotidic sequences as
expected. The corresponding average number of motifs is 0.5,
as four sequences (CCTTGT, CCTTGC, CCCTGT, CCCTGC)
contain the motif once, whereas the four remaining sequences
are free of the motif. The latter four sequences are selected
when xs → −∞, corresponding to σav = log 6 and Nav = 0. Con-
versely, for xs → +∞, we select the four sequences with one
motif, and obtain σav = log 2 and Nav = 1.

C. Case of Pro-Pro-Cys. The entropy of sequences in now σ0 =
log 32= 5 log 2 (all codons compatible with A are assumed to be
equally likely). There are two transfer matrices, defined ac-
cording to [S8] and [S9]:

M1 =
1
4

0
BB@

1 1 1 1
1 1 1 1
1 1 1 1
exs exs exs exs

1
CCA;  M2 =

1
8

0
BB@

1 1
1 1
exs exs
exs exs

1
CCA: [S26]

Note that matrix the M1 above is different from its counterpart
[S20] defined for the sequence Pro-Pro, due to the difference
between F in the bulk of the sequence and at its end, compare
[S4] and [S5].

The product of the two transfer matrices is given by

M1 ×M2 =
1+ exs

16

0
BB@

1 1
1 1
1 1
exs exs

1
CCA; [S27]

and the normalization constant is

ZðxsÞ=
X
c1;c2

ðM1 ×M2Þðc1; c2Þ= ð1+ exsÞð3+ exsÞ
8

: [S28]

The average number of motifs and the entropy of sequences are
therefore given by

NavðxsÞ= exs

1+ exs
+

exs

3+ exs

σavðxsÞ= 2 log 2+ logð1+ exsÞ+ logð3+ exsÞ− xsexs

1+ exs
−

xsexs

3+ exs
:

[S29]

The entropy σav is plotted vs. the average number of motifs Nav
in Fig. S2. There are eσavð−∞Þ = 12 sequences with no copy of the
motif ðNav = 0Þ: those corresponds to three codons CCA, CCC,
CCG for the first Pro amino acid, the two codons CCA, CCG for
the second Pro, and the two codons for Cys. We also see that
there are eσavð+∞Þ = 4 sequences with two copies of the motifs,
which start with CCT followed by one of the four sequences
coding for Pro-Cys with one CT listed above.

V. Case of Multiple Motifs
To calculate the entropy associated with the number of occurrences
of several motifs, one can extend the preceding definitions. As
an example, for two dinucleotides the partition function will vary

over two parameters ðxð1Þs ; xð2Þs Þ corresponding to dinucleotide

motifs mð1Þ = ðmð1Þ
1 ;mð1Þ

2 Þ and mð2Þ = ðmð2Þ
1 ;mð2Þ

2 Þ. The partition
function naturally becomes

Z
�
xð1Þs ; xð2Þs

	
=
X
C

�
∏
L

i=1
piðciÞ

�
exp

"
xð1Þs

XL−1
i=1

F
�
mð1Þ; ci; ci+1

	

+ xð2Þs

XL−1
i=1

F
�
mð2Þ; ci; ci+1

	#
:

[S30]

This normalization constant can be calculated using the transfer
matrix method as in the single motif case. The transfer matrices
are defined through

Miðci; ci+1Þ= piðciÞexp
"
xð1Þs

XL−1
i=1

F
�
mð1Þ; ci; ci+1

	

+ xð2Þs

XL−1
i=1

F
�
mð2Þ; ci; ci+1

	#
; [S31]

for all i= 1; . . . ;L− 2, and

ML−1ðcL−1; cLÞ= pL−1ðcL−1Þexp
"
xð1Þs

XL−1
i=1

F
�
mð1Þ; ci; ci+1

	

+ xð2Þs

XL−1
i=1

F
�
mð2Þ; ci; ci+1

	#
pLðcLÞ: [S32]
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Once Z has been calculated, we obtain the entropy through a
Legendre transform with respect to the two forces xð1Þs and xð2Þs :

σav
�
xð1Þs ; xð2Þs

	
= σ0 + logZ

�
xð1Þs ; xð2Þs

	
− xð1Þs Nð1Þ

av

�
xð1Þs ; xð2Þs

	
− xð2Þs Nð2Þ

av

�
xð1Þs ; xð2Þs

	
[S33]

where

Nð1Þ
av

�
xð1Þs ; xð2Þs

	
=

∂
∂xð1Þs

logZ
�
xð1Þs ; xð2Þs

	
[S34]

and likewise for Nð2Þ
av ðxð1Þs ; xð2Þs Þ. Then

Nð1Þ
av

�
xð1Þs ; xð2Þs

	
=

∂

∂xð1Þs

logZ
�
xð1Þs ; xð2Þs

	
; [S35]

together with a similar expression for the average number of
motifs mð2Þ. The second derivatives of Z give access to the co-
variance matrix of Nð1Þ and Nð2Þ.
The above formula can be straightforwardly extended to the

case of more than two forces and motifs. Assume we have Km ≥ 2
motifs, mðjÞ, with j= 1; . . . ;Km. Then xs is a Km dimensional
vector, and so is NavðxsÞ. In particular the entropy of sequences is
now given by

σav
�
xs
�
= σ0 + logZ

�
xs
�
− xs ·Nav

�
xs
�

[S36]

where · denotes the dot product over the Km components of xs
and Nav, and

Nav
�
xs
�
=

∂
∂xs

logZ
�
xs
�
: [S37]

The partition function Z can be computed with the transfer
matrix as in the Km = 2 case above. In addition, the numerical
procedure of SI Text, section III to calculate xs can be extended
to the multidimensional case of more than one force parameter
as follows. We now define G through

G
�
xs
�
= logZ

�
xs
�
−
XKm

j=1

xðjÞs NmðjÞ ðC0Þ: [S38]

The gradient of G in xs is a Km − dimensional vector d1, and its
Hessian matrix d2 is the Km ×Km semidefinite positive matrix of
the second derivatives. The only change in the algorithm of SI
Text, section III is the updated rule for the forces:

xs → xs − d−12 × d1; [S39]

where d−12 denotes the matrix inverse of d2.

VI. Local Density of Motifs
Let us call piðcijxsÞ the probability that the ith codon on a ran-
domly drawn sequence under force xs is ci. This quantity can be
computed with the transfer matrix formalism of SI Text, section

II. For simplicity we restrict ourselves to the case of motifs with
two nucleotides ðK =Kc = 2Þ.
To do so we first apply the procedure described by formulae

S11 and S12. We start from vLðcLÞ= 1 for all degðaLÞ codons at
site L, and calculate vL−1ðcL−1Þ using transfer matrix ML−1 and
Eq. S11. Through successive applications of the transfer matrices
ML−2; . . . ;Mi+1 we obtain the vector viðciÞ at site i.
Next the same procedure is followed, starting from site i= 1,

through successive multiplications by the transfer matrices from
left to right. More precisely, we define w1ðc1Þ= 1 for all degðaLÞ
codons at site 1. We then compute

w2ðc2Þ=
X
c1

w1ðc1ÞM1ðc1; c2Þ: [S40]

This procedure is iterated until we compute

wiðciÞ=
X
ci− 1

wi−1ðci−1ÞMi−1ðci−1; ciÞ: [S41]

Finally we obtain the probability of codon ci through

piðcijxsÞ=wiðciÞviðciÞ
ZðxsÞ : [S42]

This probability is correctly normalized, according to [S10]. Spe-
cial care must be brought to the cases i= 1; i=L, that is, to the
extremities of the sequence to ensure a proper counting of the
number of motif occurrences in the sequence.
The generalization to the joint probability pi;i+1ðci; ci+1jxsÞ of

contiguous codons ci; ci+1 is straightforward. The outcome is

pi;i+1ðci; ci+1jxsÞ=wiðciÞMiðci; ci+1Þvi+1ðci+1Þ
ZðxsÞ : [S43]

To compute the probability pbðmjxsÞ that motif m appears in the
sequence, starting on base b, two cases must be considered:

• If b is a multiple of 3, plus 1 or 2, then the motif is in posi-
tions 1,2 or 2,3 of a codon, say, ci. We can use the single-
codon probability piðcijxsÞ to calculate pbðmjxsÞ, e.g., for b=
3ði− 1Þ+ 1,

pbðmjxsÞ=
X
ν

piðci = fm1;m2; νgjxsÞ; [S44]

where the sum runs over all nucleotides ν such that fm1;m2; νg is
a valid codon (synonymous to the ith codon of C0).

• If b is a multiple of 3, then the motif is in position 3 of codon
ci, and in position 1 of ci+1 for some i. We can use the two-
codon probability pi;i+!ðci; ci+1jxsÞ to calculate pbðmjxsÞ:

pbðmjxsÞ=
X

ν1 ;ν2;μ1 ;μ2

pi;i+1ðci = fν1; ν2;m1g; ci+1 = fm2; μ1; μ2gjxsÞ;

[S45]

where b= 3i.
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Fig. S1. Entropy σav of sequences with amino acid sequence Pro-Pro vs. average number Nav of occurrences of the motif m = CT. The curve was obtained from
a parametric representation ðNavðxsÞ,σavðxsÞÞ, and by varying xs from −∞ to +∞.
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Fig. S2. Entropy σav of sequences with amino acid sequence Pro-Pro-Cys vs. average number Nav of occurrences of the motif m = CT. The curve was obtained
from a parametric representation ðNavðxsÞ,σavðxsÞÞ (refer to [S29]) and by varying xs from −∞ to +∞.
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Fig. S3. A comparison of the selective forces when calculated using the segment and human codon biases for the 16 dinucleotides for the (A) PB1 and (B) PA
genes in influenza. These quantities are calculated for the 1918 H1N1 segments, and the H1N1 segments from 2007 and for influenza B. In the later two cases
the median values are shown.
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Fig. S4. A comparison of the median selective forces when calculated using the segment and human codon biases for the 16 dinucleotides for the (A) gag and
(B) env genes. These quantities are calculated for HIV1, SIV chimpanzee (SIVcpz), HIV2, and SIV sooty mangabee (SIVsm).
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