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1 Likelihood and Hidden
Markov model

1.1 Model of the emission process

The framework of Markov-modulated Poisson pro-
cesses operates on single-photon arrival times and is
particularly suited to model fluorescence-based exper-
iments.1–3 In this framework, conformational dynam-
ics are modeled as a Markov jump process between
distinct conformational states which can only be ob-
served via an experimental signal (hidden states). The
states are not associated with a single FRET value of
the signal but to a value range, both due to shot noise
and conformational fluctuations. The value ranges of
different states can overlap considerably. As a conse-
quence, most values of the observed signal are asso-
ciated with more than one hidden state, and the se-
quence of states cannot be directly inferred from the
sequence of observed signal values. Instead one aims
at finding the most likely sequence of states given the
observed time series (Bayesian logic). For this, the
emission of the signal is modeled by an observation
likelihood, in which parameters adjust the range of
possible values in a given state and their relative prob-
abilities. Finding the optimal observation parameters
for each state is part of the HMM optimization. In
short: the functional form of the observation likeli-
hood is pre-defined by the user, the optimal parame-
ters are found by the HMM algorithm. The conver-
gence of the HMM algorithm and the validity of the
results crucially depends on how closely the functional
form of the observation likelihood models the actual
physical process of signal emission.

Poisson-shaped observation likelihoods model the
photon emission process, which gives rise to the ob-
served photon-by-photon trace in a single-molecule
FRET experiment.

P(na, nd) = Pois(ka;na) · Pois(kd;nd) , (1)

na is the number of observed acceptor photons, nd
is the number of observed donor photons, ka and kd
represent the emission rates of acceptor and donor
photons, respectively. ka and kd are the parameters,
which are adjusted to represent the photon emission
in a particular hidden state. Alternatively, the donor
and acceptor photon trace can be combined to yield

a time series of FRET efficiencies. The “emission” of
FRET efficiencies is often modeled by Gaussian func-
tions which are centered at certain FRET values E
and cover a symmetrical range of FRET values ac-
cording to their widths σE .

P(na, nd) = P
(
E =

na
na + nd

)
= N (E, σE) .(2)

If the experimental setup only measures FRET effi-
ciencies, one indeed has no choice but to model the
FRET efficiency distributions (emission probabilities)
in the hidden states by Gaussian probability distribu-
tions (or similar distributions which are functions of
E). However, in the context of single-molecule FRET
one virtually always measures the arrival time of in-
dividual photons, either photon by photon or binned
into time slots. In this situation, one can formulate the
emission probability either on the photon-level using
Poisson distributions (eq. 1) or on the level of FRET
efficiencies using Gaussian distributions (eq. 2). How-
ever, these two formulations are by no means equiva-
lent. Eq. 2 is a rather severe approximation to Eq. 1
because the information how many photons have been
recorded within a given time window is discarded at
the level of FRET efficiencies.

(a) (b)

Figure S1: Comparison of emission probabilities based
on (a) Poisson distributions (Eq. 1) and (b) Gaussian
distributions (Eq. 2)
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This is illustrated in Fig. S1, which shows the prob-
ability density of Eq. 1 for ka = 1.4 s−1 and kD =
1.0 s−1 (Fig. S1.a), and shows the probability density
of Eq. 2 with E = ka/(ka + kd) = 0.58 and σ = 0.1
(Fig. S1.b). Eq. 2 assigns high probabilities to cer-
tain observations with four and more photons per sec-
ond, although these observations are highly unlikely
given a total emission rate of ktot = ka+kd = 2.4 s−1.
Moreover, the FRET efficiency distribution cannot be
symmetrical if the expectation value of the FRET effi-
ciency either close to 0 or 1. Consequently, the Gaus-
sian distribution does not approximate the FRET dis-
tribution well in these value ranges.

In summary, the choice as to which type of distri-
bution is used to model the emission process is critical
to the success of the HMM optimization. Gaussian
distributions are approximations to Poisson distribu-
tions and should be used with caution. We therefore
model the observation likelihood by a Poisson pro-
cess. Fig. S4 shows that the observed photon counts
in the present data sets are very well approximated by
a Poisson process.

1.2 Photon likelihood including back-
ground photons

We derive a likelihood for observing (na, nd) photons
during a time span ∆t in the acceptor and donor chan-
nel, respectively, given that a molecule labeled with a
FRET pair is observed in the presence of background
noise. In this situation, we have multiple photon-
emitting processes, namely:

1. The molecule with current FRET efficiency E is
irradiated with a certain laser intensity. This
generates “molecule” photons (either emitted
from donor or acceptor) with a rate kmol

∆t .

2. The probability of such a photon to be an ac-
ceptor photon is the current apparent FRET ef-
ficiency E. Note that this efficiency E contains
no background noise, but it may still contain ef-
fects like crosstalk and gamma. Important here
is that we assume these effects to be a function
of molecular state, but not a function of the tra-
jectory (whereas the noise is).

3. For each trajectory being recorded we know that
background photons are recorded in the acceptor
and donor channels with rates

ka,bg

∆t and
kd,bg
∆t ,

estimated from the bleached phase of each tra-
jectory.

For each trajectory we estimate kmol, in units of pho-
tons per ∆t as follows:

ktot =

∑ttot
t=0 na,i + nd,i

ttot
kmol = ktot − ka,bg − kd,bg. (3)

The rate processes here generate photons according
to Poisson processes. We now want to calculate the

probability of observing a certain number of acceptor
and donor photons nA, nD at time step i with given
efficiency E and given rates kmol, ka,bg, kd,bg (for the
estimation step of an HMM).

Consider a bin with na, nd photons in the accep-
tor and donor channel, respectively. In a scenario
where na,bg ≤ na and nd,bg ≤ nd background pho-
tons are amongst the observed photons, the molecule
has emitted the remaining na,mol = na − na,bg and
nd,mol = nd−nd,bg photons, i.e., it has emitted a total
of nmol = na,mol + nd,mol. We can compute the likeli-
hood to observe na, nd given that the molecule has a
structure with efficiency E and the photon rates are
ka,bg, kd,bg, kmol by summing up all possible scenarios
of photons from background or molecule:

pAD(na, nd)

= P(na, nd | E, kmol, ka,bg, kd,bg)

=

na∑
na,bg=0

nd∑
nd,bg=0

P(na,mol, nd,mol | nmol)

×P(nmol)P(na,bg)P(nd,bg)

=

na∑
na,bg=0

nd∑
nd,bg=0

Bna,mol
(nmol, E)

×Poisnmol
(kmol)

×Poisna,bg
(ka,bg)Poisnd,bg

(kd,bg)

=

na∑
na,bg=0

nd∑
nd,bg=0

(
nmol
na,mol

)
(E)na,mol(1− E)nd,mol

×e−kmol(kmol)
nmol

(nmol)!

×e−ka,bg (kA,BG)na,bg

(na,bg)!

×e−kd,bg (kd,bg)
nd,bg

nd,bg!
(4)

where Bx(n, p) is the binomial distribution in x with
n number of trials and success probability p, and
Poisx(k) is the Poisson distribution in x with rate k.
Using some algebraic rearrangements, it can be shown
that the above expression is equivalent to

pAD(na, nd) = e−ka
kna
a

na!
e−kd

knd

d

nd!
= Poisna(ka)Poisnd

(kd)

with rates

ka = Ekmol + ka,bg
kd = (1− E)kmol + kd,bg (5)

Eq. (5) can be interpreted as follows: in the red (ac-
ceptor) channel, nA photons are recorded. This is the
result of a sum of two Poisson processes which out-
put with a total rate of Ekmol + ka,bg. Independently,
nD photons are recorded in the green (donor) channel
from a Poisson process with rate (1−E)kmol + kd,bg.

For the special case of background absence (ka,bg =
kd,bg = 0) we have ka = Ekmol and kd = (1− E)kmol
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and thus pAD can be simplified to:

pAD(na, nd) = e−(Ekmol)
Enakna

mol

na!

× e−(1−E)kmol
(1− E)ndknd

mol

nd!

= Poisn(kmol) Bna(n,E)

∝ Ena(1− E)nd (6)

with n = na + nd = nmol.

1.3 Background-corrected FRET his-
tograms

The likelihood described in Sec. “Photon likelihood
including background photons” can be used to con-
struct FRET efficiency histograms, or distributions.

Let {n(∆t)
a (j, i), n

(∆t)
d (j, i)} be a set of bins indexed by

i ∈ {1, ..., Nj}, each containing the number of photons
recorded in the acceptor and donor channels during a
time ∆t in trajectory j ∈ {1, ...,M}. Using Eq. (5),
the FRET efficiency distribution for time bin ∆t is
estimated as:

p(∆t)(E)

=
1

M

M∑
j=1

1

Nj

Nj∑
i=1

Pois
n

(∆t)
a (k,i)

(Ekmol,j + ka,bg,j)

×Pois
n

(∆t)
d (k,i)

((1− E)kmol,j + kd,bg,j), (7)

where for each bin one count is distributed over a his-
togram of E-values, and this histogram is then nor-
malized by the number of counts to yield a distribu-
tion in E. The E-distributions shown in the main
manuscript use FRET efficiency binning widths of
0.02.

For calculating the statistical error of FRET his-
tograms, we use a bootstrapping procedure. 500 sam-
ples of trajectories are drawn with replacement from
the full set of data trajectories. Each sample is gener-
ated such that it amounts to approximately the same
sampling time as the full data set, i.e., it has the same
information content. For each sample, p(∆t)(E) is es-
timated, and the sample mean and standard deviation
is reported in Fig. 1a of the main text.

1.4 Hidden Markov models

For a comprehensive review of Hidden Markov models
and algorithms, please refer to ref.6 Here and in the
subsequent sections, we will only describe the aspects
of HMMs and HMM optimization algorithms that are
specific to the present model.

We use an HMM for single-molecule FRET anal-
ysis for which we seek for a set of parameters λ =
{T,π, e}, that maximize the value of a likelihood
function P(O|λ), which depends on these parameters.
O is the observation, in this case the production phase
of the measured smFRET traces. T is the matrix

of transition probabilities between the conformational
states within the time resolution ∆t of the observed
traces O, π is the vector of equilibrium populations
for each state, and e is the vector of the FRET effi-
ciencies of each state. Note that instead of rate matri-
ces for modeling the hidden Markov process one can
also use rate matrices which operate on continuous
time.3 However, rate matrices can invoke numerical
difficulties when used in conjunction with many hid-
den states.4,5

The likelihood function has the form

P(O|λ) =
∑

all possible S

P(O|λ, S) , (8)

where

P(O|λ, S) = πsiP(o1|es1)·
T∏
i=2

Tsi−1 si · P(oi|esi) . (9)

S is a particular trace over the conformational (hid-
den) states, and the summation over all S in the first
equation is done using the forward algorithm.6 Then,
si is the particular conformational state which is vis-
ited at time t = i∆t. πsi is the equilibrium population
and esi is the FRET efficiency of this state. Tsi−1si is
equal to the element of the transition matrix T which
denotes the transition probability between the state
at time t = (i − 1)∆t, si−1, and the current state
si. The product in the second equation runs over
all T time steps in the observed trace. P(oi|esi) is
the emission probability and denotes the probability
of observing a particular combination of nD,i donor
and nA,i acceptor photons (oi = (nD,i, nA,i)), given
that the molecule is in a state with FRET efficiency
esi . How well this function models the actual physi-
cal processes in the experiment, determines to a large
extent the quality of the HMM results.

A crucial component in P(oi | esi) is the back-
ground noise, which is not (entirely) determined by
the experimental setup and does differ from trace to
trace. In order to precisely distinguish states with sim-
ilar FRET efficiencies, and recognize identical states
visited in different trajectories as identical, it is cru-
cial to account for the different background intensi-
ties explicitly in the stochastic model. This is even
the case when the differences in background noise are
rather small. We therefore use the likelihood function
including background photons given by Eq. (5) for
P(oi | esi).

Note that additional measurement errors such as
spectral cross-talk and differences in the detection effi-
ciencies of the detectors are determined by the exper-
imental setup and therefore do not differ from trace
to trace, or change during a given trace. Differences
in the quantum yields of the chromophores might in
principle change during a given trace due to interac-
tion with the biomolecule. However, if flexible linkers
for the chromophores are used (as in the present case),
the changes are averaged out on the time scale of the
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sampling rate of the trace (10 µs). Therefore, also the
differences in chromophore quantum yield can be re-
garded as constant over the set of traces and within a
given trace. Measurement errors which are constant
result in a constant shift of the FRET efficiency of each
state and do not impair its usefulness as an order pa-
rameter to classify the states. Since distinguishing dif-
ferent states is the principal aim of this study (rather
than measuring their exact chromophore distance), we
do not incorporate these effects into the stochastic
model underlying the HMM analysis. Rather, cross-
talk is corrected on the level of conformational states
after the HMM analysis.

Algorithm 1: Expectation-Maximization algo-
rithm

Input: Observed trajectories
O = O(1), ..., O(M),

initial parameter set λ0 = (E0,T0,π0),
Output: Parameters λ and likelihood L(λ)

1. For i = 1, ..., Nstep:

1.2. E-step – find conditionally optimal hidden
trace Si

Si = arg maxS P(O | S, λi−1)

1.2. Compute likelihood:

Li−1(λ) = P(O | S, λi−1)

1.3. If i < Nstep and likelihood not yet
converged: M-step – find conditionally optimal
parameter set λ:

λi = arg maxλ P(O | Si, λ)

2. Return λNstep

For maximizing P(O|λ), we use the Expectation-
Maximization (EM) approach, which iterates an ex-
pectation step (E-step) in which the hidden path S is
optimized given the current set of parameters λ, and
the maximization step (M-step) in which the parame-
ters λ is optimized given the current hidden path S.6,7

Iterating the EM algorithm to convergence leads to a
local maximization of P(O|λ). In order to ensure that
the local maximum is also a global maximum that can
be found reproducibly, it is advisable to run the EM
algorithm multiple times from different starting condi-
tions (see Sec. “HMM initialization and optimization
protocol”). The components of the EM algorithm (see
algorithm 1) are described in the subsequent sections.

1.5 HMM path estimation (E-step)

Here we will first first discuss the E-step, which is done
using a slightly modified forward-backward algorithm.

Forward algorithm. Now we consider all time
points t (including those where no photon was ob-
served), and treat t as a discrete count from 1 to tmax.
For all possible pathways the forward variables α eval-
uate the following probability:

αt(i) := P(o1, ..., ot, st = i | λ)

and are calculated by the Forward algorithm:6

α1(j) =πjP(o1 | s1 = j)

αt(j) =P(ot | st = j)

m∑
i=1

αt−1(i) Tij .

We define the vectors αTt = [αt(1), ..., αt(n)] and the
output matrix Pt = diag(P(ot | st = 1), ...,P(ot | st =
n)), and can rewrite this in:

αT1 = πTP1

αTt = αTt−1 T Pt

Consider the time interval from time step t1 < t2 to
t2:

αTt2 = αTt1 T Pt1+1 T Pt1+2 · · ·T Pt2−1 T Pt2

and assume that we observe photons on t1 and t2 but
no photons in between. Then we have the output ma-
trices Pt ∝ Id for no-photon times t ∈ (t1, t2) and
can simplify to αTt2 ∝ αTt1 T(t2−t1) Pt2 . As a result,
the forward algorithm can be formulated only on the
observation time points k, each of which has at least
one photon:

αTk+1 ∝ αTk Tdk Pk+1.

where dk is the time interval between observation k
and k + 1.

Likelihood evaluation. The total likelihood of the
trajectory can be evaluated as:

P(O | λ) =

m∑
i=1

αN (i) =

m∑
i=1

πiβ1(i)

Backward algorithm. In the same manner we de-
fine the Backward Variables:

βt(i) = P(ot+1, ..., oT | st = i, λ)

and calculated by

βtmax
(i) :=1

βt(i) :=

m∑
j=1

βt+1(j) Tij P(ot+1 | st+1 = j).
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In analogy to the forward variables, the backward
variables can be calculated on the observation time
points k which have at least one photon:

βk ∝ Tdk Pk+1 βk+1.

Most probable hidden pathway. Based on the
forward-backward variables we can now calculate the
probability in each timestep to be in a given state:

γt(i) : = P(st = i | o0, ..., oT , λ)

=
αt(i)βt(i)

P(o0, ..., oT | λ)
=

αt(i)βt(i)∑m
j=1 αt(j)βt(j)

. (10)

The most likely path is calculated here using the direct
approach:

ŝ = [arg max{γ1(i)}, ..., arg max{γT (i)}]. (11)

An alternative approach to calculate the most likely
paths are the Viterbi algorithm, which avoids some
spurious re-crossings and is therefore often preferred
to the direct maximium likelihood path ŝ. However,
theses spurious re-crossings are one (but not the only)
aspect of non-Markovian behavior at short timescales.
This effect is here corrected for a posteriori, by using
a sufficiently long lagtime τ in the transition matrix
estimated in the post-processing (see below).

1.6 HMM parameter estimation (M-
step)

While the E-step is general for all Hidden Markov
models (here the only modification was to derive a
simplified version for the possibly irregular photon ar-
rival times), the M-step differs for different HMM im-
plementation, as it estimates the parameters for the
specific HMM. Here, we estimate a statistically re-
versible transition matrix between hidden states, es-
timate the initial distribution of hidden states as the
stationary distribution of that transition matrix, and
estimate the background-corrected FRET efficiencies.

Count matrix estimate with Baum-Welch. For
updating the estimate of the transition matrix, the
number of transitions between hidden states are
counted. The Baum-Welch estimate7 is used, giving
rise to the counts between states i and j at time point
t:

ct(i, j) =
αt(i) Tij βt+1(j) P(ot+1 | st+1 = j)∑

m,n αt(m) Tmn βt+1(n) P(ot+1 | st+1 = n)
.

(12)
In matrix-vector form this can be written as:

Ct = N{αtTβt+1Pt+1} , (13)

where N{}means element-wise normalization as given
by Eq. (12). This approach is immediately applicable
to estimate C when a Markov model is formulated on
all time points t. In single-photon data, we prefer to
estimate and store only the hidden variables on the
time points where photons arrive. Consider that we
have photons at time points t1 and t2, and no pho-
tons during the dk − 1 = t2 − t1 − 1 time steps in
between. We then consider the state probabilities to
be fixed to αt1 during the first half-time, then undergo
a transition to βt2 which are fixed during the second
half-time. This yields the count matrix:

Ct =
dk − 1

2
N{diag(αt1)}+N{αt1Tβt2Pt2}

+
dk − 1

2
N{diag(βt2)} (14)

The total count matrix is obtained by summing over
all counts of all M trajectories of length Nj each:

C =

M∑
j=1

Nj∑
t=1

C
(j)
t

Reversible maximum likelihood transition ma-
trix. We assume the conformational dynamics of the
molecule to be in thermal equilibrium. As argued in,8

this implies that the transition matrix between confor-
mational states should be statistically reversible, i.e.,
fulfill the detailed balance equations. Thus, given the
count matrix C, we estimate the transition matrix by
maximizing its likelihood subject to the detailed bal-
ance constraints:

T̂ = arg max


n∏

i,j=1

T
cij
ij | πiTij = πjTji ∀i, j

 ,

(15)
where π ∈ Rn is the stationary distribution of T ∈
Rn×n, i.e., πT = πTT. Problem (15) is solved using
the iterative optimization algorithm described in,8 us-
ing the implementation in the EMMA library.9

Initial / stationary distribution. We assume the
molecule studied to be governed by a stationary dy-
namical process. Stationarity here means that the
rules of the dynamics don’t change during measure-
ment time, i.e., they are determined by the same tran-
sition matrix at all times. Consequently, the station-
ary distribution of the transition matrix estimate T̂
is used as an initial distribution for all trajectories in
the subsequent E-step:

π̂T = π̂T T̂. (16)

The solution π̂ of the eigenvalue problem (16) is ob-
tained as a side-product of the solution of the maxi-
mum likelihood problem (15).
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FRET efficiencies. For each trajectory j, the ap-

parent efficiency of state s, e
(j)
s , and its statistical

weight w
(j)
s , are given by:

e(j)
s =

1

w
(j)
s

tmax∑
t=1

γ
(j)
t (s) n(j)

a (t).

w(j)
s =

kmax∑
k=1

γ
(j)
t (s) (n

(j)
d (t) + n(j)

a (t)) .

These sums are taken only over actual photon events.

When there is background noise, e
(j)
s needs to be

corrected, before combining the estimates of the differ-
ent trajectories. As above, let kmol be the estimated
total photon emission rate of the molecule, and ka,bg
and kd,bg be the background photon emission rates.
The apparent FRET efficiency is then given as a func-
tion of the background-corrected FRET efficiency Es
by

es =
kmolEs + ka,bg

kmolEs + ka,bg + kmol(1− Es) + kd,bg
.

Rearranging leads to the estimate:

E(j)
s = e(j)

s (1 + ηa + ηd)− ηa ,

where we have introduced the noise-signal ratios as
ηa = ka,bg/kmol and ηd = kd,bg/kmol.

Subsequently, the estimates of all trajectories are
combined as following:

Ês =

∑M
j=1 w

(j)
s E

(j)
s∑M

j=1 w
(j)
s

.

1.7 HMM initialization and optimiza-
tion protocol

As the EM-algorithm finds only local maxima, a multi-
start protocol is used, in which multiple EM-runs are
started from different initial parameter sets. There
are only two important input variables that guide the
search for the HMM: the number n of hidden states,
and an estimate of the characteristic timescale t of the
relaxations in the data. Given these inputs, a random
initial paramter set is generated by Algorithm 2

Step 2 in Algorithm 2 generates a reversible tran-
sition matrix with approximately equally distributed
stationary probabilities and implied timescales on the
order of t. For illustration, consider a 2 × 2 matrix
whose second eigenvalue is given by λ2 = 1−T12−T21.
Using the initialization algorithm above, the average
eigenvalue of the matrix T0 evaluates to:

〈λ2〉 = 1− 2〈T 0
ij〉 = 1− 2

0.5

0.5 + t
≈ 1− 1

t

Algorithm 2: Generation of initial parameters
λ0

Input: Number of states n, timescale t
Output: λ0 = (E0,T0,π0)

1. Generate a vector of initial FRET
efficiencies, E0 ∈ Rn, with

E0
s ∼ U(0, 1)

2. Generate initial transition matrix T0 ∈ Rn×n
by:

2.1. Let X ∈ Rn×n be a symmetric matrix of
pseudocounts. Initialize by:

xij = tδij

2.2. For all i < j:
xij ∼ 1

n−1U(0, 1)
xji = xij

2.3. Normalize:

T 0
ij =

xij∑
k xik

3. The initial and stationary distribution is
given as the solution of

π0,T = π0,TT0

4. Return λ0 = (E0,T0,π0).

The approximation is valid when t is much larger
than 1. The associated implied timescale is then given
by:

t2 ≈
−1

ln(1− t−1)
≈ t.

Given the initial parameters, the search for the opti-
mal HMM can be started. Because many initial pa-
rameters will lead to poor local maxima, we split the
optimization in two phases: An exploration phase,
where many initial parameter sets are optimized for
a few steps only and are ranked according to their
likelihood; and an refinement phase in which the best
parameter set is optimized to convergence. Algorithm
3 summarizes these steps.

Each HMM reported in the main manuscript is
an output of Algorithm 3 using Nexplore = 100,
Sexplore = 3, and Sopt = 100. For each Mg2+ concen-
tration, the entire Algorithm 3 was repeated 10 times
to test whether the optimum could be found repro-
ducibly. To determine n, we repeated this procedure
for n = 2, 3, 4, ..., and used the largest value of n for
which the optimum value could be found at least 2 out
of the 10 times.
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Algorithm 3: HMM optimization

Input: Number of states n, timescale t.
Parameters Nexplore, Sexplore, Sopt

Output: HMM parameters λ
1. For i = 1, ..., Nexplore

2.1. Generate initial parameters λ0
i using

Algorithm 2
2.2. Optimize λ0

i for Sexplore steps to λei using
Algorithm 1. 3. Let

λebest = arg max
i
{L(λei )}

be the best parameter set after the exploration
phase. Optimize this parameter set to
convergence or up to a maximum of Sopt steps
using Algorithm 2:

λ = EM(λebest, Sopt)

4. Return optimized parameters λebest

2 HMM validation and refine-
ment methods

2.1 Lifetime distributions

Let ŝ(j) be the maximum likelihood path of trajectory
j, according to Eq. (11). All paths are dissected in
segments in which the path is in the same state, result-
ing in segments s(k), each having a length l(s(k)). The
last segment in each trajectory is discarded because
its duration is determined by the end of the measure-
ment rather than by the lifetime distribution of the
state. We then select all segments which are in state s
and compute the cumulative lifetime distribution as:

p(t) =

∥∥{s(k) | l(s(k)) ≥ t
}∥∥∥∥{s(k)

}∥∥ .

where ‖S‖ is the size of set S. The cumulative life-
time distribution is used rather than the direct life-
time distribution, because it is numerically more ro-
bust to estimate. In Markovian dynamics, the life-
time distribution is exponential, and hence the cumu-
lative lifetime distribution is exponential, too. How-
ever, as stated above, using the direct maximum like-
lihood path ŝ(j) can create spurious transitions and
thus induce some non-exponentiality in the lifetime
distributions. Hence, the degree of exponentiality of
p(t) is only used as an rough indicator of the qual-
ity of the discretizations, whereas the subsequently
described comparison of the time-binned FRET effi-
ciency distribution is considered to be the test of the
stationary and kinetic consistency of the HMM.

2.2 Implied timescale test

The eigenvectors of a detailed balanced and irre-
ducible transition matrix T(τ) form a complete ba-

sis of RN , where N is the dimension of the transition
matrix, any probability on the associated conforma-
tional space p(t = nτ) can be expressed as a linear
combination of these eigenvectors:

p(t = nτ) =
∑
i

ciλ
n
i (τ)ψi , (17)

where λi(τ) is the eigenvalue associated to the ith
eigenvector ψi.

10 The probability distribution p(t)
can be interpreted as consisting of modes {ψi} which

have time-dependent amplitudes ciλ
n
i (τ) = ciλ

t/τ
i (τ).

More precisely, λni (τ) encodes an exponential decay
(in transition matrices, λi(τ) ≤ 1 ∀ i)

λni (τ) = exp

(
t

τ
ln (λi(τ))

)
= exp

(
− t

µi(τ)

)
(18)

where the implied timescale µi is given as

µi(τ) = − τ

ln(λi(τ))
. (19)

Eq. 19 can be used to identify deviations from Marko-
vian dynamics. If the dynamics are indeed Markovian,
the eigenvector expansion (eq. 17) can be based on a
transition matrix T(τ) with arbitrary lag time τ , with-
out altering the implied timescale of the decay process,
i.e. µi(τ) = const. Plotting the implied timescales of
transition matrices with various lag times nτ will yield
a set of constant functions if the underlying dynam-
ics is Markovian.10 In practice, one finds that this is
only (approximately) true for lag times greater than
a critical a value: τ ≥ τMarkov.

2.3 Time-binned FRET efficiency dis-
tributions

In order to test whether the estimated HMM is con-
sistent with the stationary and kinetic behavior of the
data, we compute FRET efficiency distributions for
a series of time-binning lengths separately from the
data using the method described in Sec. “Background-
corrected FRET histograms” and from the HMM. Al-
gorithm 4 summarizes how the FRET efficiency dis-
tribution is calculated from the HMM.
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Algorithm 4: FRET efficiency distributions
from HMMs

Input: kmol, τ
Output: p(E)

1. For i = 1, ..., N

1.1. na = 0, nd = 0

1.2. Generate trajectory s1,...,τ with
s0 ∼ π
st ∼ Tst−1

1.3. For t = 1, ..., τ

1.3.1. With probability ∆tkmol: generate a
(virtual) photon.

With probability Est : assign it to the
acceptor channel and increment na,

else: assign it to the donor channel and
increment nd.

1.4. Add a histogram count at Ê = na

na+nd+ε
where ε is a small number.

2. Normalize histogram by dividing by N , and
return p(E).

We consider an HMM with parameters λ to have
passed the consistency test, when data-estimated and
HMM-generated time-binned FRET efficiency dis-
tributions agree for all time windows used, within
two standard deviations standard error of the data-
estimated distributions.

2.4 State splitting probability

Like a direct Markov model,8 the estimated HMM
will provide a consistent model of the stationary and
kinetic properties of the data if the Markov states
are sufficiently fine, i.e., if there are sufficiently many
states such that the conformational dynamics is ap-
propriately described by a Markov chain. We con-
ducted tests of the model consistency by comparing
directly estimated and HMM-generated FRET effi-
ciency histograms on various timescales as described
in Sec. “Time-binned FRET efficiency distributions”,
and, when this test fails we consider to split states that
are most likely to be the course for the failure. This
procedure is continued until the HMM test succeeded.
To select candidates for splitting, we considered the
lifetime distributions described in Sec. “Lifetime dis-
tributions” and identified those states whose lifetimes
can clearly not be described by a single exponential.

Since the lifetime distributions are computed from
a finite number of realizations, the decision whether
an estimated lifetime distribution is single-exponential
or not, must be based on statistics. Here, we de-
velop a Markov Chain Monte Carlo (MCMC) algo-
rithm that, for each estimated cumulative lifetime dis-
tribution p̂(t), performs a model selection between a
single exponential generating model:

p1(t) = e−tk

and a bi-exponential generating model:

p2(t) = aetk1 + (1− a)etk2 .

The probability for either of these models to generate
a sample of segment lengths (t1, ..., tn) is given by:

P(λx | t1, ..., tn) = Px(λ)
∏
i

px(ti) ,

where we use Jeffrey’s prior:

P1(k) =
1

k

and

P2(a, k1, k2) =
1

ak1 + (a− 1)k2

When correctly defined, this MCMC algorithm will
sample from each of the two models according to
their respective probabilities to have generated the
observed set of exit times. Such an MCMC algo-
rithm requires at least four Monte Carlo steps: (1)
a step that can sample new parameters k within the
single-exponential model, (2) a step that can sam-
ple new parameters a, k1, k2 in the bi-exponential
model, (3) a step to split a single-exponential model
into a bi-exponential model, (4) a step to merge a bi-
exponential model into a single-exponential model.

In order to implement the split and merge steps, we
need to propose a rule by which the single-exponential
parameter k and the bi-exponential parameters a, k1,
k2 are related, and then compute the appropriate
MCMC acceptance probabilities from this rule. Con-
sider the following relation:

k = ak1 + (1− a)k2

= a(k1 − k2) + k2 (20)

and consider further the parametrization

k1 = bk

with a, b ∈ [0, 1] and k1 ≤ k2. We define the splitting
move by generating a, b as uniform random numbers
in [0, 1]. We obtain

k2 =
1− ab
1− a

k

In order to calculate the proposal probability of the
splitting move consider the random number distribu-
tions

p(a) = 1 a∈[0,1]

p(b) = 1 b∈[0,1]

we transform the variables (a, b) into (k1, k2):

a =
k − k2

k1 − k2

b =
k1

k
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This involves the Jacobian:

| J | =

∣∣∣∣det

( d
dk1

a d
dk2

a
d
dk1

b d
dk2

b

)∣∣∣∣
=

k − k1

(k1 − k2)2

1

k

This yields the splitting proposal density

p(k → a, k1, k2) ∝ k − k1

(k1 − k2)2

1

k
=

1− b
(k1 − k2)2

k1 ≤ k

while the merging proposal density is given by:

p(a, k1, k2 → k) = 1

yielding the splitting acceptance probability:

psplit
acc =

P2(a, k1, k2 | t1, ..., tn)

P1(k | t1, ..., tn)

(k1 − k2)2

(1− b)

and the merging acceptance probability:

pmerge
acc =

P1(k | t1, ..., tn)

P2(a, k1, k2 | t1, ..., tn)

(1− b)
(k1 − k2)2

For the MCMC steps that change the parameters
within a given model, we consider the straightforward
and the uniform move a ∼ U(0, 1), and the rate scal-
ing move:

k′ = (c+ 0.5)k = kc+ 0.5k

with random number c ∼ U(0, 1). The proposal den-
sities are

p(k → k′) = k

p(k′ → k) = k′

giving rise to the ratio:

p(k′ → k)

p(k → k′)
=
k′

k
= c+ 0.5 .

This results in the sampling algorithm 5. When Al-
gorithm 5 returns n > 1.5, the corresponding hidden
state should be split.

2.5 Performing a state splitting

Without restriction of generality we consider that the
n’th state will be split, and we generate a new set of
state parameters for the childs (n, n+ 1) as described
below. The new parameters will serve as an input to
an EM algorithm, in which the new full parameter set
is optimized to convergence.

We find a separation of the nth exit time distribu-
tion in terms of

p(τ) = ae−knτ + (1− a)e−kn+1τ .

Given a transition element Qii we have the relation-
ship

ki = − lnQi,i

suggesting diagonal matrix elements

Qi,i = e−ki .

We start with matrix T and stationary distribution
π, for which the corresponding correlation matrix is
defined as

C = ΠT

with Π = diag(π). Furthermore, let us assume we
want to split the last state, n, such that the new states
have diagonal elements given by

Qn,n = e−kn

Qn+1,n+1 = e−kn+1 ,

and the relative probabilities are given by

πn
πn+1

=
a

1− a

An new correlation matrix D with a modified state n
and and additional state n + 1 is obtained from the
original matrix C as

D =



C11 · · · C1,n−1 D1,n D1,n+1

...
...

...

Cn−1,1 · · · Cn−1,n−1

...
...

Dn,1 · · · · · · Dn,n

Dn+1,1 · · · Dn+1,n+1


with the constraints:

1. Qn,n =
Dn,n∑
iDn,i

= e−kn

2. Qn+1,n+1 =
Dn+1,n+1∑

iDn+1,i
= e−kn+1

3.
π′n
π′n+1

=
∑

iDn,i∑
iDn+1,i

= a
1−a

4. π′n + π′n+1 = πn

5. Dij = Dji ∀i

We intend to fulfill all these contraints, and addition-
ally staying “close” to Dn,i + Dn+1,i = Cn,i i ∈
{1, n− 1}. From 3 and 4 we get the row sums:

π′n+1 = πn − π′n
π′n = π′n+1

a

1− a
= (πn − π′n)

a

1− a

π′n = πn

a
1−a

(1 + a
1−a )

= πna

From the row sums and constraints 1 and 2 we get the
diagonals:

Dn,n = π′ne−kn = d1

Dn+1,n+1 = π′n+1e−kn+1 = d2
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Algorithm 5: Number of exponentials(t1, ..., tn)

Input: A set of lifetimes t1, ..., tn
Output: (n, k, a, k1, k2) where n ∈ [1, 2] is the estimated number of exponentials required to fit the data,
k is the rate parameter of the single-exponential model, and a, k1, k2 are the parameters of the
bi-exponential model.

1. nexp = 1, n1 = 0, k1,sum = 0, asum = 0, k21,sum = 0, k22,sum = 0

2. For i = 1, ..., Nsample

2.1. r1 ∼ U(0, 1)

2.2. If nexp = 1

If r1 < 0.5

Propose rate change k → k′ = (r2 + 0.5)k with r2 ∼ U(0, 1). Accept with

pkacc = (r2 + 0.5)
P1(k′ | t1, ..., tn)

P1(k | t1, ..., tn)

If r1 ≥ 0.5

a ∼ U(0, 1), b ∼ U(0, 1). Propose split k →
(
a, k1 = bk, k2 = 1−ab

1−a k
)

. Accept with:

psplit
acc =

P2(a, k1, k2 | t1, ..., tn)

P1(k | t1, ..., tn)

(k1 − k2)2

(1− b)

Else if nexp = 2

If r1 < 0.5

r3 ∼ U(0, 1)

If r3 <
1
3 : Propose new amplitude a′ ∼ U(0, 1). Accept with

pacc =
P2(a′, k1, k2 | t1, ..., tn)

P2(a, k1, k2 | t1, ..., tn)

Else: propose rate change k1/2 → k′1,2 = (r2 + 0.5)k1/2 with r2 ∼ U(0, 1). Accept with

pkacc = (r2 + 0.5)
P1(k′1,2 | t1, ..., tn)

P1(k1,2 | t1, ..., tn)

If r1 ≥ 0.5

Propose merge (a, k1, k2 → k = ak1 + (1− a)k2). Accept with:

pmerge
acc =

P1(k | t1, ..., tn)

P2(a, k1, k2 | t1, ..., tn)

(1− b)
(k1 − k2)2

3. Return:

n = 1 + n1/Nsample
k = k1,sum/Nsample
a = a1,sum/Nsample
k1 = k21,sum/Nsample
k2 = k22,sum/Nsample
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Next we fill the lower right block. In the ideal case we
can maintain counts of the split diagonal elements.

Cnn = Dn,n + 2Dn+1,n +Dn+1,n+1

Dn+1,n =
Cnn −Dn,n −Dn+1,n+1

2

However, if that would results in Dn+1,n < 0 or
Dn+1,n ≥ min{π′n − Dn,n, π

′
n+1 − Dn+1,n+1} this so-

lution can’t be used, and instead we resort to some
number

Dn+1,n = ε < min{π′n −Dn,n, π
′
n+1 −Dn+1,n+1}

We now have remaining counts to be distributed:

rn = π′n −Dn,n −Dn+1,n

rn+1 = π′n+1 −Dn+1,n+1 −Dn+1,n

and set the remaining elements as:

Dn,i = rn
Cn,i
πn

Dn+1,i = rn+1
Cn,i
πn

Finally, we normalize D row-wise to get a transition
matrix.

The new state parameters are used as an input for
an EM algorithm, in which the HMM parameters are
again optimized to convergence.

2.6 Lumping together of rapidly inter-
converting states

For the sake of clarity, models with many states
were coarse-grained by lumping together rapidly in-
terconverting states with similar FRET efficiencies.
This amounts to constructing a coarse-grained transi-
tion matrix Tc from the original unconditional transi-
tion probability matrix, also called correlation matrix,
which is given by

C = ΠT .

Π = diag(π) is a square matrix which contains the
stationary probabilities of states on the diagonal. A
coarse-grained correlation matrix is then obtained by

Cc = χCχ ,

where χ ∈ Rm×n is a coarse-graining operator, which
has column-sums of 1, and each element i, j indicates
to which fraction state j is lumped into coarse state
i. As described in,11 the correct way of comput-
ing χ is via the PCCA+ method.12 However, when
the dynamics is metastable, rapidly-interconverting
substates can be merged by a simple χ-matrix,
whose rows simply contain a value which xequals 1
for all states to be lumped into the corresponding
macrostate. The application of this simple χ-matrix is

then identical to summing up the unconditional prob-
abilities in C over the joined groups of states. The
resulting coarse-grained correlation matrix is turned
into a transition matrix by normalizing its rows:

Tc = Π−1
c Cc .

3 Post-processing and analysis
methods

3.1 Correcting the spectral crosstalk χ

The states of a HMM are characterized by apparent
FRET efficiencies

Eapp =
kappa

ktot
=
ktruea + χktrued

ktot
, (21)

where, due to spectral crosstalk, the apparent pho-
ton count rate in the acceptor channel kappa is higher
than the true photon count rate, ktruea , emitted by the
acceptor chromophore. χ is the spectral crosstalk fac-
tor estimated according to eq. 27 in the main text,
and ktrued is the (true) photon count rate emitted by
the donor chromophore, which is related to the true
FRET efficiency Etrue by

Etrue =
ktruea

ktruea + ktrued

⇔ ktrued =
1− Etrue

Etrue
ktruea .(22)

Note that the total photon count rate is not affected by
the spectral crosstalk and we have ktot = ktruea +ktrued .
Inserting eq. 22 in eq. 21 and solving for Etrue yields
the crosstalk corrected FRET efficiency

Etrue =
Eapp − χ

1− χ
. (23)

The FRET efficiencies of the states in Fig. 2a and 3b
in the main text, in Figs. S10-S13, have been corrected
for spectral crosstalk using eq. 23.

3.2 Free energy interpretation of
HMM states and transition states

Free energy differences of HMM states (with respect
to an arbitrary reference state R) are computed as

∆GiR = −kBT ln

[
πi
πR

]
,

where πi is the stationary probability of state i, and
πR is the stationary probability of the reference state.
Both are obtained from the first eigenvector of the
HMM transition matrix T. kB is the Boltzmann con-
stant, and T is the absolute temperature, here set to
298 K. Higher eigenvectors of T indicate transitions
between regions of the conformational space, associ-
ated to rates κHMM

i = −∆t−1 lnλHMM
i , where λHMM

i

are the eigenvalues of the HMM transition matrix T.
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Up to a constant, transition state energies and transi-
tion rates are related by: G‡i = −kBT lnκi. Alterna-
tively, one can calculate the transition state energies
between pairs of hidden states. Using

πi
Tij
τ
≈ πikij = πij = Z−1 exp

(
− 1

kBT
Uij

)
(24)

one obtains

Uij = −kBT lnπi
Tij(τ)
τ − kBT lnZ , (25)

where −kBT lnZ is an unknown but constant offset.
Results are shown in Fig. 6a of the main text.

3.3 Eigenvalue decomposition

Let T(τ) be the transition matrix estimated from the
HMM, where τ is the time step used to parametrize
it. In the present study, τ = ∆t = 10µs is the elemen-
tary time step at which photons are being recorded.
We can perform an eigenvalue decomposition of T(τ),
and obtain:

T(τ)Ψ = λ(τ)Ψ ,

where
Ψ = [ψ1, ....,ψn]

contains the right eigenvectors as columns and λ1 =
1 > λ2 ≥ λ3 ≥ ... ≥ λn are the eigenvalues. Each
eigenvalue is associated with a timescale

ti = − τ

lnλi
,

also called implied timescale10 or relaxation time. At
timescale ti, conformational transitions occur which
are specified by eigenvector ψi: States with negative
sign exchange with states with positive sign. For a
detailed interpretation and illustration of eigenvalues
and eigenvectors please refer to ref.8 Figs. S10-S13,
show the implied timescales and eigenvectors of the
HMMs.

3.4 Transition path analysis

The folding pathways from misfolded to native states
are here calculated using Transition Path Theory
(TPT). TPT has been originally introduced in13 and
has been formulated for time-continuous Markov jump
processes in.14 Here we use transition path theory for
Markov chains as described in,15 employing the im-
plementation in the EMMA software.9

TPT for Markov chains requires the transition ma-
trix T(τ), and a definition of the educt states, A, and
product states, B, as an input. Here, the long-lived
low-FRET-efficiency states (colored green and yellow
in Fig. 2a in the main text, which presumably repre-
sent misfolded secondary structures, were chosen as A,
while the high-efficiency state (colored black in Fig. 2a
in the main text) was chosen as B state. From T(τ),
the stationary distribution π is computed as well as

the committor probabilities, q, whose elements qi de-
note the probability that the dynamics will, starting
from state i, go next to the set B rather than to the
set A. In other words, qi is the probability of folding
of state i. q can be calculated from T(τ) for a given
definition of A and B by solving a linear system of
equations specified in the supplement of.15 We order
states by increasing value of the commitor, and cal-
culate the folding flux from state i to state j (when
qi ≤ qj) by

f+
ij = πi(qj − qi)Tij(τ) . (26)

The folding flux is a rate in units of τ , and specifies
a directed network whose edges quantify the flux of
folding trajectories from A to B. The folding fluxes
for the present HMMs are shown in Fig. 3b in the
main text.

4 Diels-Alderase measurement
and analysis protocol

4.1 Single-molecule FRET experi-
ments and data processing

Single-molecule fluorescence data were obtained as de-
scribed in Ref.16 Briefly, DAse ribozyme molecules
with covalently attached two fluorophores (Cy3 as
donor and Cy5 as acceptor) and biotin were immo-
bilized on a biocompatible surface that minimally af-
fects RNA folding. The sample chamber was filled
with buffer containing 50 mM Tris, 300 mM NaCl,
and MgCl2 in varying amounts. Additionally, an enzy-
matic oxygen scavenging system and triplet quencher
were employed to extend the observation time. Flu-
orescence emission was measured by using a home-
built laser scanning confocal microscope with two-
channel detection. To ensure the presence of a func-
tional donor and acceptor pair on the measured RNAs,
confocal fluorescence images of sparsely immobilized
molecules were first taken under red excitation. Sub-
sequently, selected spots were - one by one - moved
into the focus, and the fluorescent signal was recorded
under green excitation. Single-molecule trajectories of
the number of recorded donor and acceptor photons
were stored at a time resolution of 10 µs. With a mean
photon rate of 2 - 3 ms−1, this protocol ensures acqui-
sition of single-photon data. Only those trajectories
containing a single-step photobleaching of first the ac-
ceptor and afterwards the donor were chosen for fur-
ther analysis. The traces were split into three regions:
(i) production phase (both chromophores active), (ii)
acceptor bleached phase, and (iii) donor+acceptor
bleached phase. The combined data set of all pro-
duction phases (of a given Mg2+ concentrations) was
subjected to HMM analysis without further modifi-
cation. The total production time amounted to more
than 230 s, 400 s and 220 s for 0, 5, and 40 mM Mg2+,
respectively. The smFRET data sets are summarized
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in Table S1, and histograms of the length of the pho-
ton traces are displayed in Fig. S2. Fig. S4 shows that
the statistics of the photon arrival times in the data
set follows a Poisson process.

The rates of the background noise ka,bg an kd,bg in
each channel were estimated from the donor+acceptor
bleached phase of this traces as ka,bg = na,bg/Tbg and
kd,bg = nd,bg/Tbg. na,bg (nd,bg) is the number of ac-
cpetor (donor) photons detected during this phase and
Tbg is the duration of this phase.

The amount of spectral crosstalk χ from the donor
to the acceptor channel was estimated as

χ =
〈ka,χ〉 − 〈ka,bg〉

〈ka,χ〉 − 〈ka,bg〉+ 〈kd,χ〉 − 〈kd,bg〉
, (27)

where 〈ka,χ〉 (〈kd,χ〉) is the average acceptor (donor)
photon count rate in the acceptor bleached phases,
〈ka,bg〉 (〈kd,bg〉) is the average acceptor (donor) pho-
ton count rate in the donor+acceptor bleached phases
of a given data set.

Figure S2: Histogram of the trace lengths in the three
data sets from which the HMMs were constructed and
which is further summarized in Tab. S1.

Table S1: Photon statistics of the production phase of
the data sets in construct I

c(Mg2+) 0.0mM 5.0mM 40.0mM
General information

time resolu-
tion

10 µs 10 µs 10 µs

total time 238.70 s 406.19 s 222.79 s
# traces 56 136 70

Number of photons
don. channel 233’661 376’892 169’734
acc. channel 414’787 729’852 469’428
total 648’448 1’106’744 639’162

Average photon count rate / ms−1

don. channel 0.98 0.93 0.76
acc. channel 1.74 1.80 2.11
total 2.72 2.72 2.87

Table S2: Photon statistics of the production phase of
the data sets in construct II

c(Mg2+) 5.0mM
General information

time resolution 10 µs
total time 739 s
number of traces 53

Number of photons
don. channel 592’890
acc. channel 2’567’705
total 3’160’595
Average photon count rate / ms−1

don. channel 0.80
acc. channel 3.47
total 4.27

4.2 Effects of surface Immobilization

To evaluate the effect of surface immobilization on
the folding properties of the DAse ribozyme, we have
performed ensemble fluorescence measurements of ri-
bozyme molecules at different Mg2+ ion concentra-
tions. The fluorescence spectra under 532 nm ex-
citation were fitted with the known spectra of the
Cy3 (donor) and Cy5 (acceptor) fluorophores, and the
folded fraction was calculated as a function of Mg2+

concentration, based on their normalized spectral ar-
eas (shown in Fig. S3a). Fitting of the calculated
data with the Hill equation (Eq. 5 in Ref.16) yields
a transition midpoint concentration of 2.5 mM and
a cooperativity parameter n = 2. From the surface-
immobilized single-molecule data, we obtain very sim-
ilar data, i.e., a midpoint concentration of 6.1 mM and
n = 1.8 for the intermediate-to-folded state transition.
Additionally, we have observed compaction of the in-
termediate state in the single-molecule data causing
an increase of the average FRET efficiency, character-
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ized by a transition midpoint at 3.8 mM and a coop-
erativity parameter of 4.2 (Fig. 8 in Ref.16). Thus,
surface immobilization affects the folding properties
of the studied DAse ribozyme only very weakly.

Furthermore, to estimate the influence of the DAse
ribozyme immobilization on the reaction rate, we com-
pared the reaction progress curves in solution and
molecules immobilized on BSA surfaces under con-
ditions as close as feasible to single molecule FRET
measurements. To monitor the catalytic reaction,
we have utilized the anthracene-1-yl-BODIPY (1-AB)
substrate as a fluorescent sensor for the biocatalytic
Diels-Alder reaction.22 In these experiments, a vari-
ant of DAse ribozyme containing only a biotin linker
has been used, but no fluorescent dyes. The results
are reported in Fig. S3b. By mixing 200 nM of ri-
bozyme with 100 nM of 1-AB and 10 µM of NPM,
a clear increase in the fluorescence signal can be ob-
served that indicates product formation. For surface
immobilization, a solution containing 100 nM of DAse
ribozyme was added to the sample chamber coated
with biotinylated BSA and streptavidin, incubated for
10 min and then rinsed with buffer to remove all un-
bound molecules. Afterward, a solution containing
100 nM of 1-AB and 10 µM of NPM was added to the
sample chamber, and the reaction progress was mon-
itored. We note that the exact number of molecules
attached to the surface is not known. The expected
coverage is less than a monolayer but larger than what
we use in single-molecule preparations, where we in-
cubate with a concentration of 10-50 pM. Anyhow,
a notable increase in fluorescence can be detected. A
precise quantitative comparison of the experimental
data presented below, that is, the extraction of rate
coefficients for free molecules in solution and immo-
bilized ones, is not feasible. However, the data quali-
tatively confirm the catalytic activity of immobilized
molecules.

(a)

(b)

Figure S3: Effects of the surface immobilization on
thermodynamics and kinetics of Diels-Alderase. (a)
Folded fraction of Diels-Alderase as a function of
Mg2+ ion concentration. Blue squares: ensemble
fluorescence measurements. Red circles: surface-
immobilized single-molecule measurements. Lines:
Hill equation fitted to the respective data set. (b) Re-
action progress curves monitored by a fluorescent sen-
sor (anthracene-1-yl-BODIPY (1-AB)) for the biocat-
alytic Diels-Alder reaction. Blue line: Diels-Alderase
in solution. Red line: Diels-Alderase molecules immo-
bilized on BSA surface.

4.3 Statistics of the photon arrival
times

The likelihood in eqs. 4 and 5 is based on the assump-
tion that the arrival times of the photons at the detec-
tor follow a Poisson process. Whether this assumption
is valid for a given trace can be tested by plotting the
histogram of interphoton times, which is expected to
show an exponential decay

p(t) = N exp (−nt) . (28)

n is the total photon count rate in this trace estimated
as Nphotons/T , where Nphotons is the total number of
photons the trace, and T ist the length of the trace
The histogram is normalized to the number of inter-
photon times.

N =
Nphotons − 1∫ T
t=0

exp−nt dt
. (29)

S14



We mostly find that the photon arrival times are very
well modeled by a Poisson process (Fig. S4a). In rare
cases, the photon arrival times follow a Poisson pro-
cess with a slightly different rate than the one that is
expected from the total photon count rate (Fig. S4b).

Figure S4: Histogram of interphoton times in exam-
ple traces. blue dots: Estimated from the trace; black
line: exponential fit; red line: exponential decay func-
tion (eq. 28) as expected from total photon count rate
of the trace.

4.4 Information based criteria

It is common practice to determine the number of
states of the hidden Markov model by using informa-
tion based indicators, such as the Bayesian informa-
tion criterion (BIC) or the Akaike information crite-
rion (AIC). These indicators are designed to determine
the optimal number of states in HMMs under certain
assumptions. The most prominent assumption is that
the hidden process is an an inherently discrete pro-
cess with a fixed number of states. As discussed in
the previous paragraph and in the main part of the
manuscript, this is typically not the case for molecular
dynamics. Rather, the hidden conformational changes
are governed by a hierarchy of states and processes.

Second, information based criteria are valid only
asymptotically, i.e. in the limit of infinite sampling.
They are therefore of little use for finite data sets
because the associated likelihood function does not
have a single dominant maximum, but multiple local
maxima. The Baum-Welch algorithm, however, only
identifies the nearest local maximum, and as a conse-
quence, the results of the HMM optimization for a fi-
nite data set vary depending on the initial parameters.
If this variation for a given number of hidden states
is larger than the change of the information criterion
of choice over a certain range of numbers of hidden
states, this criterion has hardly any significance.

This is illustrated in Fig. S5, which shows the BIC
as a function of states used for the HMM optimiza-
tion on the data set with c(Mg2+)=0.0 mM. For each
number of states n, the HMM optimization has been
repeated 20 times with varied initial parameters. This
results in a range of models for a given n, each of which
is represented by a dot in Fig. S5. The model with the
highest log-likelihood at n = 8 indeed corresponds to
the maximum in the BIC curve. However, the differ-
ence to the models with one state more or less is only
on the order of 10 (n = 7: −5.16388 · 106; n = 8:
−5.16383 · 106; n = 7: −5.16386 · 106), whereas the
differences between different minima of the HMM like-

lihood using the same number of states can be on the
order of 103. These results also show that, due to the
large variation in the HMM results for a given value
of n, verifying the reproducibility of the model with
largest log-likelihood is indispensable.

3 4 5 6 7 8 9 10 11 12 13

-5.169 ´ 106

-5.168 ´ 106

-5.167 ´ 106

-5.166 ´ 106

-5.165 ´ 106

-5.164 ´ 106

Number of states

B
IC

Figure S5: Bayesian information criterion as a func-
tion of hidden states. Each dot represents an in-
dependent HMM optimization of the data set at
c(Mg2+)=0.0mM.

4.5 HMM generation, validation, and
refinement

HMMs were constructed for the smFRET data sets
summarized in Tables S1. and S2 Using the optimiza-
tion protocol described in the Methods section, the
largest number of states for which HMM’s could be
reproducibly obtained were 8, 8 and 7 at Mg2+ con-
centrations of 0, 5 and 40 mM, respectively.

Fig. 4 in the main text compares the predicted
time-dependent FRET efficiency distributions of these
HMM’s with the data. It is apparent, that the HMMs
for 0 and 5 mM Mg2+ predict time-dependent FRET
efficiency distributions well, whereas the prediction of
the 7-state HMM at 40 mM Mg2+ significantly dis-
agrees with the data.

We assumed that the reason for the 7-state HMM
at 40 mM Mg2+ failing the validation test was that it
contained some states with non-Markovian behavior
that should be splitted into substates. To confirm
this, we computed the maximum likelihood hidden
path, ŝ, for all Markov models and inspect the life-
time distributions of states, which is expected to be
single-exponential if the dynamics is Markovian. In-
deed, the maximum likelihood paths for 0 and 5 mM
Mg2+ show a nearly perfect Markovian behavior (Fig.
4b in the main text), while the 7-state HMM at 40 mM
Mg2+ contained three clearly non-exponential states
(Fig. S8b). Thus, the non-exponential states of the 7-
state model were split using the protocol described in
Sections “State splitting probability” and “Perform-
ing a state splitting”. With two iterations of split-
ting, a 13-state HMM for 40 mM Mg2+ was obtained
which still exhibited nonexponential states (Fig. 4b
in the main text), but now passed the validation test
using the FRET efficiency distributions (Fig. 4a in
the main text). To test whether the remaining non-
exponentiality came from an actual non-Markovianity
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of the discrete state dynamics or just from spurious
transitions generated from the estimation of the max-
imum likelihood, we conducted the Markov tests as
described in Sec. “Implied timescale test”. The re-
sults in Fig. 4c in the main text show that the implied
timescales of the maximum likelihood hidden paths,
ŝ(t) depend on τ for short lagtimes, indicating that
these paths are non-Markovian at short timescales.
However, at 10-30 ms the implied timescales become
approximately constant in τ , and approximately agree
with the timescales estimated from the HMM transi-
tion matrix. This indicates that the kinetics of all
three HMMs, consisting of 7 states (0 and 5 mM
Mg2+) and 13 states (40 mM Mg2+) are consistent
with the data.

Figure S6: Validation of the hidden Markov models
for c(Mg2+) = 0.0 mM. (a) Time-window-dependent
FRET efficiency histograms at window lengths of 10
ms, 50 ms, and 100 ms. grey area: 95% confidence
interval of the data set as calculated from a bootstrap-
ping sample, dotted grey lines: mean of the bootstrap-
ping sample, dashed colored lines: predicted from the
hidden Markov model. (b) Lifetime distribution of
the individual states calculated from the maximum-
likelihood paths.

Figure S7: Validation of the hidden Markov models
for c(Mg2+) = 5.0 mM. (a) Time-window-dependent
FRET efficiency histograms at window lengths of 10
ms, 50 ms, and 100 ms. grey area: 95% confidence
interval of the data set as calculated from a bootstrap-
ping sample, dotted grey lines: mean of the bootstrap-
ping sample, dashed colored lines: predicted from the
hidden Markov model. (b) Lifetime distribution of
the individual states calculated from the maximum-
likelihood paths.

Figure S8: Validation of the hidden Markov models
for c(Mg2+) = 40.0 mM. (a) Time-window-dependent
FRET efficiency histograms at window lengths of 10
ms, 50 ms, and 100 ms. grey area: 95% confidence
interval of the data set as calculated from a bootstrap-
ping sample, dotted grey lines: mean of the bootstrap-
ping sample, dashed colored lines: predicted from the
hidden Markov model. (b) Lifetime distribution of
the individual states calculated from the maximum-
likelihood paths.
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Table S3: Number of states at the stages of the HMM
generation protocol. X = validation passed × =
validation failed.

construct I I I II
c(Mg2+) 0.0

mM
5.0
mM

40.0
mM

5
mM

HMM optimization 8 8 7 7
HMM validation X X × X
HMM refinement:
splitting of states

7 7 13 7

HMM validation X X X X
HMM refinement:
merging of states

7 7 9 7

HMM interpreta-
tion

7 7 9 7

The 13-state model contained some rapidly-
converting states with similar FRET efficiencies. In
order to simplify the interpretation, these states were
subsequently lumped as described in Sec. “Lump-
ing together of rapidly interconverting states” ob-
taining the final 9-state model reported in the main
manuscript. Fig. S13b shows which states were joined
with respect to the 13-state model Table S3 summa-
rizes the numbers of HMM states obtained in the dif-
ferent data processing steps.

Figure S9: Example of FRET efficiency traces (aver-
aging window 10 ms) from the three data sets colored
according to the Viterbi path of corresponding HMM
(a): c(Mg2+) = 0.0 mM, 7-state model (b): c(Mg2+)
= 5.0 mM, 7-state model (c): c(Mg2+) = 40.0 mM,
13-state model. The coloring of the states is the same
as in Fig. 2 in the main text.

4.6 Detailed kinetic profile of the hid-
den Markov models

Figs. S10-S13 show additional kinetic analyses of the
HMMs of Diels-Alderase.

The kinetic network graphs are constructed di-
rectly from the transition matrix of the correspond-
ing HMM. The discs represent the hidden states. The
colors of the circles corresponds to colors in the state
decomposition plots shown in the panel below or in
the main text. The edges of the graphs represent
the correlation between two states i and j: cij(∆t) =
πitij(∆t), where ∆t = 10µs is the lag time of the hid-
den Markov model, πi is the equilibrium probability
of the ith state, and tij is the matrix element of the
transition matrix representing the transition probabil-
ity from i to j within time ∆t. The thickness of the
edge is proportional to log10(cij) − log10(d), where d
is the threshold in the respective graph.

The eigenvectors of the transition matrix of a
Markov model can be interpreted as kinetic processes.
We present the eigenvectors as color-coded projections
onto the states of the HMM. Each kinetic process shut-
tles probability density between regions of the state
space to which the corresponding eigenvector assigns
positive values (red) to region to which it assign neg-
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ative values (blue) (or vice versa depending on the
initial probability distribution). States which are as-
signed a value of zero (white) by a particular eigen-
vector are not affected by the corresponding kinetic
process.

The state decomposition plots shown in Figs. S13
and Fig. S12 are constructed as described in the main
text. Discs represent the hidden states and are po-
sitioned according to the FRET efficiency and the
state lifetime of the corresponding hidden state. The
disc area represents the equilibrium probability of the
states. Discs of similar color are kinetically close to
each other as revealed by a kinetic cluster analysis
of the eigenvectors of the transition matrix.12 States
which kinetically merge into larger subensembles at
different timescales are shown as colored areas.

The validation test for the 7-state model for 40.0
mM Mg2+ shown in Fig. S12 is similar to the valida-
tion tests shown in Fig. 4 of the main text but reveals
that the FRET histograms predicted from the 7-state
HMM do not agree with those estimated directly from
the data.

4.7 Proposed secondary structure mo-
tifs

To obtain a structural interpretation of the HMM
states, ten minimum energy secondary structures of
the Diels-Alderase were calculated using the barri-
ers server of the Vienna RNA WebServer.26–28 The
temperature was set to 25 ◦C. Only minima with a
barrier higher than 0.1 kcal/mol were distinguished,
and the algorithm was forced to avoid isolated base
pairs. RNA parameters (Turner model29) were used
to calculate the free energies. The secondary struc-
tures with lowest energy are shown in Fig. 8 of the
main text, These settings correspond to the following
RNAsubopt/barriers command line:

RNAsubopt -d2 --noLP -T 25 -s -e 40 < sequence.fa

> RNAsubopt.out

barriers --rates -G RNA-noLP --max 10 --minh 0.1

<

RNAsubopt.out > barriers.out
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Figure S10: Kinetic analysis of the 7-state hidden Markov model for c(Mg2+) = 0.0 mM obtained by remov-
ing the blinking state from the original 8-state model. (a) Kinetic networks at different thresholds for the
cross-correlations (π-weighted transition probabilities). (b) Eigenvectors of the transition matrix of the hidden
Markov model projected into the state definition plot.
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Figure S11: Kinetic analysis of the 7-state hidden Markov model for c(Mg2+) = 5.0 mM obtained by remov-
ing the blinking state from the original 8-state model. (a) Kinetic networks at different thresholds for the
cross-correlations (π-weighted transition probabilities). (b) Eigenvectors of the transition matrix of the hidden
Markov model projected into the state definition plot.
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Figure S12: Kinetic analysis of the 7-state hidden Markov model for c(Mg2+) = 40.0 mM. (a) Kinetic networks
at different thresholds for the cross-correlations (π-weighted transition probabilities). (b) State parameters of
the hidden Markov model and state decomposition at different timescales. (c) Eigenvectors of the transition
matrix of the hidden Markov model projected into the state definition plot.
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Figure S13: Kinetic analysis of the 13-state hidden Markov model for c(Mg2+) = 4.0 mM. (a) Kinetic networks
at different thresholds for the cross-correlations (π-weighted transition probabilities). (b) State parameters of
the hidden Markov model and state decomposition at different timescales. Dashed circles in the first plot show
which states are merged to obtain the 9-state model which is discussed in the main text. (c) Eigenvectors of
the transition matrix of the hidden Markov model projected into the state definition plot.
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Figure S14: Validation of the HMM for construct II and comparison to the HMMs of construct I. (a) Time-
window-dependent FRET efficiency histograms for window lengths of 10 ms, 50 ms, and 100 ms. red line:
Predicition from the hidden Markov model, grey area / dotted black lines: Estimation from smFRET data set
(bootstrapping mean / 95% confidence interval). (b) Implied timescales, indicating that the long-time kinetics
of the hidden paths is Markovian and converges to timescales similar to those found in the HMM. The divergence
of the shortest timescales at large lag times is expected and due to numerics. (c) Comparison of timescales of
transition processes found in different Mg2+ concentrations and labeling constructs.
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