

Supplemental Material to:

Sven Bogdan*, Jörg Schultz, and Jörg Grosshans*

Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics

Communicative & Integrative Biology 2013; 6(6) http://dx.doi.org/10.4161/cib.27634

http://www.landesbioscience.com/journals/cib/article/27634

Supplementary information

2 Metazoan and fungal sequences were extracted from Ensembl (http://www.ensembl.org), 3 Monosiga brevicollis from the Joint Genome Institute (http://genome.jgi.doe.gov) and 4 Capsaspora owczarzakii from the Broad Insitute (http://www.broadinstitute.org). The sequences had to contain a GTPase binding (Pfam PF06371), a FH3 (PF06367) and a FH2 5 domain (PF02181) ¹⁷². To avoid edge effects caused by PFAMs local domain detection, 6 SMART⁹ was used to delineate the position of the domains in the extracted sequences. To 7 8 focus the tree recon struction on conserved positions, domain sequences were extracted and concatenated. An alignment was calculated using MUSCLE with default parameters ¹⁰. 9 Models for the phylogenetic tree reconstruction were estimated by ProtTest resulting in 10 LG+I+G+F 11. The tree was calculated with PHYML 173 and robustness estimated by 11 approximate likelihood ratio tests ¹⁷⁴. Diaphanous Sequences: *Homo sapiens*: 12 13 ENSG00000131504 DIAPH1; ENSG00000147202 DIAPH2; ENSG00000139734 DIAPH3. Ciona savigny: ENSCSAVG00000008096. Drosophila melanogaster: FBgn0011202 dia. 14 15 Caenorhabditis elegans: F11H8.4 Cyk-1. Amphimedon queenslandica: Aqu1.221683. Trichoplax adherens: TriadG60005. Monosiga brevicollis: A9UVG5.1. Capsaspora 16 17 owczarzakii: E9CGJ0.1, E9C1Z5.1

18

19

1

Supplementary Table 1

Table A - Differentially conserved sites between Dia1 and Dia2 / 3

Position in mDia1	Z-score	AA in Dia1	AA in Dia2 and 3
41	5,47	Е	D
91	5,2	L	M
101	5,86	Q	K
125	5,34	Α	K
138	5,54	M	E
164	6,24	N	T
165	6,23	N	S
187	6,6	K	E
207	6,6	E	K
210	6,61	R	Q
225	6,61	M	1
232	5,89	I	L
262	5,88	Q	Е
302	5,9	K	Q
313	5,87	I	V
327	5,89	S	N
351	5,26	V	1
487	6,62	Н	Q
762	5,89	L	M

Table B - Differentially conserved sites between Dia2 and Dia3. Sites identical to Dia1 in bold.

1 2

Position in mDia1	Z-score	AA in Dia1	AA in Dia2	AA in Dia3
249	5,46	D	E	D
323	5,42	V		L
330	5,47	M	L	M
359	5,48	Q	N	Н
422	5,46	Υ	Υ	F
756	5,46	Υ	Υ	F
833	5,08	K	R	K
986	5,12	F	F	S