Titles and legends to supplementary figures:

Figure S1. MS results of identified ISM binding partners in plasma membrane and mitochondria:

(**a-b**) Identified ISM's binding partners in plasma membrane fraction. (**a**) MS result of clathrin heavy chain 1 (CHC1). (**b**) MS result of glucose-regulated protein of 78 kDa (GRP78). (**c-g**) Identified ISM's binding partners in mitochondria. (**c**) MS result of clathrin heavy chain 1 (CHC1). (**d**) MS result of glucose-regulated protein of 78 kDa (GRP78). (**e**) MS result of ISM. (f) MS result of ADP/ATP carrier 2 (AAC2). (**g**) MS result of ADP/ATP carrier 3 (AAC3). Bold red sequences represent the matched peptides by MALDI-TOF-TOF MS. Protein scores greater than 64 are significant (p<0.05).

Figure S2. ISM inhibits angiogenesis through GRP78. (a) Transient transfection of two different siRNAs effectively knocked down GRP78 expression in HUVECs. Equal amount of scramble siRNA was transfected as a control. (b) Knockdown of GRP78 expression by siRNAs diminished ISM-mediated EC adhesion. *P<0.05, n=3. Error bars denote SEM. (c-d) Knockdown of GRP78 expression by siRNAs compromised the anti-tube formation action of ISM. *P<0.05, n=3. Error bars denote SEM. (e) Knockdown of GRP78 expression by siRNAs reduced ISM-induced EC apoptosis. *P<0.05, n=3. Error bars denote SEM. (e) Knockdown of GRP78 expression by siRNAs reduced ISM-induced EC apoptosis. *P<0.05, n=3. Error bars denote SEM. (e) Knockdown of GRP78 expression by siRNAs reduced ISM-induced EC apoptosis. *P<0.05, n=3. Error bars denote SEM. (e) Knockdown of GRP78 expression by siRNAs reduced ISM-induced EC apoptosis. *P<0.05, n=3. Error bars denote SEM.

Figure S3. GRP78 mediates ISM internalization. (a) Anti-GRP78 antibody

reduced ISM internalization into HUVECs in a dose-dependent manner. (b) Internalized ISM-GRP78 complex mainly associated with CHC but not caveolin. ISM pre-treated HUVECs were washed to remove cell surface associated ISM and lysed in 1% Triton X-100 buffer. Triton-insoluble and -soluble fractions of HUVEC plasma membrane lysates were prepared by density centrifugation. Immunoblotting with antibodies against ISM, $\alpha\nu\beta5$ integrin subunit $\beta5$ and GRP78 was used to analyze each fraction. Caveolin-1 and clathrin heavy chain (CHC) were used as markers for lipid-raft and non lipid-raft fraction. (c) Overexpression of GRP78 but not $\alpha\nu\beta5$ integrin increased ISM internalization in LS174T cells.

Figure S4. ISM selectively induces apoptosis in cells that express high level cell-surface GRP78 such as invasive cancer cells and activated ECs. (a) GRP78 level in the plasma membrane fraction of NIH3T3, SWISS3T3, HUVEC, HEK293T, B16F10, 4T1, LS174T, LS-LM6 and 786-O cells. Equal amount of plasma membrane proteins were loaded as shown in the coomassie blue stained gel. (**b-j**) ISM only induced significant apoptosis in cells exhibiting high level cell-surface GRP78. B16F10 (mouse melanoma), 4T1 (mouse breast carcinoma), 786-O (human renal carcinoma), LS-LM6 and LS174T (human colon cancer). **P<0.01, n=3. Error bars denote SEM.

Figure S5. Overexpression of GRP78 or $\alpha\nu\beta5$ integrin conferred the pro-apoptotic function of ISM in LS174T cells. (a) Increasing $\alpha\nu\beta5$ integrin

expression level dose-dependently enhanced the pro-apoptotic effect of ISM on LS174T cells. (**b**) Simultaneous overexpression of GRP78 and $\alpha\nu\beta5$ integrin generated more potent apoptotic response to ISM than overexpression of individual receptor in LS174T cells (compare to Fig. 3d and Fig. S5a respectively).

Figure S6. ISM interacts with AAC2 in mitochondria and blocks ADP import from cytoplasm into mitochondria. (a) ISM-induced morphology change of HUVECs is dependent on caspase activity. HUVECs were either treated by rISM or rISM plus Z-VAD-fmk as the pan-caspase inhibitor for 24 h. Mitochondria were labeled by red MitoTracker. Internalized rISM was detected by IF using antibody against his-tag. Nuclei were stained by DAPI. (b) Internalized ISM-GFP co-localized with AAC2. ISM-GFP expression plasmid was transiently transfected into HEK293T cells. Condition media was collected and applied to mCherry-AAC2 transfected HEK293T cells. ISM (green) co-localized with AAC2 (red) in mCherry-AAC2 expressing cells. Nuclei were stained with DAPI (blue). Quantitative measurement of Pearson's correlation coefficient (Rp) between red and green fluorescent signals of the arrow-labeled cell was indicated in the far-right. (c) rISM treatment increased ADP level in cytosolic fraction of HUVECs independent of caspase activity. Z-VAD-fmk was used as pan-caspase inhibitor. **P<0.01, n=3. Error bars denote SEM. (d) rISM treatment decreased ADP level in mitochondrial fraction of HUVECs independent of caspase activity. **P<0.01, n=3. Error bars denote SEM. (e) rISM treatment increased ADP concentration in whole cell lysates of HUVECs independent of caspase activity. *P<0.05, n=3. Error bars denote SEM.

Figure S7. GRP78 and $\alpha\nu\beta5$ integrin present distinct distribution patterns in both B16F10 and 4T1 tumors. Paraffin sections of B16F10 and 4T1 tumors from rISM-treated and control groups were double-stained for both GRP78 and $\alpha\nu\beta5$ integrin through IF using anti-GRP78 (red) and anti- $\alpha\nu\beta5$ integrin (green). Nuclei were counter stained by DAPI (blue). Representative photos are shown. Quantitative measurements of Pearson's correlation coefficient (*Rp*) between red and green fluorescent labeled channels were indicated in the far-right.

Figure S8. Systemically delivered rISM suppresses B16 melanoma growth in mice by inducing apoptosis of both cancer cells and cancer ECs. (a-d), ISM inhibits B16 melanoma growth in mice when delivered systematically. (a) B16F10 tumor growth curve in mice. X-axis represents the days after inoculation of 5×10^5 tumor cells. Groups consisted of control mice receiving no treatment or 250 µg rISM through tail vein injection every other day from day 0 (date of inoculation) to 14. N=5. (b) Tumor weight at the end of the experiment (day 14). (c) Dissected tumors at the end of experiment. (d) rISM treated tumors showed a reduced vascularization compared to untreated control. (e) rISM suppressed tumor angiogenesis, proliferation and induced

apoptosis in B16F10 tumor. Paraffin sections of B16F10 tumors from control and treated groups with rISM were probed for microvascular density (MVD), tumor cell proliferation and apoptosis through IF using anti-CD31, anti-PCNA and TUNEL staining respectively. (f) Quantification of MVD, cell proliferation and apoptosis. Plots represent the mean of 3 fields per section, 3 sections per tumor and 2 tumors per group. **P<0.01. Error bars denote SEM. (g) ISM induces apoptosis of both cancer cells and cancer ECs in B16 melanoma. Double IF using anti-CD31 (red) and TUNEL (green) is shown. Nuclei were counter stained by DAPI (blue). Representative photos are shown. Apoptotic EC is indicated by white arrow.

Supplementary Materials and Methods

DNA constructs

The	human	AAC2	cDNA	was	amplified	by	primer	pair	(5'
тстс	GAGATG	ACAGAT	FGCCGC	TGTG	3'	a	and		5'
CTG	GTACCGT	TATGTO	GTACTTO	CTTGA	TTTC3')	and	clone	ed	into
pXJ40_mCherry to obtain pXJ40_mCherry-AAC2.									

Syngeneic tumorigenesis assay

B16F10 cells (5×10^5) were injected subcutaneously into the dorsal flank of 8-week old female C57BL/6J mice. Two groups of mice (n=5/group) received either PBS or 250 µg rISM by tail vein injection every other day from day 0 to the end point (day 14). Tumors were measured and processed as described.¹

Tube formation assay

EC tube formation assay was performed using *in vitro* angiogenesis assay kit (Millipore, Billerica, MA, USA) according to the manufacturers' instruction. The matrigel was plated into a μ -Slide Angiogenesis chamber (ibidi, Martinsried, Germany) and kept at 37°C for 1 h to solidify. For studying the contribution of GRP78 to the anti-tube formation activity of ISM, HUVECs were pre-transfected by siRNAs of GRP78 for 48h. HUVECs transfected with scramble siRNA served as control. Then 1×10⁴ cells per sample in 50 µl basal medium were treated with 1µM rISM for 30 min and plated onto the polymerized Matrigel and incubated at 37°C for 6–8 h before documenting the tubular structure formation using Zeiss Axiovert 200 inverted light microscope (Carl Zeiss South East Asia, Singapore). Capillary length from representative fields was quantified by ImageJ (National Institutes of Health, USA).

Apoptosis assay

To investigate the contribution of GRP78 to ISM-induced EC apoptosis, HUVECs were pre-transfected by GRP78 siRNAs for 48 h. Control HUVECs were transfected by scramble siRNA. Cells (2×10^4) were then seeded into 96-well plate. After starving in 2% FBS basal medium for 3 h, HUVECs were treated with 1 µM rISM and 15 ng/ml VEGF for 24 h. Apoptosis was detected by a Cell Death ELISA kit (Roche, Roche Diagnostics Asia Pacific, Singapore)

Cell attachment assay

Ninety-six well plates were coated with 1 μ M rISM at 4°C overnight. Nonspecific binding sites were blocked with 1% BSA for 2 h at 37°C. HUVECs were pre-transfected by GRP78 siRNAs or scramble control siRNA for 48 h before they were plated into each well (2×10⁴ cells/well) and allowed to attach for 1 h at 37°C. Attached cells were fixed by 10% formalin and stained with 0.2% crystal violet. Absorbed crystal violet was extracted by 10% acetic acid and quantified by measuring the absorbance of eluted dye at 595 nm with a microplate reader (Bio-Rad, Hercules, CA, USA).

Internalized ISM triton partitioning

Triton-insoluble and -soluble fractions of HUVEC lysate were prepared as previously described². HUVECs were treated with 1 μ M rISM for 24 h. After thoroughly washed by acidic PBS (pH3.5) to remove cell surface associated ISM, the cells were lysed in 1 ml of 1% Triton X-100 in 2-(N-morpholino)ethanesulfonic acid (MES)-buffered saline (25 mM MES, 0.15 M NaCl, 1×protease inhibitor cocktail, pH 6.5) (Sigma, St. Louis, MO, USA) for

30 min on ice. Cell extracts were homogenized by a tight-fitting Dounce homogenizer (Wheaton, Millville, NJ, USA) and adjusted to a final density of 40% by adding OptiPrep density gradient Medium (Sigma). Samples were transferred into a centrifuge tube and overlaid with discontinuous 30% and 5% OptiPrep density gradient media. Samples were then centrifuged at 39,000 rpm for 18 h. Fractions were collected and analyzed by WB with antibodies against ISM (his-probe), integrin β 5 subunit and GRP78. Caveolin-1 and clathrin heavy chain (CHC) were used as markers for lipid-raft and non lipid-raft fraction.

ADP colorimetric assay

The ADP concentrations in whole cell lysate, mitochondrial and cytosolic (without mitochondria) fractions in HUVECs with indicated treatment of 1μ M rISM or 10 μ M pan-caspase inhibitor - Z-VAD-fmk (Millipore, Billerica, MA, USA) for 3 h were analyzed using the ADP colorimetric assay kit (BioVision, Milpitas, CA, USA).

Determination of ISM-treated HUVECs morphology under caspase inhibitor

HUVECs were starved for 3 h in 2% FBS media and then incubated with 2% FBS medium containing 15 ng/ml VEGF. HUVECs were either received no additional treatment as the control or treated by 1µM rISM with or without 10

µM pan-caspase inhibitor - Z-VAD-fmk for 24 h. Cells were then incubated with MitoTracker for 30 min and washed by acidic PBS (pH 3.5) to remove surface bound rISM. Internalized rISM was detected by IF staining using anti-his antibody. Nuclei were stained by DAPI. Images were collected by Zeiss LSM-510Meta confocal microscope.

RNAi gene knockdown

To knockdown human GRP78, two synthetic siRNA were used (Integrated DNA Technologies, Singapore): siRNA1-GRP78 (5'-GGAGCGCAUUGAUACUAGAUU-3')³ and siRNA2-GRP78 (5'-AGACGCUGGAACUAUUGCUUU-3')⁴. A random scramble siRNA (5'-AAUUCUCCGAACGUGUCACGUUU-3') was used as the control³.

References

- 1. Kumar S, Sharghi-Namini S, Rao N, Ge RW. ADAMTS5 Functions as an Anti-Angiogenic and Anti-Tumorigenic Protein Independent of Its Proteoglycanase Activity. *Am J Pathol* 2012; **181**(3): 1056-1068.
- 2. Wickstrom SA, Alitalo K, Keski-Oja J. Endostatin associates with lipid rafts and induces reorganization of the actin cytoskeleton via down-regulation of RhoA activity. *J Biol Chem* 2003; **278**(39): 37895-901.
- 3. Tsutsumi S, Namba T, Tanaka KI, Arai Y, Ishihara T, Aburaya M *et al.* Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. *Oncogene* 2006; **25**(7): 1018-29.
- 4. Su R, Li Z, Li H, Song H, Bao C, Wei J *et al.* Grp78 promotes the invasion of hepatocellular carcinoma. *BMC cancer* 2010; **10**: 20.

а

Protein View

Match to: gi|4758012 Score: 205 Expect: 4.1e-016 clathrin heavy chain 1 [Homo sapiens]

Matched peptides shown in Bold Red

1	MAQILPIRFQ	EHLQLQNLGI	NPANIGFSTL	TMESDKFICI	REKVGEQAQV
51	VIIDMNDPSN	PIRRPISADS	AIMNPASKVI	ALKAGKTLQI	FNIEMKSKMK
101	AHTMTDDVTF	WEWISLNTVA	LVTDNAVYHW	SMEGESQPVK	MFDRHSSLAG
151	COLINYRTDA	KORWLLLTGI	SACONRVVGA	MOLYSVDRKV	SOPIEGHAAS
201	FAOFKMEGNA	RESTLECEAV	RGONGGKLHT	TEVGTPPTGN	OPEPKKAVDV
251	FEPPEACNDE	PVAMOTSEKH	DVVELITEYG	YINLYDLETG	TCIYMNETSG
301	RTINTADHE	ATAGTICANE	KCOULSUCVE	PENTTDYTTN	VLONDDLALS
351	MAUDINIT A/7A	PPL PAPPYNA	LEACONVEED	AVUAANADVO	TIDEDIVITED
351	REVERBLACE	BELFARMINA	LINCONISLE	REVARIATIO	1LKTPD11K
401	rgsvragrog	TSPLEQUEGI	PTDGGGTNKI	ESTERCKLAT	2004007772
451	WLREDKLECS	RELGOLVKSV	DPTLALSVIL	RUNALNEATO	CEASTOQVQN
501	IVLYAKKVGY	TPDWIFLLRN	VMRISPDQGQ	QFAQMLVQDE	EPLADITQI
551	DVFMEYNLIQ	QCTAFLIDAL	KNNRPSEGPL	QTRLLEMNLM	HAPQVADAIL
601	GNQMFTHYDR	AHIAQLCEKA	GLLQRALEHF	TDLYDIKRAV	VHTHLLNPEW
651	LVNYFGSLSV	EDSLECLRAM	LSANIRQNLQ	ICVQVASKYH	EQLSTQSLIE
701	LFESFKSFEG	LFYFLGSIVN	FSQDPDVHFK	YIQAACKTGQ	IKEVERICRE
751	SNCYDPERVK	NFLKEAKLTD	OLPLIIVCDR	FDFVHDLVLY	LYRNNLOKYI
801	EIYVOKVNPS	RLPVVIGGLL	DVDCSEDVIK	NLILVVRGOF	STDELVAEVE
851	KENELKLLP	WLEARTHEGC	EEPATHNALA	KIYIDSNNNP	ERFLRENPYY
901	DEBUSICION	ERDENT ACMA	VERGOODLET.	THUCKENET	MAL SAVIARS
951	KDPELNOSVL	LESNPYRSPI	TROVVOTALS	ETODEFEVER	TYXATMTADL
1001	PNELIELLER	IVLDNSVFSE	HENLONLLIL	TAIKADETEV	NEYINRLDBY
1051	DAPDIANIAI	SNELFEEAFA	I FRAFDVNTS	AVQVLIEHIG	NLORAYEFAE
1101	HCNEPAVWSQ	LAKAQLOKOM	VREAIDSYIE	ADDPSSYREV	VQAANTSGIN
1151	RELVEYLONA	REKARESYVE	TELIFALART	NRLAELEEFI	NGPNNAHIQQ
1201	VGDRCYDEKM	YDAARLLYNN	VSNFGRLAST	TAHPOEAÖYY	VDGARKANST
251	RIWKEVCFAC	VDGKEFBLAQ	MCGLHIVVHA	DEFEETINAA	QDRGYFEELI
1301	THLEAALGLE	RAHMGMETEL	AILYSKFKFQ	EMPERIELEW	SRVNIPKVLB
1351	AAEQARLWAE	LVFLYDRYEE	YDOALITHMN	HPTDANKEGQ	FEDIITEVAN
401	VELTTRAIGT	TLEFRFLLLN	DURANCEPAL	DHIPAVNIES	RVRQLPLVKP
1501	TLEON QUEINS	LOVIED SLAND	FITTED TOAL	PUR AND ANON	DRIBLACKLE
1551	RELLOWERON	PRESERVICE.	REGENELLED.	VULTANDAN	INDEADITELN
601	CONTRACTOR OF THE OWNER.	THE DROPPING	REPROPTING AND	BTURGOBOTM	A PRACE PROPERTY AND
651	POAPFOYOYT	APPYGOPOPO	FOYIM		

Protein View

Match to: gi|16507237 Score: 233 Expect: 1.1e-018 78 kDa glucose-regulated protein [Homo sapiens]

Matched peptides shown in Bold Red

651 KDEL

е

d

Protein View

Match to: gi|187608602 Score: 491 Expect: 9.2e-043 isthmin-1 precursor [Mus musculus]

Matched peptides shown in Bold Red

1	NVRLAAELLL	L L C L L L L L L L	ITVLRGSGAS	DEQDAAAGENN	NUNLESDSTS
51	ETSFPLSKEA	PEEHQVVHQP	FPRORFPPET	GHPSLORDGP	RSFLLDLPNF
101	PDLSKADING	QNPNIQVTIE	VVDGPDSEAE	KDQHPENKPS	WSLPAPDWRA
151	WWQRSLSLAR	TNSGDQDDKY	DSTSDDSNFL	SVPRGWDRPA	PGHRIFEIKE
201	QPEYDSTDGE	GDWSLWSVCS	VICGNGNQKR	TRECGYACIA	TESRTCDRPN
251	CPGIEDTFRT	AATEVSLLAG	SEEFNATKLF	EVDMDSCERW	MSCKSEFLKK
301	YMMKVINDLP	SCPCSYPTEV	AYSTADIFOR	IKRKDFRWKD	ASGPKEKLEI
351	YKPTARYCIR	SMLSLESTTL	AAQHCCYGDN	MQLITRGKGA	GTPNLISTEF
401	SAELHYKVDV	LPWIICKGDW	SRYNEARPPN	NGOKCTESPS	DEDYIKQFQE
451	AREY				

Protein View

Match to: gi|156071462 Score: 89 Expect: 0.0003 ADP/ATP translocase 3 [Homo sapiens]

Matched peptides shown in Bold Red

1 NTEGAISFAR DFLAGGIAMA ISKTAVAPIE RVKLLLQVGH ASRQIAADRQ 51 YDGIVOCIVA IYRQCVASF WRORLANVIR YEFYGALNFA FRONKRGIFL 01 GOVINGTUR KFFXGILASG GAAGATSLEF YWLDBAFFE LAADOKSCO 151 EREFRGLAGC LWATTKEGGI RGIVOGSVS VOGILITHAA YSVVTDAXG 201 HLDDFNHIL YVNHHIAZYT TAVAJOVYDF TAVGFONDF DTVFSRAMG GOSGASADIN 251 YTYTVDCKEK IFEDESGRAF FKGANSMVIR GMSGAFVLVL YGELHYVI

h

С

Protein View

Match to: gi|16507237 Score: 353 Expect: 6.5e-031 heat shock 70kDa protein 5 [Homo sapiens]

Matched puptides shown in Bold Red

1	NRLSLVAAML	LLUSAARAEE	EDKKEDVGTV	VOIDLOTTYS	CVGVFICIARV
51	EIIANDOGNR	ITPSYVAFTP	EGERLIGDAA	ENQL'ISNPEN	TVFDAKRLIG
101	RTWNDPSVQQ	DIKELPEKVV	ENETRPYIQV	DIGGOOTKTF	APEET SAMVL
151	TEMETAEAY	LGKEVTRAVV	TVPAYFNDAQ	ROATEDAGTI	AGLNVMRIIN
201	EPTAAAIAYG	LORREGENSI	LVEDLGGGTF	DVSLLTIDOG	VFEVVATNCD
251	THLOGEDFDQ	RVMEHFIKLY	KERTGEDVRE	DWRAVQHLRR	EVERAKRALS
301	SOMOARIEIE	SFYEGEDFSE	TLIPARFEEL	NHOLFRSTMK	PVORVLEDSD
351	LEESDIDEIV	LVGGSTRIPK	IQQLVKEFFN	GKEPSROINP	DEAVAYGAAV
401	QAGVLSGDOD	TGDLVLLDVC	PLTLGISTVG	GVNTRLIPPS:	TVVPTKKSQI
451	FSTASDNOPT	VTIKVYEGER	PLTKDNHLLG	TFDLTGIPPA	PROVEQUEVT
501	FEIDVNGILR	VTAEDKGTGN	INKITITNDQ.	NRLTPEEIER	NVNDAEKFAE
551	EDEKLKERID	TRNELESYAY	SLENGIGDEE	KLGGKLSSED	KETMERAVEE
601	KIEWLESHOD	ADIEDPKARK	KELEEIVQPI	ISKLYGSAGP	PPTGEEDTAE
051	P.172.14				

Protein View

Match to: gi|4758012 Score: 171 Expect: 9.2e-011 clathrin heavy chain 1 [Homo sapiens]

Matched peptides shown in Bold Red

1	MAQILFIRFQ	EHLQLQNLGI	NFANIGFSTL	TMESDEFICI	REKVGEQAQV
51	VIIDMNDPSN	PIRRPISADS	AIMNPASKVI	ALKAGKTLQI	FNIEMKSKMK
101	AHTMTDDVTF	NEWISLNIVA	LVTDNAVYSW	SMEGESQPVK	MFDRHSSLAG
151	CQIINYRTDA	KOKWLLLTGI	SAQQNRVVGA	MOLYSVDRKV	SQPIEGHAAS
201	FAQFRMEGNA	EESTLFCFAV	RGQAGGELHI	IEVGTPPTGN	QPFPKKAVDV
251	FFFFEAQNDE	PVAMQISEKH	DVVFLITKYG	YIHLYDLETG	TCIYMNRISG
301	ETIFVTAPHE	ATAGIIGVNR	KGQVLSVCVE	EENIIPYITN	VLQNPDLALR
351	MAVENNLAGA	EELFARKINA	LFAQGNYSEA	AKVAANAPKG	ILRTPDTIRR
401	FQSVPAQPGQ	TSPLLQYFGI	LUDQGQLNKY	ESLELCRPVL	QQGRKQLLEK
451	WIKEDRIECS	EELGDLVKSV	DPTLALSVYL	RANVPNKVIQ	CFAETGQVQK
501	IVLYAKEVGY	TPDWIFLLRN	VMRISPDQGQ	QEAQMLVQDE	EPLADITOIV
551	DVFMEYNLIQ	QCTAFLLDAL	KNNRPSEGPL	QTRLLEHNLM	HAPQVADALL
601	GNQMFTHYDR	AHIAQLCEKA	GLLQRALEHF	TDLYDIKRAV	VHTHLLNPEW
651	LVNYFGSLSV	EDSLECLRAM	LEANIRONLO	ICVQVASKYH	EQLSTQSLIE
701	LFESFKSFEG	LFYFLGSIVN	FSQDPDVHFK	YIGAACKTGO	IKEVERICRE
761		ADD'T ADD'S ADD INC.	OT DA TAUROR	FR. THIRT HT M	TYPE OF A
901	DECIDEREN	BT DART COTT	OPARTIACON	PD7 THDLTDI	AND TRACKING THE PARTY OF THE
051	PTIANOANED	WIPAPIUS/00	TODATINAL &	PTUTRONNUD	PDDIDDNDVV
0.01	PARTICIPACIES -	ALEXANDER DOTAL	APPROPRIATE ST	TALL BOOMDE	PUT CONTINUE
901	VIDEPTATICE.	PRAIDVERDT.	INVATORAL R	PROPERTIES	PUPERINA
1001	DUPDERGRATE	THE DECOMPTINGE	UDAT ONLY T	TATHADDTDI	NEWTHER PARY
1051	DAPDTANTAT	CALL PREATS	TEDSTERANISH	AUGULTENIC.	NIDDAVPERP
1101	RCNEPAVWRO	LAKAOLOKOM	VERATORVIE	TUDBSGAMEA	UGAANTEONN
1151	BREVEVICIMA	RECARESYVE	TRLIFALART	NRLAFLEEFT	NGPNNARTOO
1201	VCDRCYDERM	VEAAKLLYNN	VENPORLAST	LVHLOEYOAA	VDGARKANST
1251	RTWKEVCEAC	VDGKEFELAO	MCGLHTVVHA	DELECTIVYY	ODRGYFEELI
1301	TMLEAALGLE	RAHMGMETEL	ATLYSKEKPO	EMPERLELFW	SRVNIPKVLR
1351	AABOAHLWAE	LYFLYDNYEE	YDNATITMMN	HPTCANKEGO	FEDILTEVAN
1401	VELYYRAIOF	YLEFKPLLLN	DLLMVLSPRL	DHTRAVNYFS	KVROLPLVKP
1451	YLRSVONHNN	KSVNESLNNL	FITEEDYGAL	RTSIDAYDNF	DNISLAQRLE
1501	KHELIEFRRI	AAYLFKGNNR	WEQSVELCER	DELYKDAMQY	ASESKOTELA
1551	EELLOWFLOE	ERRECTGACL	FTCYDLLRPD	VVI.ETANRHN	IMDFAMPYFI
1601	QVMREYLTRY	DKLDASESLR	NEEEQATETO	PIVYGQPQLM	LTAGPSVAVP
1651	POAPFGYGYT	APPYGQPQPG	FGYSM		

Protein View

f

Match to: gi|156071459 Score: 96 Expect: 5.3e-005 ADP/ATP translocase 2 [Homo sapiens]

Matched peptides shown in Bold Red

1	MTDAAVSFAK	DFLAGGVAAA	ISKTAVAPIE	RVKLLLQVQH	ASKQITADKQ
51	YKGIIDCVVR	IPKEQGVLSF	WRGNLANVIR	YFPTQALNEA	FKDKYKQIFL
101	GGVDKRTQFW	LYFAGNLASG	GAAGATSLCF	VYPLDFARTR	LAADVGKAGA
151	EREFRGLGDC	LVKIYKSDGI	KGLYQGFNVS	VQGIIIYRAA	YFGIYDTAKG
201	MLPDPKNTHI	VISWMIAQTV	TAVAGL7SYP	FDTVRRRMMM	QSGREGTDIM
251	VTGTLDCWRK	TARDEGGKAF	FEGAWSNVLR	GMGGATVLVL	VDETKKY?

С

LS174T whole cell lysates

LS174T whole cell lysates

GRP78 GRP78 0 0.5 2 5 μg/well

Fig. S5

b

а

Whole cell lysates

b

С

ανβ5 GRP78 DAPI

