Supporting Information

Natural-Like Replication of an Unnatural Base Pair for the Expansion of the Genetic Alphabet and Biotechnology Applications.

Lingjun Li,[†] Mélissa Degardin,[†] Thomas Lavergne,[†] Denis A. Malyshev,[†] Kirandeep Dhami,[†] Phillip Ordoukhanian,[‡] and Floyd E. Romesberg[†]*

[†]Department of Chemistry and [‡]Center for Protein and Nucleic Acid Research, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.

Table of Contents

General Procedure for Triphosphate Synthesis	2
Synthetic Procedures and Characterizations:	2
NMR Spectra	
500 MHz ¹ H NMR spectrum of 5a (CDCl ₃)	
125 MHz ¹³ C NMR spectrum of 5a (CDCl ₃)	
500 MHz ¹ H NMR spectrum of 5b (CDCl ₃)	
125 MHz ¹³ C NMR spectrum of 5b (CDCl ₃)	
500 MHz ¹ H NMR spectrum of 5c (CDCl ₃)	
125 MHz 13 C NMR spectrum of 5c (CDCl ₃)	
500 MHz ¹ H NMR spectrum of 5d (CDCl ₃)	14
125 MHz ¹³ C NMR spectrum of 5d (CDC).	
500 MHz ¹ H NMR spectrum of 6a (CDCl ₃)	
125 MHz ¹³ C NMR spectrum of 6a (CDC).	
500 MHz ¹ H NMR spectrum of 6b (CDCl ₃)	
125 MHz ¹³ C NMR spectrum of 6b (CDCI ₃)	16
500 MHz ¹ H NMR spectrum of 6c (CDCl ₂)	17
125 MHz 13 C NMR spectrum of 6c (CDC).	17
500 MHz ¹ H NMR spectrum of 6d (CDCl ₂)	18
125 MHz ¹³ C NMR spectrum of 6 (CDCL)	18
500 MHz ⁻¹ H NMR spectrum of 7a (CD-OD)	10
$125 \text{ MHz}^{13}\text{C} \text{NMR}$ spectrum of $7a$ (CD-OD)	19 1¢
500 MHz ⁻¹ H NMR spectrum of 74 (CD-OD)	20
$125 \text{ MHz}^{-13}\text{ CMM}$ spectrum of 70 (CD,OD)	
500 MHz ⁻¹ H NMR spectrum of 76 (CD ₂ OD)	
2500 MHz ¹³ C NMP resolution of $\mathcal{T}(CD30D)$	
125 MIZ C INMR Spectrum of 7e (CD 30D)	
2500 MHZ H NMK Spectrum of 74 (CD30D)	
125 MHZ C NMR spectrum of 74 (CD ₃ 0D).	
162 MHZ P NMR spectrum of δa (D_2O)	
102 MHZ P NMK spectrum of 60 (D ₂ 0)	
162 MHZ P NMR spectrum of δc (D ₂ O)	
162 MHZ P NMK spectrum of 8d (D ₂ O)	
500 MHZ H NMK Spectrum of 9 (CDC1)	
125 MHZ C NWR Spectrum of 9 (CDCl3)	
5/6 MHZ F NMK spectrum of 9 (CDC3)	
500 MHZ H NMK Spectrum of 10 (CDCI)	
125 MHZ C NMR spectrum of 10 (CDCl ₃)	
5/6 MHZ F NMK spectrum of 10 (CDC) ₃	
500 MHZ H NMK Spectrum of 11 (CD30D)	
125 MHZ C NMR spectrum of H (CD ₃ OD)	
3/6 MHZ ⁻ F NMR spectrum of II (CD ₃ OD)	
162 MHz ⁻¹ P NMR spectrum of 12 (D ₂ O)	
376 MHZ 'F NMR spectrum of 12 (D ₂ O)	
500 MHz H NMR spectrum of 13 (CDCl ₃)	
125 MHz **C NMR spectrum of 13 (CDCl ₃)	
500 MHz H NMR spectrum of 14 (CDCl ₃)	
125 MHz ¹² C NMR spectrum of 14 (CDCl ₃)	
500 MHZ H NMK spectrum of 15 (CDCl ₃)	
125 MHz ¹² C NMR spectrum of 15 (CDCl ₃)	
S00 MHz H NMK spectrum of 16 (CD ₃ OD)	
125 MHz [•] C NMR spectrum of 16 (CD ₃ OD)	
162 MHz P NMR spectrum of 17 (D ₂ O)	
Gel-Based Incorporation/Extension Assay	
PCR Amplification	
Gel mobility assay	
Table S1. Sequences of DNA used in this study.	
Table S2. PCR conditions	
Figure S1. Raw sequencing data after PCR amplification by OneTaq polymerase in the presence of dXTP and dNaMTP	
Figure S2. Raw sequencing data after PCR amplification by Taq polymerase in the presence of dXTP and dNaMTP	
References	

General Procedure for Triphosphate Synthesis

Proton sponge (1.3 equiv) and the free nucleoside derivative (1.0 equiv) were dissolved in dry trimethyl phosphate (40 equiv) and cooled to -15 °C under nitrogen atmosphere. Freshly distilled POCl₃ (1.3 equiv) was added dropwise and the resulting mixture was stirred at -10 °C for 2 h. Tributylamine (6.0 equiv) and a solution of tributylammonium pyrophosphate (5.0 eq.) in dimethylformamide (0.5 M) were added. Over 30 min, the reaction was allowed to warm slowly to 0 °C and then was quenched by addition of 0.5 M aqueous Et₃NH₂CO₃ (TEAB) pH 7.5 (2 vol-equiv.). The mixture was diluted two-fold with H₂O and the product was isolated on a DEAE Sephadex column (GE Healthcare) with an elution gradient of 0 to 1.2 M TEAB, evaporated, and co-distilled with H₂O (3×). Additional purification by reverse-phase (C18) HPLC (0 - 35% CH₃CN in 0.1 M TEAB, pH 7.5) was performed, (10% – 31% yield).

Synthetic Procedures and Characterizations:

Scheme S1 (a) Piperidine, Py, 100 °C, 12 h, then reflux for 1 h; (b) SOCl₂, DMF, CHCl₃, reflux, 3 h, (c) NaN₃, 1,4-dioxane, H₂O, 5 °C, 0.5 h; (d) diphenyl ether, 230 °C, 1 h.

The nucleobase analogs 4a, 4b, 4c and 4d were synthesized based on literature methods^{1,2} as shown in Scheme S1. Briefly, condensation of the aldehyde (1a–d) with malonic acid at 100 °C in pyridine as a solvent and piperidine as a catalyst for 12 h, followed by a reflux for 1 h, yielded the corresponding acrylic acid intermediates (2a–d). Chlorination of these acids with thionyl chloride in chloroform in the presence of DMF afforded the acyl chlorides, which were not purified but could be used directly in the preparation of the azides (3a–d). Compounds 3a–d were prepared in a biphasic mixture of 1,4-dioxane and water at 5 °C with sodium azide. Crude mixtures of 3a–d in CHCl₃ solutions were added portion-wise to diphenyl ether and heated to 230 °C to give the isocyanates that underwent subsequent intramolecular cyclization to the fused 6-5 bicyclic systems 4a–d.

Scheme S2. (a) N,O-bis(TMS)acetamide, SnCl₄ (1 M in CH₂Cl₂), CH₂Cl₂, 3 h, 45%; (b) Lawesson's reagent, toluene, reflux, overnight, 58%; (c) 30% NaOMe, MeOH, rt, 1 h, 85%; (d) Proton sponge, POCl₃, Bu₃N, Bu₃NPPi, (MeO)₃P, DMF, -20 °C, 31%.

Compound 5a. To a solution of **4a** (54 mg, 0.33 mmol) in CH₂Cl₂ (8 mL) at room temperature under nitrogen atmosphere was added bis(trimethylsily)acetamide (83 mg, 0.39 mmol). After stirring for 40 min, 3,5-bis(toluoyl)-2-deoxyribosyl chloride (196 mg, 0.39 mmol) was added. The reaction mixture was cooled to 0 °C and SnCl₄ was added dropwise (1.0 M in CH₂Cl₂, 160 μ L, 0.16 mmol). The solution was stirred for 2 h at room temperature. The reaction mixture was diluted with EtOAc, quenched with saturated aqueous NaHCO₃, extracted with EtOAc, dried, filtered and evaporated. The crude product was subjected to silica gel column chromatography (Hexane/EtOAc) to afford compound **5a** as white foam (77 mg, 0.15 mmol, 45%). ¹H NMR (500 MHz, CDCl₃) δ 7.97-6.82 (m, 11H, Ar-H), 6.44 (d, *J* = 7.5 Hz, 1H, H-1'), 5.63 (d, *J* = 6.5 Hz, 1H, H-3'), 4.76-4.68 (m, 2H, H-5'a, 5'b), 4.59 (d, *J* = 2.5 Hz, H-4'), 2.89 (dd, *J* = 1.5, 0.5 Hz, 1H, H-2'a), 2.59 (s, 3H, Ar-CH₃), 2.43 (s, 3H, Ar-CH₃), 2.43 (s, 3H, Ar-CH₃), 2.36-2.30 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 166.5, 158.5, 147.2, 144.8, 144.6, 140.0, 131.1, 130.3, 130.0, 129.9, 129.7, 127.1, 126.9, 125.6, 122.8, 102.7, 85.9, 83.3, 75.6, 64.8, 39.6, 22.1, 16.1. HRMS (ESI⁺) *m/z* calcd for C₂₉H₂₈NO₆S (M+H⁺) 518.1632, found 518.1621.

Compound 6a. Compound **5a** (27 mg, 0.052 mmol) was dried by 3 co-evaporations with anhydrous toluene. The residue was dissolved in anhydrous toluene (1 mL). Lawesson's reagent (41.5 mg, 0.10 mmol) was added and the mixture was heated overnight at reflux. After filtration on cotton, the filtrate was concentrated and the crude product was subjected to a silica gel column chromatography (Hexane/EtOAc) to afford compound **6a** as a yellow foam (16 mg, 0.03 mmol, 58%). ¹H NMR (500 MHz, CDCl₃) δ 8.00-7.89 (m, 4H, Ar-H), 7.71 (m, 1H, Ar-H), 7.49-7.48 (m, 1H, H-1'), 7.29-7.21 (m, 4H, Ar-H), 7.65-7.62 (m, 1H, Ar-H), 6.90 (d, *J* = 7.5 Hz, 1H, Ar-H), 5.64-5.62 (m, 1H, H-4'), 4.85-4.74 (m, 2H, H-5'a), 4.68-4.67 (m, 1H, H-5'b), 3.38-3.34 (m, 1H, H-3'), 2.26 (s, 3H), 2.44 (s, 3H), 2.28-2.22 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 166.6, 144.9, 144.8, 142.9, 142.7, 142.3, 130.3, 130.0, 129.7, 127.9, 127.0, 126.9, 126.8, 108.3, 100.0, 91.4, 84.0, 74.9, 64.5, 39.3, 22.2, 22.1, 16.3. HRMS (ESI⁺) *m/z* calcd for C₂₉H₂₈NO₅S₂ (M+H⁺) 534.1403, found 534.1404.

Compound 7a. To a solution of **6a** (20 mg, 0.037 mmol) in methanol (1.0 mL) was added dropwise 30% NaOMe (8.66 mg, 0.16 mmol). The reaction mixture was stirred for 1 h at room temperature and monitored by TLC. The reaction mixture was then concentrated and the crude product was subjected to silica gel column chromatography (MeOH/CH₂Cl₂) to afford compound **7a** as yellow foam (9.2 mg, 0.031 mmol, 85%).¹H NMR (500 MHz, CD₃OD) δ 8.36 (d, *J* = 4 Hz, 1H, Ar-H), 7.58 (d, *J* = 1Hz, 1H, Ar-H), 7.35 (t, *J* = 4 Hz, 1H, H-1'), 7.22 (d, *J* = 8 Hz, 1H, Ar-H), 4.07-4.06 (m, 1H, H-4'), 4.07 (d, *J* = 4 Hz, 1H, H-3'), 3.80 (dd, *J* = 24, 4 Hz, 2H, H-5'a, b), 2.79-2.76 (m, 1H, H-2'a), 2.13-2.08 (m, 1H, H-2'b).¹³C NMR (125 MHz, CD₃OD) δ 173.60, 143.29, 142.26, 142.23, 129.35, 126.11, 108.01, 91.14, 88.44, 70.37, 61.35, 41.59, 14.81. HRMS (ESI⁺) *m/z* calcd for C₁₃H₁₆NO₃S₂ (M+H⁺) 298.0566, found 298.0569.

Compound 8a. Compound **8a** (11.2 mg, 20.8 µmol, 31%) was synthesized using the General Procedure for Triphosphate Synthesis described above starting from **7a** (20 mg, 67.3 µmol). ³¹P NMR (162 MHz, D₂O) δ -10.3 (d, J = 19.8 Hz, γ -P), -10.9 (d, J = 20.1 Hz, α -P), -22.8 (t, J = 19.4 Hz, β -P). MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (*m/z*): [M-H]⁻ calcd for C₁₃H₁₇NO₁₂P₃S₂, 536.3, found, 536.7.

Scheme S3. (a) N,O-bis(TMS)acetamide, SnCl₄ (1 M in CH₂Cl₂), CH₂Cl₂, 3 h, 41%; (b) Lawesson's reagent, toluene, reflux, overnight, 52%; (c) 30% NaOMe, MeOH, rt,1 h, 85%; (d) Proton sponge, POCl₃, Bu₃N, Bu₃NPPi, (MeO)₃P, DMF, -20 °C, 21%.

Compound 5b. To a solution of **4b** (100 mg, 0.67 mmol) in CH₂Cl₂ (8 mL) at room temperature under nitrogen atmosphere was added bis(trimethylsily)acetamide (165 mg, 0.81 mmol). After stirring for 40 min, 3,5-bis(toluoyl)-2-deoxyribosyl chloride (292 mg, 0.81 mmol) was added. The reaction mixture was cooled to 0 °C and SnCl₄ was added dropwise (1.0 M in CH₂Cl₂, 200 µL, 0.2 mmol). The solution was stirred for 2 h at room temperature. The reaction mixture was diluted with EtOAc, quenched with saturated aqueous NaHCO₃, extracted with EtOAc, dried, filtered and evaporated. The crude product was subjected to silica gel column chromatography (Hexane/EtOAc) to afford compound **5b** as white foam (137 mg, 0.27 mmol, 41%). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 2H, Ar-H), 7.93 (d, *J* = 8.1 Hz, 2H, Ar-H), 7.55 (d, *J* = 7.7 Hz, 1H, Ar-H), 7.33 - 7.28 (m, 2H, Ar-H), 7.27 - 7.20 (m, 2H, Ar-H), 6.82 (dd, *J* = 8.3, 5.6 Hz, 1H, Ar-H), 6.57 (d, *J* = 0.9 Hz, 1H, Ar-H), 6.41 (d, *J* = 7.7 Hz, 1H, H-1'), 5.68 - 5.61 (m, 1H, H-4'), 4.75 (dd, *J* = 12.1, 3.4 Hz, 2H, H-5'a, b), 4.62 (q, *J* = 3.1 Hz, 1H, H-3'), 2.94 (ddd, *J* = 14.3, 5.6, 1.7 Hz, 1H, H-2'a), 2.48 - 2.39 (s, 3×3H, Ar-CH₃), 2.36 - 2.26 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 166.5, 159.2, 159.1, 154.5, 144.8, 144.6, 130.2, 130.0, 129.7, 127.5, 127.1, 126.9, 117.5, 103.3, 96.6, 86.0, 83.2, 75.5, 64.7, 39.8, 22.1, 14.1. HRMS (ESI⁺) *m/z* calcd for C₂₉H₂₈NO₇ (M+H⁺) 502.1860, found 502.1885.

Compound 6b. Compound **5b** (29 mg, 0.056 mmol) was dried by 3 co-evaporations with anhydrous toluene. The residue was dissolved in anhydrous toluene (1 mL). Lawesson's reagent (41.5 mg, 0.10 mmol) was added and the mixture was heated overnight at reflux. After filtration on cotton, the filtrate was concentrated and the crude product was subjected to a silica gel column chromatography (Hexane/EtOAc) to afford compound **6b** as a yellow foam (15 mg, 0.029 mmol, 52%). ¹H NMR (500 MHz, CDCl₃) δ 8.10-7.89 (m, 5H, Ar-H), 7.52-7.48 (m, 1H, H-1'),7.29-7.22 (m, 4H, Ar-H), 6.8 (d, *J* = 1Hz, 1H, Ar-H), 6.73 (d, *J* = 7.5 Hz, 1H,Ar-H), 5.65-5.62 (m, 1H, H-4'), 4.84-4.74 (m, 2H, H-5'a, b), 4.67-4.65 (m, 1H, H-3'), 3.36-3.32 (m, 1H, H-2'a), 2.44 (s, 3H, Ar-CH₃), 2.43 (s, 3H, s, 3H, Ar-CH₃), 2.41 (s, 3H, s, 3H, Ar-CH₃), 2.27-2.21 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 156.9, 153.9, 144.8, 130.3, 130.0, 129.8, 129.7, 127.9, 106.4, 96.0,83.9, 56.6, 39.5, 22.1, 12.6. HRMS (ESI⁺) *m/z* calcd for C₂₉H₂₈NO₆S (M+H⁺) 518.1632, found 518.1638.

Compound 7b. To a solution of **6b** (20 mg, 0.039 mmol) in methanol (1.0 mL) was added dropwise 30% NaOMe (8.66 mg, 0.16 mmol). The reaction mixture was stirred for 1 h at room temperature and monitored by TLC. The reaction mixture was then concentrated and the crude product was subjected to silica gel column chromatography (MeOH/CH₂Cl₂) to afford compound **7b** as yellow foam (9.3 mg, 0.033 mmol, 85%). ¹H NMR (500 MHz, CD₃OD) δ 8.57 (d, *J* = 5 Hz, 1H, Ar-H), 7.42 (t, *J* = 4 Hz, 1H, H-1'), 7.13 (d, *J* = 7.5 Hz, 1H, Ar-H), 6.80 (s, 1H, Ar-H), 4.50-4.47 (m, 1H, H-4'), 4.12 (d, *J* = 3.5 Hz, 1H, H-3'), 3.95 (dd, *J* = 30, 3 Hz, 2H, H-5'a, b), 2.81-2.77 (m, 1H, H-2'a), 2.50 (s, 3H, Ar-CH₃), 2.18-2.14 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CD₃OD) δ 172.9, 157.2, 154.5, 132.7, 131.3, 105.4, 100.8, 90.9, 88.5, 70.3, 61.3, 41.8, 12.7. HRMS (ESI⁺) *m/z* calcd for C₁₃H₁₆NO₄S (M+H⁺) 282.0795, found 282.0790.

Compound 8b. Compound **8b** (3.7 mg, 7.1 µmol, 10%) was synthesized using the General Procedure for Triphosphate Synthesis described above starting from **7b** (20 mg, 71.2 µmol). ³¹P NMR (162 MHz, D₂O) δ -10.4 (d, J = 20.0 Hz, γ -P), -10.9 (d, J = 19.4 Hz, α -P), -22.8 (t, J = 20.0 Hz, β -P). MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (*m/z*): [M-H]⁻ calcd for C₁₃H₁₇NO₁₃P₃S, 520.3, found, 520.1.

Scheme S4. (a) N,O-bis(TMS)acetamide, $SnCl_4$ (1 M in CH_2Cl_2), CH_2Cl_2 , 3 h, 40%; (b) Lawesson's reagent, toluene, reflux, overnight, 31%; (c) 30% NaOMe, MeOH, rt,1 h, 81%; (d) Proton sponge, $POCl_3$, Bu_3N , Bu_3NPPi , (MeO)₃P, DMF, -20 °C, 15%.

Compound 5c. To a solution of **4c** (46 mg, 0.28 mmol) in CH₂Cl₂ (8 mL) at room temperature under nitrogen atmosphere was added bis(trimethylsily)acetamide (66 mg, 0.33 mmol). After stirring for 40 min, 3,5-bis(toluoy)-2-deoxyribosyl chloride (120 mg, 0.33 mmol) was added. The reaction mixture was cooled to 0 °C and SnCl₄ was added dropwise (1.0 M in CH₂Cl₂, 140 μ L, 0.14 mmol). The solution was stirred for 2 h at room temperature. The reaction mixture was diluted with EtOAc, quenched with saturated aqueous NaHCO₃, extracted with EtOAc, dried, filtered and evaporated. The crude product was subjected to silica gel column chromatography (Hexane/EtOAc) to afford compound **5c** as white foam (58 mg, 0.11 mmol, 40%). ¹H NMR (500 MHz, CDCl₃) δ 7.98-7.90 (m, 4H, Ar-H), 7.53 (d, *J* = 7.4 Hz, 1H, Ar-H), 7.27-7.21 (m, 4H, Ar-H), 6.83-6.82 (m, 2H, Ar-H), 6.44 (d, *J* = 7.5 Hz, 1H, H-1'), 5.63(d, *J* = 6.5 Hz, 1H, H-4'), 4.76 - 4.60 (m, 2H, H-5'a, b), 4.59 (d, *J* = 2.5 Hz, 1H, H-3'), 2.89 (dd, *J* = 13, 5.5 Hz, H-2'a), 2.59 (s, 3H, Ar-CH₃), 2.43 (s, 3H, Ar-CH₃), 2.40 (s, 3H, Ar-CH₃), 2.37-2.30 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 158.0, 149.9, 146.3, 144.8, 144.6, 130.3, 130.0, 129.7, 128.8, 127.3, 122.8, 103.7, 100.0, 85.8, 83.2, 75.5, 64.8, 39.5, 22.1, 16.7. HRMS (ESI⁺) *m/z* calcd for C₂₉H₂₈NO₆S (M+H⁺) 518.1632, found 518.1631.

Compound 6c. Compound **5c** (50 mg, 0.097 mmol) was dried by 3 co-evaporations with anhydrous toluene. The residue was dissolved in anhydrous toluene (1.5 mL). Lawesson's reagent (83 mg, 0.20 mmol) was added and the mixture was heated overnight at reflux. After filtration on cotton, the filtrate was concentrated and the crude

product was subjected to a silica gel column chromatography (Hexane/EtOAc) to afford compound **6c** as a yellow foam (16 mg, 0.03 mmol, 31%). ¹H NMR (500 MHz, CDCl₃) δ 8.13-7.97 (m, 5H, Ar-H), 7.52-7.49 (m, 1H, H-1'), 7.37-7.29 (m, 4H, Ar-H), 6.99 (d, *J* = 1Hz, 1H, Ar-H), 6.91 (d, *J* = 7.5 Hz, 1H, Ar-H), 5.73-5.71 (m, 1H, H-4'), 4.91-4.82 (m, 2H, H-5'a, b), 4.76-4.74 (m, 1H, H-3'), 3.41-3.37 (m, 1H, H-2'a), 2.68 (s, 3H, Ar-CH₃), 2.52 (s, 3H, Ar-CH₃), 2.49 (s, 3H, Ar-CH₃), 2.39-2.34 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 166.6, 154.0, 144.9, 144.7, 140.4, 130.3, 130.0, 129.7, 129.6, 127.0, 126.8, 122.7, 109.0, 91.2, 83.9, 75.0, 64.5, 39.4, 22.2, 22.1, 17.0. HRMS (ESI⁺) *m/z* calcd for C₂₉H₂₈NO₅S₂ (M+H⁺) 534.1403, found 534.1406.

Compound 7c. To a solution of **6c** (20 mg, 0.037 mmol) in methanol (1.0 mL) was added dropwise 30% NaOMe (8.66 mg, 0.16 mmol). The reaction mixture was stirred for 1 h at room temperature and monitored by TLC. The reaction mixture was then concentrated and the crude product was subjected to silica gel column chromatography (MeOH/CH₂Cl₂) to afford compound **7c** as yellow foam (8.9 mg, 0.03 mmol, 81%). ¹H NMR (500 MHz, CD₃OD) δ 8.48, (d, *J* = 7.5 Hz, 1H, Ar-H), 7.42 (t, *J* = 5 Hz, 1H, H-1'), 7.20 (d, *J* = 5 Hz, 1 H, Ar-H), 7.12 (s, 1H, Ar-H), 4.51-4.48 (m, 1H, H-4'), 4.13 (d, *J* = 5 Hz, 1H, H-3'), 3.95 (dd, *J* = 30, 5 Hz, 2H, H-5'a, b), 2.81-2.78 (m, 1H, H-2'a), 2.67 (s, 3H, Ar-CH₃), 2.21-2.16 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CD₃OD) δ 171.1, 154.0, 144.1. 141.1, 131.1, 122.7, 108.8, 90.9, 88.5, 70.5, 61.4, 41.7, 15.4. HRMS (ESI⁺) *m*/*z* calcd for C₁₃H₁₆NO₃S₂ (M+H⁺) 298.0566, found 298.0566.

Compound 8c. Compound **8c** (10.8 mg, 20.2 µmol, 30%) was synthesized using the General Procedure for Triphosphate Synthesis described above starting from **7c** (20 mg, 67.3 µmol). ³¹P NMR (162 MHz, D₂O) δ -10.8 (d, J = 19.8 Hz, γ -P), -11.5 (d, J = 20.1 Hz, α -P), -23.3 (t, J = 20.1 Hz, β -P). MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (*m/z*): [M-H]⁻ calcd for C₁₃H₁₇NO₁₂P₃S₂, 536.3, found, 536.1

Scheme S5. (a) N,O-bis(TMS)acetamide, SnCl₄ (1 M in CH₂Cl₂), CH₂Cl₂, 3 h, 39%; (b) Lawesson's reagent, toluene, reflux, overnight, 33%; (c) 30% NaOMe, MeOH, rt, 1 h, 82%; (d) Proton sponge, POCl₃, Bu₃N, Bu₃NPPi, (MeO)₃P, DMF, -20 °C, 30%.

Compound 5d. To a solution of **4d** (200 mg, 1.32 mmol) in CH₂Cl₂ (8 mL) at room temperature under nitrogen atmosphere was added bis(trimethylsilyl)acetamide (298 mg, 1.46 mmol). After stirring for 40 min, 3,5-bis(toluoyl)-2-deoxyribosyl chloride (563 mg, 1.46 mmol) was added. The reaction mixture was cooled to 0 °C and SnCl₄ was added dropwise (1.0 M in CH₂Cl₂, 660 μ L, 0.66 mmol). The solution was stirred for 2 h at room temperature. The reaction mixture was diluted with EtOAc, quenched with saturated aqueous NaHCO₃, extracted with EtOAc, dried, filtered and evaporated. The crude product was subjected to silica gel column chromatography (Hexane/EtOAc) to afford compound **5d** as a white foam (260 mg, 0.52 mmol, 39%). ¹H NMR (500 MHz, CDCl₃) δ 7.98-7.90 (m, 4H, Ar-H), 7.70 (d, *J* = 6 Hz, 1H, Ar-H), 7.55 (d, *J* = 9.5 Hz, 1H, Ar-H), 7.28-7.16 (m, 5H, Ar-H), 6.84-6.85 (m, 1H, Ar-H), 6.57 (d, *J* = 9.5 Hz, H-1'), 5.66-5.64 (m, 1H, H-4'), 4.75-4.72 (m, 2H, H-5'a, b), 4.61 (m, 1H, H-3'), 2.95-2.90 (m, 1H, H-2'a), 2.43 (s, 3H, Ar-CH₃), 2.40 (s, 3H, Ar-CH₃), 2.39-2.31(m, 1H, H-2'b). ¹³C

NMR (125 MHz, CDCl₃) δ 166.2, 166.1, 158.1, 145.1, 144.4, 144.2, 133.8, 129.9, 129.6, 129.3, 129.1, 126.9, 126.5, 124.2, 103.5, 85.5, 82.9, 75.1, 64.4, 39.2, 21.7. HRMS (ESI⁺) *m/z* calcd for C₂₀H₂₀Cl₂N₂O₅S (M+H⁺) 504.1475, found 504.1480.

Compound 6d. Compound **5d** (50 mg, 0.1 mmol) was dried by 3 co-evaporations with anhydrous toluene. The residue was dissolved in anhydrous toluene (1 mL). Lawesson's reagent (48 mg, 0.12 mmol) was added and the mixture was heated overnight at reflux. After filtration on cotton, the filtrate was concentrated, and the crude product was subjected to a silica gel column chromatography (Hexane/EtOAc) to afford compound **6d** as a yellow foam (17 mg, 0.033 mmol, 33%). ¹H NMR (500 MHz, CDCl₃) δ 8.14-7.82 (m, 7H, Ar-H), 7.51 (dd, *J* = 7.5, 6.0 Hz, 1H, H-1'), 7.32-7.23 (m, 5H, Ar-H), 6.99 (d, *J* = 7.2 Hz, 1H, Ar-H), 74-5.73 (m, 1H, H-4'), 4.92-4.83 (m, 2H, H-5'a, b), 4.78-4.77 (m, 1H, H-3'), 3.43-3.40 (m, 1H, H-2'a), 2.51 (s, 3H, Ar-CH₃), 2.48 (s, 3H, Ar-CH₃), 2.39-2.36 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 166.6, 144.9, 144.8, 139.5, 138.0, 134.5, 130.3, 130.0, 129.7, 129.5, 126.8, 124.7, 109.5, 91.4, 84.0, 75.0, 64.5, 39.4, 22.2, 22.1. HRMS (ESI⁺) *m/z* calcd for C₂₈H₂₆NO₅S₂ (M+H⁺) 520.1247, found 520.1241.

Compound 7d. To a solution of **6d** (20 mg, 0.039 mmol) in methanol (1.0 mL) was added dropwise 30% NaOMe (8.66 mg, 0.16 mmol). The reaction mixture was stirred for 1 h at room temperature and monitored by TLC. The reaction mixture was then concentrated and the crude product was subjected to silica gel column chromatography (MeOH/CH₂Cl₂) to afford compound **7d** as yellow foam (9.0 mg, 0.032 mmol, 82%).¹H NMR (500 MHz, CD₃OD) δ 8.48 (d, *J* = 5 Hz, 1H, Ar-H), 8.01 (d, *J* = 5 Hz, 1H, Ar-H), 7.40-7.38 (m, 2 H, Ar-H), 7.29 (d, *J* = 10 Hz, 1H, H-1'), 4.47-4.46 (m, 1H, H-4'), 4.10 (m, 1H, H-3'), 3.94-3.88 (m, 2H, H-5'a ,b), 2.77-2.76 (m, 1H, H-2'a), 2.19-2.14 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CD₃OD) δ 171.2, 144.7, 139.6, 137.6, 130.5, 124.2, 108.8, 90.7, 88.2, 70.1, 61.0, 41.3. HRMS (ESI⁺) *m/z* calcd for C₁₂H₁₄NO₃S₂ (M+H⁺) 284.041, found 284.0410.

Compound 8d. Compound **8d** (5.7 mg, 10.9 µmol, 31%) was synthesized using the General Procedure for Triphosphate Synthesis described above starting from **7d** (10 mg, 35.3 µmol). ³¹P NMR (162 MHz, D₂O) δ -9.3 (d, J = 19.5 Hz, γ -P), -10.8 (d, J = 19.8 Hz, α -P), -22.4 (t, J = 20.0 Hz, β -P). MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₂H₁₅NO₁₂P₃S₂⁻, 521.9, found, 521.9.

Scheme S6. (a) i. Selectfluor, MeOH/CH₃CN, reflux, 3 h; ii. TfOH-CH₂Cl₂ (1:1 v/v), 1 h, 85%; (b) Lawesson's reagent, toluene, reflux, overnight, 32%; (c) 30% NaOMe, MeOH, rt, 1 h, 85%; (d) Proton sponge, POCl₃, Bu₃N, Bu₃NPPi, (MeO)₃P, DMF, -20 °C, 10%.

Compound 9. Compound **5d** (55 mg, 0.11 mmol) was dissolved in 1.0 mL MeOH-CH₃CN (1:1 v/v), Selectfluor (42 mg, 0.12 mmol) was added and the mixture was heated at reflux for 3 h, then the solvent was evaporated, the

residue was dissolved in EtOAc (20 mL), the organic phase was washed with water three times. Then the organic solvent was evaporated, and the solid residue was dried by 3 co-evaporations with anhydrous toluene. The residue was dissolved in 1 mL TfOH-CH₂Cl₂ (1:1 v/v) and the mixture was stirred at room temperature for 1 h, then the mixture was concentrated, and the crude product was subjected to a silica gel column chromatography (hexane/EtOAc) to afford compound **9** as a white solid (49 mg, 0.093 mmol, 85%). ¹H NMR (500 MHz, CDCl₃) δ 7.98-7.92 (m, 4H, Ar-H), 7.75 (d, *J* = 5 Hz, 1H, Ar-H), 7.52 (d, *J* = 7.5 Hz, 1H, Ar-H), 7.32-7.21 (m, 5H, Ar-H), 6.82-6.78 (m, 1H, H-1'), 5.64-5.61 (m, 1H, H-4'), 4.80-4.59 (m, 2H, H-5'a, b), 4.62-4.59 (m, 1H, H-3'), 2.93-2.87 (m, 1H, H-2'a), 2.43 (s, 3H, Ar-CH₃), 2.39 (s, 3H, Ar-CH₃), 2.34-2.27 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 166.1, 156.4, 144.5, 144.3, 137.7, 137.5, 134.6, 129.9, 129.6, 129.3, 126.6, 126.4, 120.2, 112.1, 111.7, 85.5, 83.1, 75.0, 64.2, 39.1, 21.8, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -151.5. HRMS (ESI⁺) *m/z* calcd for C₂₈H₂₅FNO₆S (M+H⁺) 522.1381, found 522.1380.

Compound 10. Compound **9** (20 mg, 0.038 mmol) was dried by 3 co-evaporations with anhydrous toluene. The residue was dissolved in anhydrous toluene (1 mL). Lawesson's reagent (18.5 mg, 0.046 mmol) was added and the mixture was heated overnight at reflux. After filtration on cotton, the filtrate was concentrated and the crude product was subjected to a silica gel column chromatography (Hexane/EtOAc) to afford compound **10** as a yellow foam (6.5 mg, 0.012 mmol, 32%). ¹H NMR (500 MHz, CDCl₃) δ 8.11-7.85 (m, 6H, Ar-H), 7.40-7.39(m, 2H, Ar-H, H-1'), 7.28-7.21 (m, 4H, Ar-H), 5.64-5.63 (m, 1H, H-4'), 4.83 (m, 2H, H-5'a, b), 4.69 (m, 1H, H-3'), 3.34-3.29 (m, 1H, H-2'a), 2.44 (s, 1H, Ar-CH₃), 2.40 (s, 3H, Ar-CH₃), 2.30-2.26 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 166.6, 166.5, 144.9, 144.8, 138.6, 130.3, 130.0, 129.9, 129.7, 129.7, 126.9, 126.7, 120.5, 116.3, 116.0, 100.0, 91.6, 84.3, 74.7, 64.3, 39.2, 22.2, 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -142.9. HRMS (ESI⁺) *m/z* calcd for C₂₈H₂₅FNO₅S₂ (M+H⁺) 538.1153, found 538.1155.

Compound 11. To a solution of **10** (10 mg, 0.019 mmol) in methanol (1.5 mL) was added dropwise 30% NaOMe (4.33 mg, 0.08 mmol). The reaction mixture was stirred for 1 h at room temperature and monitored by TLC. The reaction mixture was then concentrated and the crude product was subjected to silica gel column chromatography (MeOH/CH₂Cl₂) to afford compound **11** as yellow foam (4.9 mg, 0.016 mmol, 85%). ¹H NMR (500 MHz, CD₃OD) δ 8.68 (d, *J* = 5 Hz, 1H, Ar-H), 8.12 (d, *J* = 5 Hz, 1H, Ar-H), 7.52 (d, *J* = 5 Hz, 1H, Ar-H), 7.28 (t, *J* = 6.5 Hz, 1H, H-1'), 4.48 (m, 1H, H-4'), 4.10 (m, 1H, H-3'), 3.94 (dd, *J* = 35, 3 Hz, 2H, H-5'a, b), 2.78-2.75 (m, 1H, H-2'a), 2.24-2.19 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CD₃OD) δ 170.2, 150.2, 148.3, 139.0, 131.7, 131.6, 119.8, 117.8, 117.4, 91.5, 88.7, 70.1, 61.0, 41.5. ¹⁹F NMR (376 MHz, CD₃OD) δ -145.3. HRMS (ESI⁺) *m/z* calcd for C₁₂H₁₃FNO₃S₂ (M+H⁺) 302.0315, found 302.0314.

Compound 12. Compound **12** (2.0 mg, 3.7 µmol, 22%) was synthesized using the General Procedure for Triphosphate Synthesis described above starting from **11** (5 mg, 16.6 µmol). ³¹P NMR (162 MHz, D₂O) δ -10.9 (d, J = 20.0 Hz, γ -P), -11.6 (d, J = 21.1 Hz, α -P), -23.3 (t, J = 23.1 Hz, β -P).¹⁹F NMR (376 MHz, D₂O) δ -138.5 (s). MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (*m*/*z*): [M-H]⁻ calcd for C₁₂H₁₄FNO₁₂P₃S₂⁻, 539.9, found, 540.1.

Scheme S7. (a) ICI, CH_2CI_2 , 0 °C to rt, overnight, 63%; (b) Lawesson's reagent, toluene, reflux, overnight, 27%; (c) 2,2-dichloro-N-prop-2-yn-1-ylacetamide, (PPh₃)₄Pd, Cul, Et₃N, DMF, rt, overnight, 91%; (d) 30% NaOMe, MeOH, rt,1 h, 74%; (e) Proton sponge, POCl₃, Bu₃N, Bu₃NPPi, (MeO)₃P, DMF, -20 °C, 25%.

Compound 13. To a solution of **5d** (73 mg, 0.145 mmol) in CH₂Cl₂ (1 mL) at 0 °C under nitrogen atmosphere was added dropwise iodine monochloride (1.0 M in CH₂Cl₂, 0.15 ml, 0.15 mmol). The resulting mixture was stirred at room temperature overnight. The reaction mixture was quenched with saturated aqueous NaHCO₃ and saturated aqueous Na₂S₂O₃, extracted with CH₂Cl₂, dried, filtered and evaporated. The crude product was subjected to silica gel column chromatography (Hexane/EtOAc) to afford compound **13** as white foam (57 mg, 0.091 mmol, 63%). ¹H NMR (500 MHz, CDCl₃) δ 7.98-7.93 (m, 4H, Ar-H), 7.83 (s, 1H, Ar-H), 7.72 (d, *J* = 5 Hz, 1H, Ar-H), 7.28-7.17 (m, 5H, Ar-H), 6.78-6.75 (m, 1H, H-1'), 5.65-5.63 (m, 1H, H-4'), 4.76 (m, 2H, H-5'a, b), 4.63-4.62 (m, 1H, H-3'), 2.95-2.91 (m, 1H, H-2'a), 2.43(s, 3H, Ar-CH₃), 2.35 (s, 3H, Ar-CH₃), 2.34-2.29 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 166.5, 157.6, 147.4, 144.9, 144.6, 133.7, 132.7, 130.3, 130.1, 129.8, 129.7, 129.4, 128.5, 127.0, 126.8, 86.1, 83.8, 75.7, 64.7, 39.9, 22.2, 22.1. HRMS (ESI⁺) *m/z* calcd for C₂₈H₂₅INO₅S (M+H⁺) 630.0442, found 630.0440.

Compound 14. Compound **13** (30 mg, 0.048 mmol) was dried by 3 co-evaporations with anhydrous toluene. The residue was dissolved in anhydrous toluene (1 mL), Lawesson's reagent (23 mg, 0.057 mmol) was added and the mixture was heated overnight at reflux. After filtration on cotton, the filtrate was concentrated and the crude product was subjected to a silica gel column chromatography (Hexane/EtOAc) to afford compound **14** as a yellow foam (8.4 mg, 0.013 mmol, 27%). ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H, Ar-H), 7.99-7.82 (m, 5H, Ar-H), 7.39-7.36 (m, 1H, H-1'), 7.29-7.20 (m, 5H, Ar-H), 5.65-5.64 (m, 1H, H-4'), 4.83-4.81 (m, 2H, H-5'a, b), 4.71-4.70 (m, 1H, H-3'), 3.35 (dd, *J* = 15, 5.5 Hz, 1H, H-2'a), 2.44 (s, 3H, Ar-CH₃), 2.39 (s, 3H, Ar-CH₃), 2.27-2.21 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 166.6, 144.9, 144.7, 144.6, 141.8, 137.8, 135.0, 130.3, 130.2, 129.8, 129.7, 128.6, 126.9, 126.7, 91.7, 84.5, 75.3, 64.6, 39.5, 22.2, 22.1. HRMS (ESI⁺) *m/z* calcd for C₂₈H₂₅INO₅S₂ (M+H⁺) 646.0213, found 646.0219.

Compound 15. To a solution of **14** (10 mg, 0.015 mmol) in DMF (2 mL) under nitrogen atmosphere was added (PPh₃)₄Pd (1.7 mg, 0.0015 mmol), CuI (0.57 mg, 0.011 mmol) and Et₃N (5 μ L, 0.030 mmol). The reaction mixture was degassed and a solution of Cl₂CHCONHCH₂CCH (3.8 mg, 0.0225 mmol) in DMF (0.5 mL) was added. The reaction mixture was stirred overnight at room temperature and monitored by TLC. The reaction mixture was diluted with EtOAc, quenched with saturated aqueous NaHCO₃, extracted with EtOAc, dried, filtered and evaporated. The crude product was subjected to silica gel column chromatography (MeOH/CH₂Cl₂) to afford compound **15** as yellow foam (9.2 mg, 0.0135 mmol, 91%). ¹H NMR (500 MHz, CDCl₃) δ 8.26 (s, 1H, Ar-H), 7.99-7.82 (m, 5H, Ar-H), 7.40-7.37 (m, 2H, Ar-H, H-1'), 7.29-7.21 (m, 4 H, Ar-H), 6.71 (br, 1H, NH), 6.95 (s, 1H,

CHCl₂), 5.65-5.64 (m, 1H, H-4'), 4.85-4.79 (m, 2H, H-5'a, b), 4.73 (m, 1H, H-3'), 4.26-4.11 (m, 2H, NHCH₂), 3.38-3.34 (m, 1H, H-2'a), 2.44 (s, 3H, Ar-CH₃), 2.40 (s, 3H, Ar-CH₃), 2.31-2.25 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 166.6, 164.1, 144.8, 139.0, 138.3, 133.4, 130.3, 130.1, 129.8, 129.7, 126.9, 124.3, 104.8, 91.8, 88.3, 84.5, 78.8, 75.2, 66.4, 64.7, 39.6, 31.3, 22.2. 22.1. HRMS (ESI⁺) *m/z* calcd for C₃₃H₂₉Cl₂N₂O₆S₂ (M+H⁺) 683.0839, found 683.0854.

Compound 16. To a solution of **15** (9.2 mg, 0.0135 mmol) in methanol (1.0 ml) was added dropwise 30% NaOMe (2.92 mg, 0.32 mmol). The reaction mixture was stirred for 1 h at room temperature and monitored by TLC. The reaction mixture was concentrated and the crude product was subjected to silica gel column chromatography (MeOH/CH₂Cl₂) to afford compound **16** as yellow foam (4.5 mg, 0.01 mmol, 74%).¹H NMR (500 MHz, CD₃OD) δ 8.69 (s, 1H, Ar-H), 8.06 (d, *J* = 5 Hz, 1H, Ar-H), 7.53 (d, *J* = 5 Hz, 1H, Ar-H), 7.30 (t, *J* = 5 Hz, 1H, H-1'), 6.33 (s, 1H, CHCl₂), 4.47-4.46 (m, 1H, H-4'), 4.36 (s, 2H, NHCH₂), 4.11-4.08 (m, 1H, H-3'), 3.97 (dd, *J* = 12, 3Hz, 2H, H-5'a, b), 2.79-2.74 (m, 1H, H-2'a), 2.21-2.16 (m, 1H, H-2'b). ¹³C NMR (125 MHz, CD₃OD) δ 172.9, 138.4, 134.3, 123.9, 122.8, 104.7, 100.0, 91.2, 88.6, 77.1, 70.3, 66.4, 61.1, 41.7, 30.2. HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₇Cl₂N₂O₄S₂ (M+H⁺) 447.0001, found 447.0020.

Compound 17. Compound **17** (2.2 mg, 3.1 µmol, 28%) was synthesized using the General Procedure for Triphosphate Synthesis described above starting from **16** (5 mg, 11.2 µmol). ³¹P NMR (162 MHz, D₂O) δ -10.85 (d, J = 19.9 Hz, γ -P), -11.63 (d, J = 20.0 Hz, α -P), -23.07 (s), -23.26 (t, J = 19.7 Hz, β -P). MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₇H₁₈Cl₂N₂O₁₃P₃S₂⁻, 684.9, found, 685.0.

NMR Spectra

500 MHz ¹H NMR spectrum of **5a** (CDCl₃)

125 MHz 13 C NMR spectrum of **5d** (CDCl₃)

500 MHz¹H NMR spectrum of 7c (CD₃OD)

162 MHz³¹P NMR spectrum of 8a (D₂O)

162 MHz 31 P NMR spectrum of **8c** (D₂O)

162 MHz 31 P NMR spectrum of **8d** (D₂O)

376 MHz ^{19}F NMR spectrum of $\boldsymbol{9}$ (CDCl_3)

500 MHz¹H NMR spectrum of **10** (CDCl₃)

376 MHz ¹⁹F NMR spectrum of **10** (CDCl₃)

500 MHz¹H NMR spectrum of **11** (CD₃OD)

376 MHz ^{19}F NMR spectrum of $11~(\text{CD}_3\text{OD})$

376 MHz $^{19}\mathrm{F}$ NMR spectrum of 12 (D_2O)

125 MHz ¹³C NMR spectrum of **13** (CDCl₃)

500 MHz¹H NMR spectrum of **14** (CDCl₃)

125 MHz ¹³C NMR spectrum of **14** (CDCl₃)

500 MHz¹H NMR spectrum of **15** (CDCl₃)

125 MHz ¹³C NMR spectrum of **15** (CDCl₃)

500 MHz¹H NMR spectrum of **16** (CD₃OD)

125 MHz ¹³C NMR spectrum of **16** (CD₃OD)

162 MHz 31 P NMR spectrum of 17 (D₂O)

Gel-Based Incorporation/Extension Assay.

Primer oligonucleotides (Integrated DNA Technologies) were 5'-radiolabeled with T4 polynucleotide kinase (New England Biolabs; Ipswich, MA) and $[\gamma^{-3^2}P]$ -ATP (Perkin-Elmer) and annealed to template oligonucleotides (Sequence Context I in Seo *et al.*³) by heating to 95 °C followed by slow cooling to room temperature. Reactions were initiated by adding a solution of 2× dNTP and dXTP solution (5 µL) to a solution containing polymerase (73.53 nM) and primer:template (40 nM) in 5 µL Klenow reaction buffer (50 mM Tris-HCl, pH 7.5, 10 mM DTT and 50 µg/mL acetylated BSA). After incubation at 25 °C for 5–10 s, reactions were quenched with 20 µL of loading dye (95% formamide, 20 mM EDTA, and sufficient amounts of bromophenol blue and xylene cyanol). Reaction products were resolved by 8 M urea 15% polyacrylamide gel electrophoresis, and gel band intensities corresponding to the extended and unextended primers were quantified by phosphorimaging (Storm Imager, Molecular Dynamics) and Quantity One (Bio-Rad) software. The reported values are the average and standard deviation of three independent determinations.

PCR Amplification

Materials. Taq and OneTaq DNA polymerases were purchased from New England Biolabs (Ipswich, MA). A mixture of dNTPs was purchased from Fermentas (Glen Burnie, MD). SYBR Green I Nucleic Acid Gel Stain (10,000×) was purchased from Life Technologies (Carlsbad, CA).

DNA oligonucleotides. See Table S1 for complete oligonucleotide sequences. The syntheses of the DNA templates $D6^4$ and 134mer⁵ were described previously. Fully natural primers were purchased from Intergrated DNA Technologies (Coralville, Iowa). Reagents and solvents for synthesis of unnatural primers 1-3 were obtained from Glen Research (Sterling, VA) and/or Applied Biosystems (Foster City, CA). The oligonucleotides were prepared using standard automated DNA synthesis with ultra-mild natural phosphoramidites (Glen Research) and d**NaM** phosphoramidite (Berry & Associates, Inc., Dexter, MI) on controlled pore glass supports (0.20 μ mol, 1000 Å, Glen Research) and an ABI Expedite 8905 synthesizer. After automated synthesis, the oligonucleotides were cleaved from the support, deprotected by incubation in conc. aqueous ammonia overnight at room temperature, purified by DMT purification (glen-pakTM cartridge, Glen Research), and desalted over Sephadex G-25 (NAP-25 Columns, GE Healthcare). The concentration of single stranded oligonucleotides was determined by UV absorption at 260 nm.

PCR assay. PCR amplifications were performed in a total volume of 25 µL and with conditions specific for each assay as described in Table S2. After amplification, a 5 µL aliquot was analyzed on a 6% non-denaturing PAGE gel ran along with 50bp ladder (Life Technologies) to confirm amplicon size. The remaining solution was purified by spin-column (DNA Clean and Concentrator-5; Zymo Research, Irvine, CA), followed by 4% agarose gel, recovered with Zymoclean Gel DNA Recovery Kit (Zymo Research), quantified by fluorescent dye binding (Quant-iT dsDNA HS Assay kit, Life Technologies), and sequenced on a 3730 DNA Analyzer (Applied Biosystems). Fidelity was determined as the average %retention of the unnatural base pair per doubling as described below.

Determination of fidelity. The percent retention of an unnatural base pair (*F*) was measured using raw sequencing data and normalized to fidelities per doubling, as described.^{4,5} Briefly, the presence of an unnatural nucleotide leads to a sharp termination of the sequencing profile, while mutation to a natural nucleotide results in "read-through" (compare sequencing traces of dNaM/d5SICS^{PA} and dNaM/dTPT3^{PA} amplified with Taq, Fig. S2). The extent of the "read-through" is thus inversely correlated with the retention of the unnatural base pair. To use the sequencing data as a quantitative measurement of PCR fidelity, we performed calibration experiments in the range of 50-100% retention of the unnatural base pair (see Malyshev *et al.*, 2009⁴ for details). Therefore, low retention (<50%) and high "read-through" make the quantification inaccurate.

Quantification of the high retention (>50%) was performed by adjusting the start and stop points for the Sequencing Analysis software (Applied Biosystems) and then determining the average signal intensity individually for each channel (A, C, G and T) for peaks within those defined points (35-45 nucleotides in length) before (section L) and

after (section R) the unnatural nucleotide. The R/L ratio was normalized using sequencing calibration plots to account for both noise in the sequencing chromatograms and the read-through in the control samples (see Malyshev *et al.*, 2009⁴ for details). The R/L ratio of after normalization (R/L_{norm}) corresponds to the percentage of the natural sequences in the pool. Finally, *F* was calculated as $1 - (R/L)_{norm}$ and the retention of the unnatural base pair per

doubling (fidelity, f) was calculated as $F^{\overline{\log_2 A}}$, where A is an amplification and $\log_2 A$ is the number of doublings. Each sample before and PCR amplification was sequenced in triplicate in each direction to minimize sequencing error (Fig. S1-S2).

Gel mobility assay

Corresponding DNA templates (see Fig. 2 and Table S1) were amplified by PCR under the conditions described in Table S2. Upon completion, NaOH (1 M, 12.5 μ L) was added directly to PCR samples to a final concentration of 0.2 M and incubated for 5 h at room temperature. After the addition of NaOAc (3 M, pH 5.5, 7.5 μ L) and 200 μ L of cold ethanol, the samples were mixed, incubated on ice overnight, and DNA was precipitated by centrifugation at 10 000 rfu for 30 min at 4 °C. The supernatant was removed and the pellets were carefully washed with 80% ethanol. The samples were resuspended in 50 μ L of the annealing buffer (50 mM Na phosphate, pH 7.5; 100 mM NaCl; 1 mM EDTA), heated to 95 °C and cooled to room temperature over 30 min. NHS-PEG₄-biotin (Thermo Scientific) solution in the annealing buffer (40 mM, 50 μ L) was mixed with the DNA samples and incubated overnight at room temperature. The samples were purified by spin-column (DNA Clean and Concentrator-5; Zymo Research, Irvine, CA) and eluted in 10 μ L of elution buffer. Half of the sample (5 μ L) was mixed with 1 μ g of streptavidin (Promega) in annealing buffer, incubated for 30 minutes at 37 °C, mixed with 5× non-denaturing loading buffer, and loaded directly on the gel as a control. After running the gel at 110 V for 30 min, the gel was soaked in 1× Sybr Gold Nucleic Acid Stain (Life Technology, Carlsbad, CA) for 30 min and visualized using a Molecular Imager Gel Doc XR+ equipped with 520DF30 filter (Bio-Rad).

Name	Sequence (5' to 3')	Remarks
Fend1	CACACAGGAAACAGCTATGAC	Primers for PCR (templates D6
Fend2	GAAATTAATACGACTCACTATAGG	and 134mer)
Fend1-poly-dT	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTT	Primers for Sanger sequencing (templates D6 and 134mer)
Fend2-poly-dT	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTTT	
D6	CACACAGGAAACAGCTATGACCCGGGTTATTAC ATGCGCTAGCACTTGGAATTCACCAGACGNNN Nam NNNCGGGACCCATAGTAAATCTCCTTCTT AAAGTTAAGCTTAACCCTATAGTGAGTCGTATT AATTTC	N = randomized natural nucleotide
134mer	CACACAGGAAACAGCTATGACCCGGGTTATTAC ATGCGCTAGCACTTGGAATTCACAATACT NaM TCTTTAAGGAAACCATAGTAAATCTCCTTCTT AAAGTTAAGCTTAAC <u>CCTATAGTGAGTCGTATT</u> <u>AATTTC</u>	Used in Fig. 3B
Primer1	NaM <u>CCTGCGTCAATGTAATGTTC</u>	Primers for PCR with Temp1-3
Primer2	TTCACGGT NAM AGCACGCATAGG	
Primer3	CCAATGTACC Nam TGCGTATGTTC	
Primer-rev	CCCTGCGTTTATCTGCTCTC	
Temp1	<u>CCCTGCGTTTATCTGCTCTC</u> TCGGTCGTTCGGC TGCGGCG <u>GAACATTACATTGACGCAGG</u>	60mers used in Fig. 3C. The nucleotides shown in bold
Temp2	<u>CCCTGCGTTTATCTGCTCTC</u> TCGGTCGTTCGGC TGCGCG <u>CCTATGCGTGCTTACCGTGAA</u>	form a mispair with d NaM in the first round of PCR
Temp3	<u>CCCTGCGTTTATCTGCTCTC</u> TCGGTCGTTCGGC TGCCG <u>GAACATACGCATGGTACATTGG</u>	

Table S1. Sequences of DNA used in this study. Primer binding regions are underlined.

	OneTaq	Taq	PCR for biotin labeling (Fig. 3B)	PCR for biotin labeling (Fig. 3C)
Buffer	1×OneTaq buffer	1×Taq buffer	1×OneTaq buffer	1×OneTaq buffer
Enzyme concentration, U/µL	OneTaq, 0.02	Taq, 0.02	OneTaq, 0.02	OneTaq, 0.02
Template	$D6^{1}$ (0.01 ng)	$D6^{1}$ (0.01 ng)	134mer^1 (0.5 ng)	60mer^1 (0.5 ng)
dNTPs, µM	200	200	200	200
d NaM TP, μM	100	100	100	100
d X TP, μM	100	100	100 of d 5SICS^{PA}TP or	100 of d5SICS ^{PA} TP or
			d TPT3^{ра} ТР	d TPT3^{ра} ТР
Mg^{2+} , mM	3	3	3	3
Primers, µM	1	1	1	1
SYBR Green I	0.5 imes	0.5 imes	0.5 imes	0.5 imes
Thermal conditions				
Initial denaturing	-	-	96 °C 1 min	96 °C 1 min
Denaturing	96 °C 10 s	96 °C 10 s	96 °C 15 s	96 °C 15 s
Annealing	60 °C 15 s	60 °C 15 s	60 °C 30 s	64 °C 30 s
Extension	68 °C 60 s	68 °C 15 s	68 °C 2 min	68 °C 2 min
# of cycles	16+16+16 ²	20	12	12

Table S2. PCR conditions.

¹ See Table S1 for sequences of the templates and primers. ² Initial amount of template was 0.01 ng. PCR mixture was amplified over 16 cycles, diluted 40,000-fold and amplified over another 16 cycles. This dilution/amplification step was repeated resulting in 48 total cycles of amplification.

Х Primer 2 Primer 1 5SICS mall Adam has FPT1 Mamo manana wa wana IN A MARMAR MARMARY MALANA MAMAMANA MAN TPT1 MAMM AMA A . M AMAM AMA MA MARAMAN MA MAMMANA m a al made . MA . w

Figure S1. Raw sequencing data after PCR amplification by OneTaq polymerase in the presence of dXTP and dNaMTP. Triplicate data shown.

TPT2	
TPT3	
FTPT3	

Х Primer 1 Primer 2 5SICS MANE WARD FPT1 Warman Marine Marine Mar TPT1

Figure S2. Raw sequencing data after PCR amplification by Taq polymerase in the presence of dXTP and dNaMTP. Triplicate data shown.

References

- (1) New, J. S.; Christopher, W. L.; Yevich, J. P.; Butler, R.; Schlemmer, R. F., Jr.; VanderMaelen, C. P.; Cipollina, J. A. J. Med. Chem. 1989, 32, 1147-1156.
- (2) Asagarasu, A.; Matsui, T.; Hayashi, H.; Tamaoki, S.; Yamauchi, Y.; Sato, M. Chem. Pharm. Bull. (Tokyo) 2009, 57, 34-42.
- (3) Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 3246-3252.
- (4) Malyshev, D. A.; Seo, Y. J.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 14620-14621.
- (5) Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 12005-12010.