The American Journal of Human Genetics, Volume 94 Supplemental Data

Mutations in QARS, Encoding Glutaminyl-tRNA

Synthetase, Cause Progressive Microcephaly,

Cerebral-Cerebellar Atrophy, and Intractable Seizures

Xiaochang Zhang, Jiqiang Ling, Giulia Barcia, Lili Jing, Jiang Wu, Brenda J. Barry, Ganeshwaran H. Mochida, R. Sean Hill, Jill M. Weimer, Quinn Stein, Annapurna Poduri, Jennifer N. Partlow, Dorothée Ville, Olivier Dulac, Tim W. Yu, Anh-Thu N. Lam, Sarah Servattalab, Jacqueline Rodriguez, Nathalie Boddaert, Arnold Munnich, Laurence Colleaux, Leonard I. Zon, Dieter Söll, Christopher A. Walsh, and Rima Nabbout

ŗ	.Gly45Val	p.Tyr57His	p.Arg403Trp	p.Arg515Trp
Consensus	TLGST	LLYGL	TLRMK	DPRLF
Identity				
H. sapiens NP_005042	TLGST	LLYGL	TLRMK	DPRLF
P. troglodytes XP_001147632	TLGST	LLYGL	TLRMK	DPRLF
M. mulatta XP_001110256	TLGST	LLYGL	TLRMK	DPRLF
B. taurus NP_001029640	TLGSS	LLYGL	TLRMK	DPRLF
C. lupus XP_533833	TLGST	LLYGL	TLRMK	DPRLF
R. norvegicus NP_001007625	TLGST	LLYGL	TLRMK	DPRLF
M. musculus NP_598555	ILGST	LLYDL	TLRMK	DPRLF
G. gallus NP_001012800	ALGSG	LLYNA	TLRMK	DPRLF
D. rerio ENSDARP60918.4	QLGSS	LLYSM	TLRMK	DPRLF
D. melanogaster [NP_524841	GSA	LIYHM	TLRMK	DPRLF
C. elegans NP_502812	S G	LLYQL	TLRLK	DPRLF
A. gambiae XP_319458	PGV	LIFQA	TLRMK	DPRLF
S. cerevisiae NP_014811	SDY			DPRLF
S. pompe NP_596745	-VGSS			DPRLY
0. sativa NP_001054822	GVS	LLYTV	TLEME	DPRLL
A. mailana NP_001185094	TDG	LLYSV	TERMK	DPRLL
E.CONTAAC73774			CLRAK	DPRMP

Figure S1. Amino acids affected by *QARS* mutations are highly conserved.

All four amino acids affected by human mutations are conserved in vertebrates and plants and two of them (Arg403 and Arg515) are conserved in all species examined.

Figure S2. QARS subcellular localization, and protein levels in individual cell lines.

(A) Double labeling of endogenous QARS proteins with ER (ERp72) and Golgi (RCAS1) markers in Cos7 cells (monkey). Scale bar, 20 μ m.

(B) (Top) Western-blot showing that anti-QARS antibody recognizes QARS protein (green) in human cell lines but not Qars protein in a mouse cell line (Neuro2a), and that QARS protein level is similar among tested control and individual lymphoblastoid cell lines in the supernant. (Bottom) Western-blot showing QARS protein level is low in the insoluble fraction of each lymphoblastoid cell lysate. Total protein lysates from HEK293T (human) and Neuro2a (mouse) represent positive and negative controls. Loading control, anti-αTubulin (red).

Figure S3. Neurogenesis in the brains and eyes are preserved in 2 dpf qars mutants.

(A-C) Immunostaining results of fish brain sections (A) showing neural progenitors (anti-Pax6), mitotic cells (anti-PH3) and postmitotic neurons (anti-HuC/D) display similar patterns in 2 dpf *qars* mutants when compared to their (+/+) and (+/-) siblings. Scale bar, 300 μ m. Bar diagrams (B, C) showing that numbers of mitotic cells (anti-PH3 positive) are largely preserved in the brains and eyes of *qars* mutants when compared to their (+/+) and (+/-) siblings, mean ± SEM values are presented.

Figure S4. Effects of human variants on QARS-ASK1 interaction.

Individual recombinant QARS variant as well as wild-type protein were expressed and immunoprecipitated (mouse anti-Flag, clone M2) from a human cell line (HEK293T). Enrichment of recombinant proteins was confirmed by blotting with a rabbit anti-Flag antibody (red). Weak interactions with endogenous ASK1 (green) are detected for all recombinant QARS proteins.

Table S1	. Oligo	names	and	sequences.
----------	---------	-------	-----	------------

Name	Sequence
CH87	5'-CCATTCTACACCCACCATTTG-3'
СН90	5'-GGGCTCAGTGTGGATCTTCTT-3'
CH91	5'-GACTCCCTGTCGCTCTTCAC-3'
CH92	5'-TGCCTGTGCAGAACTAGGTG-3'
СН93	5'-CACTGCTGCTCTTTGAGGTG-3'
СН94	5'-GTGCTCGATGGAGTCACAGA-3'
CH184	5'-CGGACGTGGTGTCTTCTTTC-3'
CH185	5'-CCAGTGATCTTGTCAATGGCAG -3'
CH186	5'-GCTAGCTTGCCAAACCTACAGGT -3'
CH188	5'-CAGCAGACCCTGGTTTCCACCATTGAC-3'
CH189	5'-GTCAATGGTGGAAACCAGGGTCTGCTG-3'
CH190	5'-CGAGGCCACACTATGGATGAAGCTGG-3'
CH191	5'-CCAGCTTCATCCATAGTGTGGCCTCG-3'
	5'-
	ACGGTACCATGGAGCAGAAGCTGATCTCAGAAGAGGACCTG
	GACTACAAAGACGATGACGACAAGATGGCGGCTCTAGACTCC
CH379	C-3'
CH380	5'-ATCTCGAGAGCTCACACCTTTCCTGGGTC-3'
CH381	5'-CGGGATCCTGTTACATGGCTTGGCCTC-3'
CH382	5'-GAGGCCAAGCCATGTAACAGGATCCCG-3'
CH383	5'-CTGGGATGACCCATGGCTCTTTACACTC-3'
CH384	5'-GAGTGTAAAGAGCCATGGGTCATCCCAG-3'
KCNT1-Ex1/2 F	5'-CATTGGTCAGCGAGTGAA-3'
KCNT1-Ex1/2 R	5'-GAACTGGCAGGACAGGTA-3'
KCNT1-Ex16/17 F	5'-TGGCTCCTGCTTGGTTCC-3'
KCNT1-Ex16/17 R	5'-AAAGTTCAGCATCAGTCA-3'

Individual	I-1	I-2	II-1	II-2
Gender	Male	Male	Male	Female
Year of birth	2008	2009	2008	2009
Age at most	t most 4 years 3 y		4.5 yrs	15 months
recent				
assessment				
Delivery	Term (38wk)	Term	Term (41wk)	Term
Birth Weight	6.2lb (12%)	6.8lb (22%)	6lb (9%)	6.2lb (12%)
Birth Height	19.75" (50%)	19.5" (41%)	20.18" (66%)	19.29" (42%)
Birth Head	11" (-3.9SD)	12.25" (-2.1SD)	13.2" (-1.0SD)	13.2" (-1.0SD)
Circumference				
	One have after hirth	First day of life	One have after	One menth ald
Seizure Unset	One nour after offun	Flist day of the	birth	One month old
Developmental	Profound delays,	Profound delays, no	Lack of visual	Normal tone
Features	cortical visual	constipation, can	contact from	and eye
	impairment, normal	bubble, nystagmus,	birth.	contact until
	hearing, chronic	nutrition by Gtube.	Profound	onset of
	tracheomologia		delay at 4.5	seizures, then
	nossible tanetoretinal		vears	delays by 15
	degeneration as seen in		years.	months
	Leber's congential			
	amaurosis, no			
	meaningful visual			
	response in either eye,			
	nutrition by Gtube.		-	-
Muscle tone	Mixed hypotonia and	High tone with brisk	Severe	Severe
	hypertonia	reflexes	hypotonia	hypotonia
Dysmorphisms	Sloping forenead,	Less of sloping	Coarse facies,	N/A
	hypotelorism bilateral	brother has	helix of ear	
	epicanthal folds broad	bitemporal	and prominent	
	flat nasal bridge, high	narrowing.	upper lip.	
	arched palate. At age 5	epicanthal folds,		
	months skin exam with	hyptelorism, low set		
	slightly raised red rash	and posteriorly		
	across his chest and	rotated ears, broad		
	abdomen.	nasal bridge, high		
		palate.		
		Unremarkable skin		
Microcenhaly	-4 8SD at 1.5 months	-5 8SD at 3 months: -	-3SD at 4.5	-2 5SD at 15
wherecephary	-10.4SD at 21months	7.8SD at 7 months	years	months

Table S2. Additional clinical findings and developmental measurements.

		Allele Frequency (6503	Amino acid		PolyPhen-
Person	Position (hg19)	samples in EVS)	change	SIFT	2
I-3	chr3: 49141888 C>A	0	p.G45V	0.01	1
II-4	chr3: 49141853 A>G	0	p.Y57H	0.14	1
I-4	chr3: 49137482 G>A	0	p.R403W	0	1
II-3	chr3: 49136848 G>A	0	p.R515W	0	1

Table S3. S CTU mutations are rare and predicted to cause deleterious amino acid substitutions.

QARS mutations identified in both families were not seen in Exome Variant Server (EVS), and the amino acid substitutions are predicted to be damaging to protein functions by SIFT and PolyPhen-2.