

Figure S1. I-Scel cut site and repair sequences.

a, Sequence of Inverted I-Scel site and 12 bp microhomology **b**, I-Scel cut site with resulting overhangs **c**, Main classes of NHEJ events **d**, NHEJ events that yield an Ade⁺ phenotype. Deletion of any one of the five indicated nucleotides or GATA (4 consecutive nucleotides) restores the *ADE2* reading frame to yield Ade⁺ NHEJ events **e**, MMEJ using 12 bp microhomology

Figure S2. MMEJ is Ku-independent and partially Sae2 dependent.

a, Linear substrate for blunt end joining (0 MH) or with a direct repeat (8-16 bp) to promote repair by MMEJ. b, Graph of end joining frequencies of the indicated strains; transformations were performed in triplicate and error bars show s.d. c, Graph showing the fraction of precise blunt end joining as determined by sequencing at least 16 independently derived Trp⁺ clones of the indicated genotypes. d, Graph showing the percent of circularization events that utilize the 12 bp MH as determined by sequencing 15-27 clones.

а

Figure S3.

Western blot of extracts prepared from the indicated strains probed with anti-Rfa1 or anti- α tubulin antibodies (cropped version shown in Figure 2b).

Figure S4. End resection and strand invasion in the *rfa1* mutants.

a, Schematic representation of the band disappearance resection assay. Loss of the 0.7 and 2.6 kb away fragments indicate resection has proceeded beyond the *Styl* (S) and *Xbal* (X) restriction sites rendering them single-stranded and resistant to digestion. The red lines indicate the location of probes used to detect the 0.7kb and 2.6 kb distal restriction fragments. **b**, Southern blot of *Styl* and *Xbal* digested genomic DNA isolated from wild type, *rfa1-D228Y*, *rfa1-t33*, and *rfa1-t48* cells. **c**, Quantification of resection 0.7 kb and 2.6 kb away from the HO cut site. **d**, Schematic for the mating-type switching assay: the 0.9 kb *Styl MATa* fragment is cleaved upon HO induction to yield a 0.7 kb cut fragment. The 0.7 kb fragment disappears as resection proceeds and the break is repaired resulting in a 1.8 kb *MATα* fragment. **e**, Representative Southern blot of *Styl*-digested genomic DNA from wild type and *rfa1-D228Y* cells at different times after HO induction.

Table S1A. Major microhomologies used

	Microhomology ¹	Distance from break (bp)
12 bp MH	CCA GTG AGA CGT	12 / 9
16 bp iMH	AGC AG G T C C CCA AAG TGT	32 / 5377

Table S1B. Alternative microhomologies used

Genotype	no. of events	Microhomology ¹	Distance from break (bp)	
yku70∆	1	GCT ATT C CT TCA	4828 / 5539	
	1	ATG C A G AA	304 / 2107	
	1	AAA TGA GGC CTA TTG	4374 / 2277	
dnl4∆	2	AAA TGA GGC CTA TTG	4374 / 2277	
rfa1-t33	1	ATT TT T G AC GCC C T T CT	1383 / 5279	
rfa1-D228Y	1	TGA TCA AGA ATG T	4812 / 4067	
	1	AAA TGA GGC CTA TTG	4374 / 2277	
rfa1-t48	1	ACA GG	0 / 4194	
	1	CCA G GC C G G T	19 / 3241	

¹ Bold font indicates a mismatch

Table S2: Yeast Strains

Strain	Genotype	Source
LSY0678	MATa	R. Rothstein
LSY0679	ΜΑΤα	R. Rothstein
LSY1099	MATa TRP1	1
LSY2000	MATa trp1ars416::kanMX6	This study
LSY2013-1D	MATa trp1ars416::kanMX6 yku70::HIS3	This study
LSY2577-8A	MATα trp1ars416::kanMX6 sae2::kanMX6	This study
LSY2956-8D	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel	This study
LSY2957-2B	MATa ade2-ISIR-12MH lys2::P _{GAL} -I-Scel sae2::kanMX6	This study
LSY2999-6C	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel yku70::HIS3	This study
LSY3006-	MATe ada 2 ICID 42MUL has 200 L Cool de 140/000 MVC	This study
13B	MATa adez-ISIR-IZIVIH IYSZ.:PGAL-I-SCEI dni4::KaniviXo	This study
LSY3013-3C	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel sgs1::hphMX6	This study
LSY3013-	MATa ade2-ISIR-12MH /vs2··Pau-LScal exo1··/IRA3	This study
15B		This study
LSY3013-	MAT a ade2-ISIR-12MH lys2::P _{GAL} -I-Scel sgs1::hphMX4	This study
16C	exo1::URA3	This study
LSY3014-1C	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel rad51::LEU2	This study
LSY3014-3B	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel rad52::TRP1	This study
LSY3014-	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel rad51::LEU2	This study
17C	rad52::TRP1	This study
LSY2997-	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel rfa1-	This study
12D	D228Y::natMX4	This study
LSY2996-1A	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel rfa1-t33::natMX4	This study
LSY2995-6C	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel rfa1-t48::natMX4	This study
LSY3012-1A	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel rfa1-t11	This study
LSY3006-3B	MAT a ade2-ISIR-12MH lys2::P _{GAL} -I-Scel mre11-H125N- URA3	This study
LSY3011-1D	MATα ade2-ISIR-12MH lys2::P _{GAL} -I-Scel mre11::KIURA3	This study
LSY3015-	MATα ade2-ISIR-12MH lys2::pGAL-IScel rfa1-	This study
21C	D228Y::natMX4 rad51::LEU2	This study
LSY3015-	MATα ade2-ISIR-12MH lys2::pGAL-IScel rfa1-	This study
33D	D228Y::natMX4 rad52::TRP1	This study
LSY3010-	MATa ade2-ISIR-12MH lys2::pGAL-IScel rfa1-	This study
15A	t33::natMX4 sae2::kanMX6	This study
LSY2900-	MATa ada3Pau-HO	This study
13A		This Study
LSY2900-5D	MATa ade3::P _{GAL} -HO rfa1-D228Y	This study
LSY2629-9A	MATα hmlΔ hmrΔ ade3::P _{GAL} -HO rfa1-D228Y	This study
LSY2509-2D	MAT a hml∆ hmr∆ bar1::URA3 ade3::P _{GAL} -HO	This study
LSY2726- 38A	MATα hmlΔ hmrΔ ade3::P _{GAL} -HO rfa1-t33	This study
LSY2727-7C	MATα hml∆ hmr∆ ade3:: P _{GAL} -HO rfa1-t48	This study

*All strains are of the W303 genotype (*leu2-3, 112 trp1-1 ura3 can1 his3-11, 15 ade2-1*), only mating type and other relevant genotypes are listed.

1. Langston, L.D. & Symington, L.S. Gene targeting in yeast is initiated by two independent strand invasions. *Proc Natl Acad Sci U S A* **101**, 15392-7 (2004).