

Supp. Figure 1.

IFN γ production by *i*NKT and NK cells in DC co-cultures is TLR9 dependent. Flt3L (*A*) or GM-CSF (*B*) derived BMDC from *Tlr9^{cpg/cpg}* mice were treated with CpG-ODN or control treated and cultured with purified *i*NKT cells or NK cells for 48h. Flt3L (*C*) or GM-CSF (*D*) derived BMDC from *Tlr9^{cpg/cpg}* were mock or MCMV infected and cultured with purified *i*NKT cells or NK cells for 48h. Supernatants were analyzed for IFN γ by ELISA, and shown is a representative experiment of 3 performed. ELISA results represent the mean of one experiment with three replicate cultures measured in triplicate. Error bars represent SEM (n = 9 for each set of BMDC).

Supp. Figure 2.

No-touch isolation of *i*NKT cells. *A*, Pre-enrichment splenocytes of C57BL/6 4get mice were analyzed for eGFP⁺ cells (*left panel*). Analysis of pre-enrichment eGFP⁺ cells analyzed for CD44⁺ and CD1d α GalCer tetramer⁺ *i*NKT cells (*right panel*). *B*, Postenrichment splenocytes of C57BL/6 4get mice analyzed for eGFP⁺ cells (*left panel*). Analysis of post-enrichment eGFP⁺ cells analyzed for CD44⁺ and CD1d α GalCer tetramer⁺ *i*NKT cells (*right panel*). *C*, Post sort analysis of GFP^{bright} splenoyctes for CD44⁺ and CD1d α GalCer tetramer⁺ *i*NKT cells. *A-C*, Percentages represent gated eGFP⁺ and gated *i*NKT cells. Numbers represent absolute number of *i*NKT cells per spleen. Data are representative of 8 independent experiments.

Supp. Figure 3.

NK and *i*NKT cell STAT4 activation. Splenocytes and liver mononuclear cells (data not shown) were isolated from naïve C57BL/6 4get mice and left untreated or stimulated with IFN β , IL-12, or IL-18 alone (*A and B*) or in combination (*C*) for 1 hour and cells were collected and stained to detect intracellular STAT4 phosphorylation. (*A-B*), Flow cytometric analysis of (*A*) CD19⁻, CD3⁻, NK1.1⁺ NK cells (*B*) or CD19⁻, CD8⁻, CD3⁺ CD44⁺ GFP⁺ *i*NKT cells left untreated (shaded histogram) or cultured with hi dose IL-12 (1ng/ml), IL-18 (1ng/ml) or IFN β (1000U/ml) indicated by the solid line. (*C*), Flow cytometric analysis of CD19⁻, CD8⁻, CD3⁺ CD44⁺ GFP⁺ *i*NKT cells left untreated (shaded histogram) or cultureated with low dose of IL-12 (10pg/ml), IL-18 (10pg/ml), and IFN β (10U/ml) as indicated and represented by the solid line. Data are representative histogram plots of 3 mice per condition cultured in triplicated.

Supp. Figure 4.

Depletion of CD8⁺ T cells does not alter day 4 MCMV innate defenses. Groups of BALB/c J α 18^{-/-} *i*NKT cell-deficient mice were depleted of CD8⁺ T cells or not, and subsequently infected with MCMV. MCMV replication levels in the liver (A), and spleen (B), are shown day 4 post infection. Results are representative of 4 mice per group. Error bars represent SEM (n=4 for each group).