

Supplemental Figure S1. Embryo phenotypes in WRKY23^{RNAi} (A – C), WRKY23::WRKY23^{amiRNA} (D – F), WRKY23::WRKY23-SRDX (G – H), and 35S::WRKY23-SRDX (I – J). Scale bar, 10 μ m. Arrowheads point to irregular hypophysis divisions. (K-L) Seedling phenotypes for independent WRKY23::WRKY23^{amiRNA} lines. (N-P) Seedling phenotypes for WRKY23::WRKY23-SRDX phenotypes.

Figure S2. Auxin response and transport in lines with reduced WRKY23 levels or activity. (A-B) pDR5::NLS:GFP in wildtype (A) and WRKY23::WRKY23^{RNAi}. (C-D) PIN localisation in wildtype (C) and 35S::WRKY23-SRDX using PIN1 antibody (antiPIN1).

Figure S3. *WRKY23* expression in (A) late globular embryo using mRNA in situ and (B-C) pWRKY23::GUS in 5-day old seedling root tip (B) and shoot apical meristem (C).

Figure S4. Expression level of *WRKY23* and auxin responsive genes in 3-day old *shr-2* root tips. Standard error is indicated.

Figure S5. Tissue-specific induction of *WRKY23* by 10 μ M NAA for 4 hours.

Figure S6. Auxin treatment (6 hours or 24 hours of 10 μ M NAA) on 6-day old wildtype (Col-0) seedlings. Experiment performed in triplicate. Standard error is indicated.

Table S1. Frequencies of defects observed in embryos of WT Col-0, *WRKY23:: WRKY23RNAi* lines, *WRKY23::WRKY23amiRNA*, *35S::WRKY23-SRDX* and *WRKY23:: WRKY23-SRDX*. (n.r. = not relevant)

line	stage	no defects	polarity defects	hypophysis defects
WT Col-0	pre-globular	169/171 (98.8%)	2/171 (1.2%)	n.r.
	globular	175/180 (97.2%)	2/180 (1.1%)	3/180 (1.7%)
	post-globular	141/151 (93.4%)	0/151 (0%)	10/151 (6.6%)
WRKY23::WRKY23RNAi	pre-globular	166/183 (90.7%)	17/183 (9.3%)	n.r.
	globular	277/341 (81.2%)	35/341 (10.3%)	29/341 (8.5%)
	post-globular	302/383 (78.9%)	23/383 (6.0%)	58/383 (15.1%)
WRKY23::WRKY23amiRNA	pre-globular	107/119 (89.9%)	12/119 (10.1%)	n.r.
	globular	54/71 (76.0%)	9/71 (12.7%)	8/71 (11.3%)
	post-globular	121/182 (66.5%)	14/182 (7.7%)	47/182 (25.8%)
35S::WRKY23-SRDX	pre-globular	54/54 (100.0%)	0/54 (0%)	n.r.
	globular	39/58 (67.2%)	4/58 (6.9%)	15/58 (25.9%)
	post-globular	58/85 (68.2%)	3/85 (3.5%)	24/85 (28.2%)
WRKY23::WRKY23-SRDX	pre-globular	248/267 (92.9%)	19/267 (7.1%)	n.r
	globular	190/234 (81.2%)	17/234 (7.3%)	27/234 (11.5%)
	post-globular	233/344 (67.7%)	20/344 (5.8%)	91/344 (26.5%)

Table S2. Frequencies of defects observed in heart stage embryos of WT Col-0, WT Ws, *tt4-* 8, *tt7-5* and *tt7-6*

line (associated wildtype)	Wild-type looking embryos	Hypophysis defects
wildtype Ws	197/203 (97.0%)	6/203 (3.0%)
<i>tt4-8</i> (Ws)	170/176 (96.6%)	6/176 (3.4%)
wildtype Col-0	152/155 (99.1%)	3/155 (1.9%)
<i>tt7-5</i> (Col-0)	309/316 (97.8%)	7/316 (2.2%)
<i>tt7-6</i> (Col-0)	321/327 (98.1%)	6/327 (1.8%)

Table S3. Primers used for construction of the WRKY23 amiRNAs

Primers	sequence
miR-s	gaTTTCACGTTACATGAAGGCGTtctctcttttgtattcc
miR-a	gaACGCCTTCATGTAACGTGAAAtcaaagagaatcaatga
miR*s	gaACACCTTCATGTATCGTGAATtcacaggtcgtgatatg
miR*a	gaATTCACGATACATGAAGGTGTtctacatatatattcct

amiRNA1 "TTTCACGTTACATGAAGGCGT" (target in exon 3)

amiRNA2 "TTGAACGCTTTCATACGGCCG" (target in 5'UTR)

Primers	sequence	
miR-s	gaTTGAACGCTTTCATACGGCCGtctctcttttgtattcc	
miR-a	gaCGGCCGTATGAAAGCGTTCAAtcaaagagaatcaatga	
miR*s	gaCGACCGTATGAAACCGTTCATtcacaggtcgtgatatg	
miR*a	gaATGAACGGTTTCATACGGTCGtctacatatattcct	

amiRNA3 "TTTTGACGTCACTAATTGCGC" (target in exon 1)

Primers	sequence
miR-s	gaTTTTGACGTCACTAATTGCGCtctcttttgtattcc
miR-a	gaGCGCAATTAGTGACGTCAAAAtcaaagagaatcaatga
miR*s	gaGCACAATTAGTGAGGTCAAATtcacaggtcgtgatatg
miR*a	gaATTTGACCTCACTAATTGTGCtctacatatatattcct

Table S4. Primers used for qRT-PCR

Gene	Primer sequence
WRKY23_FW	5'-AGTCTCGGTAATGGTTGCTTTGG-3'
WRKY23_REV	5'-TGTTGCTGCTGTTGGTGATGG-3'
BDL_FW	5'-GGTACTACTTGTCGAGAAAAGGTTAAACC-3'
BDL_REV	5'-CCCCTTCCTTATCTTCATAAGTGAGTAC-3'
MP_FW	5'-ACAAGCTTTAAAGACTACGAGGAGCTA-3'
MP_REV	5'-CGAGCTTTGTGGGTGAGTTAGTAG-3'
IAA19_FW	5'-TGATGTACCTTGGGGGGATGT-3'
IAA19_REV	5'-TGAACCAGCTCCTTGCTTCT-3'
IAA28_FW	5'-ATGCCGTTGACCAACTCTTC-3'
IAA28_REV	5'-CATCCCCGACCAGAACTTTA-3'
SHR_FW	5'-ACCACAACCATCACAACCACAAC-3'
SHR_REV	5'-CGAAGGACGGAGGAGTTTGAGG-3'
SCR_FW	5'-GACGCCATTATCAGAGACCTTATC-3'
SCR_REV	5'-GGAGCCTGTATTCAAGAAGAGC-3'
ACT7_FW	5'-ACTCTTCCTGATGGACAGGTG-3'
ACT7_REV	5'-CTCAACGATTCCATGCTCCT-3'
EEF1a4_FW	5'CTGGAGGTTTTGAGGCTGGTAT-3'
EEF1a4_REV	5'-CCAAGGGTGAAAGCAAGAAGA-3'
CDKA_FW	5'-ATTGCGTATTGCCACTCTCATAGG-3'
CDKA_REV	5'-TCCTGACAGGGATACCGAATGC-3'

Supplemental Materials and Methods

GUS staining of embryos. Embryos were dissected out of the ovules in 90% acetone. For embryos younger than globular stage, ovules were opened but the embryos were not dissected. After dissection, ovules and embryos were transferred to sieves (BD Falcon, cell strainer 40 μ m nylon) and were incubated under vacuum for 10 min in 90% acetone. Subsequently three washing steps were done under vacuum for 10 min each with a 0.5 M phosphate buffer (Na₂HPO₄/NaH₂PO₄ (615/385), pH 7). Sieves were then transferred to GUS staining solution (X-Glu (1mM) dissolved in DMFO (0.5% v/v); Triton X-100 (0.5% v/v); EDTA (1mM); K₃Fe(CN)₆ (0.5mM); K₄Fe(CN)₆ (0.5mM); phosphate buffer (0.5 M); pH 7) and incubated for 1 h under vacuum. After vacuum infiltration, samples were incubated at 37 °C. The staining reaction was stopped by two washes with 0.5 M phosphate buffer under vacuum for 10 min each.

Cloning. For the WRKY23::WRKY23-SRDX construct, the pEN-L1-WRKY23SRDX-R2 [1] was Gateway recombined with pEN-L4-WRKY23prom-R1 [1] and pK7m24GW [2]. The amiRNA constructs were designed and constructed as described [3], using primers miR-s, miR-a, miR*s and miR*a (Table S3). Gateway recombination sites were added in the final PCR to clone the amiRNA constructs in pDONR221. The vector pK7m24GW was used as a Gateway destination vector together with pEN-L4-WRKY23prom-R1.

1. Grunewald W *et al* (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. *Proc Natl Acad Sci U S A* **109:** 1554-1559

2. Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. *Plant Physiol* **145**: 1144-1154

3. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. *Plant Cell* **18:** 1121-1133