Supplementary Materials

Supplementary Methods

Phylogenetic analysis

43 amino acid sequences of Dis3, Dis3L and Dis3L2 proteins, including the SPAC2C4.07c gene product, used in the phylogenetic analyses, were obtained from NCBI Entrez and the Genome Portal of the Department of Energy Joint Genome Institute (Grigoriev et al, 2012) and are described in Supplementary Table 3.

CLANS (Frickey & Lupas, 2004) was used to visualize the relationships between different Dis3 proteins according to their pairwise sequence similarities with P-value cutoff at 10^{-10} .

Sequences were aligned using SeaView (Gouy et al, 2010). To estimate phylogenetic relationships the protein sequences were analysed using the Neighbour Joining (NJ), Maximum Parsimony (MP) and Bayesian inference (BI) methods. NJ analysis was performed using BioNJ (Gascuel, 1997) with the Kimura or Poisson distance and 1000 bootstrap replicates. For MP analysis PAUP* (Swofford, 2003) version 4.0b10 was used, with 1000 bootstrap replicates to assess the reliability of nodes. Consensus tree (50%) with bootstrap support values was calculated using the SumTrees program of the DendroPy package version 3.12.0 (Sukumaran & Holder, 2010). Bayesian inference analysis was performed using MrBayes version 3.1.2 (Ronquist & Huelsenbeck, 2003) with 500 000 generations of each MCMC search sampled every 10 generations, and mixed fixed-rate models. Burnin values corresponded to 25% of the samples. Trees were visualized using Dendroscope (Huson et al, 2007).

Microarray analysis

Yeasts were grown up to early exponential phase at YES media and total RNA was extracted as described. The quality was assessed with a BioAnalyzer (Agilent Technology). RNA was processed for use on GeneChip Yeast Genome 2.0 Array from Affymetrix, according to the manufacturer's protocol. Three independent biological samples were analysed for each strain. Hybridization, scanning and detection procedures were done at the Genomics Unit of the Instituto Gulbenkian de Ciência.

Subsequent exploration, normalization, summarization and analyses of the generated Affymetrix CEL files were performed using R free statistical software (http://cran.r-project.org/) and its associated tool for high-throughput genomic data, Bioconductor (http://www.bioconductor.org/).

The reliability of the data set, before and after normalization, was estimated through its statistical exploration. For each strain, the summarized probe set intensities were calculated using the Robust MultiArray Averaging (RMA) method (Bolstad et al, 2003; Irizarry et al, 2003). The empirical Bayes statistics was used to analyze the data because it provides a robust estimate of variance for each gene. It indeed assumes that genes expressed at similar levels exhibit similar variance which leads to the smoothing of standard errors associated to the fold-change logs (Hatfield et al, 2003). The multiple testing issue was furthermore taken into account through the calculation of the False Discovery Rate (FDR) according to Benjamini-Hochberg method (Benjamini et al, 2001).

pFA6a TAP Kan MX6 plasmid construction

GFP sequence was removed from the pFA6a GFP kan MX6 vector using restriction enzymes PacI AscI (Fermentas). The TAP tag sequence was then cloned into the plasmid using SLIC method according to the protocol (Li & Elledge, 2007). TAP tag sequence was amplified using pJL72 vector template. Primers used are listed in Supplementary Table 2.

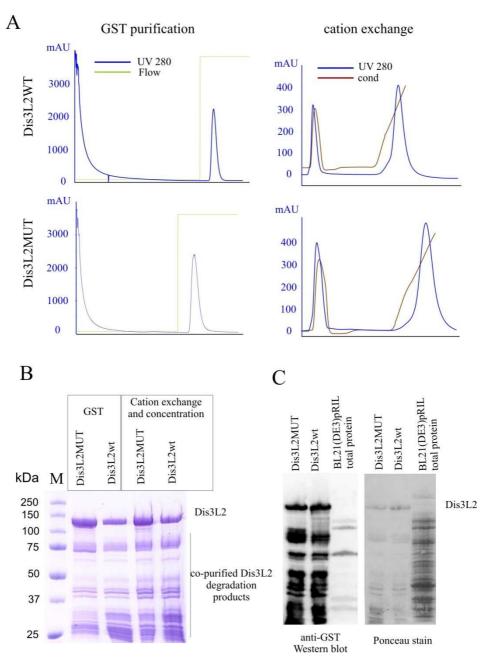
Dis3L2 protein purification

Proteins were expressed in BL(21) pRIL cells grown in full media at 37 °C until OD₆₀₀ 0.6 and then expression was induced for overnight at 20 °C, subsequently cells were harvested, resuspended in lysis buffer (300mM NaCl, 1mMDTT, 50mM Phosphate buffer pH 7) and lysed using French press. Lysates were clarified by ultracentrifugation and protein purification was performed using GST-trap column according to manufacturer's instructions (GE Healthcare). The proteins were additionally purified using cation exchange column (HiTrap SP HP) according to manufacturer's instructions (GE Healthcare). After purification the proteins were concentrated to about 100 μ g/ μ l using viva spin 500 columns (Sartorius stedim). The concentration of proteins was monitored using Bradford method and SDS-PAGE gels. Protein solutions were finally diluted until 50% in glycerol and kept at -80 °C.

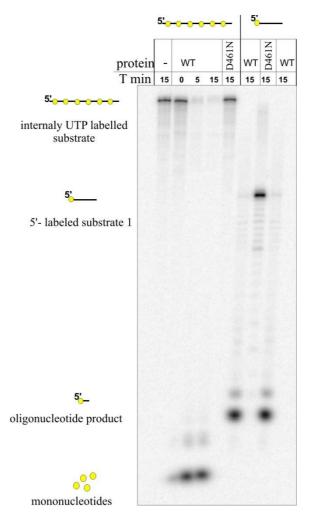
Substrate labeling

For all assays described in the text HPLC, purified RNA or DNA oligonucleotides were used (http://www.stabvida.net/). Oligonucleotides were 5' labeled with radioactive phosphate using PNK (Fermentas) and $\gamma P^{32}ATP$ and the substrate purified using G-50 columns (GE Healthcare). Substrates were then added to the reactions directly or supplemented with a known concentration of the non-labeled oligonucleotide. To create double-stranded substrates a complementary non-labeled DNA oligonucleotide was mixed with the radioactive oligo in a 2:1 molar ratio, samples were then denatured and cooled down slowly for annealing. Integrity of the double-stranded substrates was checked using native acrylamide gels (Malecki et al, 2010).

For the synthesis of the internally labeled substrate, in vitro transcription was carried out using the purified PCR product as template in the presence of an excess of [32P]- α -UTP over unlabeled UTP with 'Riboprobe in vitro Transcription System' (Promega) and T7 RNA polymerase. Radioactive transcripts were purified by electrophoresis on an denaturing polyacrylamide gel. The gel slice was crushed and the RNA eluted with elution buffer (3 M ammonium acetate pH 5.2, 1mM EDTA, 2.5% (v/v) phenol pH 4.3), overnight at room temperature. The RNA was ethanol precipitated and resuspended in RNase free water.


RNA isolation

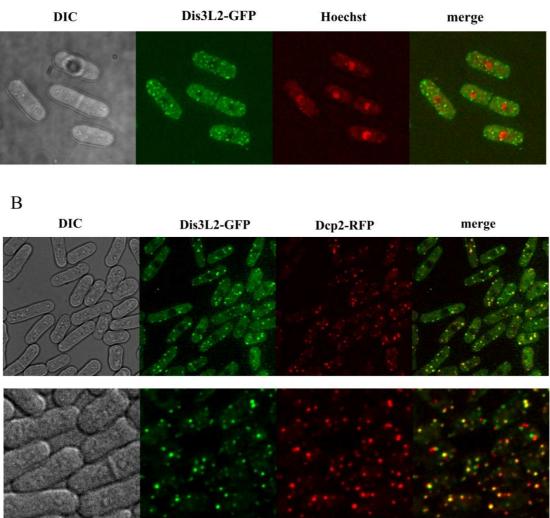
Cells were thawed on ice, resuspended in the cold AES buffer (0.5 % SDS, 50mM NaAc pH 5.2, 10mM EDTA) and then transferred to the tubes containing phenol solution and glass beads (Sigma 425-600 μ m). Cells were lysed in phenol using FastPrep-24 equipment (MP Biomedicals) – 3 times maximum speed for 25 s. Subsequently the solution was incubated in 65°C for 30 min with vortex every 10 min, than centrifuged and aqueous fraction was transferred to the fresh tube with phenol. Solution was vortex for 5 min, centrifuged and the aqueous fraction was transferred to the fresh tube. Subsequently NaAc (pH 5.3) was added to 300 mM and RNA was precipitated with ethanol.


Supplementary Figure 1

SPBC26H8.10	SPAC2C4.07c	SPBC609.01	SPCC16C4.09	SPCC23B6.06	systematic name
e * *	*1		0000		localisation of overexpressed GFP fusion (data from RIKEN www.riken.jp/SPD/)
inviable	viable	inviable	viable	viable	deletion phenotype
Dis3	-	-	Ssd1	Dss1	S. cerevisiae orthologs
yes	yes	no	no	yes	conservation of exoribonucleolytic active site

Figure S1 Listed *S. pombe* genes that encode proteins with RNase II/R domain, with localization data from (Matsuyama et al, 2006). Phenotype and budding yeast homologue information from Pombase (<u>http://www.pombase.org/</u>) (Wood et al, 2012).

Figure S2 Dis3L2 purification. (**A**) GST fusions of Dis3L2 wild type (Dis3L2WT) and mutated version (Dis3L2MUT) were purified using GST affinity chromatography followed by cation exchange chromatography. (**B**) SDS-PAGE analysis of purification products. The size of the full length Dis3L2 protein is indicated on the right. Preparations obtained after cation exchange and protein concentration were used in the assays. (**C**) Purified protein preparations were subjected to Western blot analysis against GST to investigate the nature of lower molecular weight contaminants. Contaminations consisted on Dis3L2-GST protein degradation by-products as indicated in the picture. The total protein extract from the bacteria used for protein expression was used (BL21(DE3)pRIL) as control. The weaker signal of target protein in Western blot is due to signal saturation.


Figure S3 Dis3L2 is a processive 3-5' exonuclease. Around 0.5 pmols of purified wild type protein Dis3L2 (WT) and its mutated version (D461N) were incubated with 0.2 pmols of either an internally labeled RNA substrate (see Supplementary Table 2) or a 5'-end labeled substrate (substrate 1). Reactions were stopped at the indicated times and products were separated on denaturing polyacrylamide gel. The size of the different substrates and reaction products are indicated.

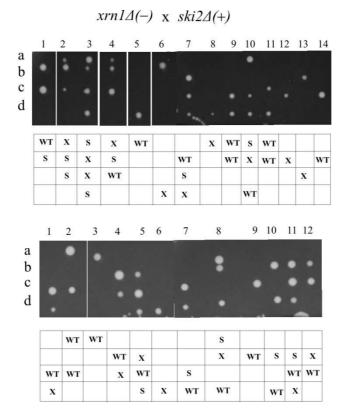
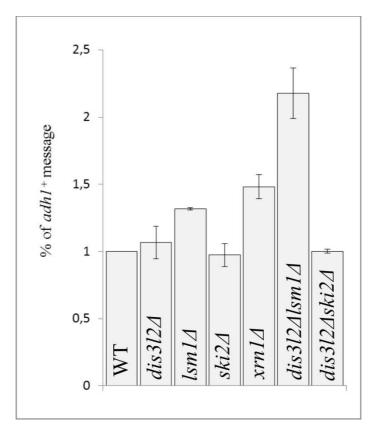

	10
Dis3_gi 328786997_Apis_mallifera/455-467	P P G C T D I D D A L H C
Dis3_gi 24649634_Drosophila_melanogaster/487-499	P P G C T D I D D A L H C
Dis3_gi 321478602_Daphnia_pulex/477-489	P P G C T D I D D A L H F
Dis3_gi 198429347_Ciona_inteastinalis/452-464	P P G C T D I D D C L H H
Dis3_gi 190014623_Homo_sapiens/480-492	PPGCTDIDDALHC
Dis3_gi 145207992_Mus_musculus/480-492	P P G C T D I D D A L H C
Dis3_gi 118084745Gallus_gallus/483-495	P P G C T D I D D A L H C
Dis3_gi 171847251_Xenopus_tropicalis/475-487	P P G C T D I D D A L H C
Dis3_gi 326664018_Danio_reiro/477-489	P P G C T D I D D A L H C
Dis3_10544 gw.129.26.1_Nematostella_vactensis/478-490	P P G C T D I D D A L H W
Dis3_gi 221101666_Hydra_magnipapillata/470-482	P P G C T D I D D A L H W
Dis3_gi 212645896_Caenorhabditis_elegans/492-504	PLGCTDIDDALHC
Dis3_gi 224071355_Populus_trichocarpa/484-496	P P G C K D I D D A L H C
Dis3_gi 18398450_Arabidopsis_thaliana/482-494	P P G C K D I D D A L H C
Dis3_gi 222624135_Oryza_sativa/469-481	P P G C R D I D D A L H C
Dis3_gi 168027129_Physcomitrella_patens/501-513	PLGCRDIDDALHC
Dis3_gi 6324552_Saccharomyces_cerevisiae/544-556	P P G C V D I D D A L H A
Dis3_gi 19113445_Schizosaccharomyces_pombe/509-521	P P G C Q D I D D A L H A
Dis3_gi 154340223_Leishmania_braziliensis/410-422	P L G C R D I D D A L H C
Dis3L_gi 219521928_Homo_sapiens/479-491	PKGCEDVDDTLSV
Dis3L_gi 295293138_Mus_musculus/479-491	PKGCEDVDDTLSV
Dis3L_gi 363737633_Gallus_gallus/476-488	PKGCEDVDDALSV
Dis3L_gi 1118403694_Xenopus_tropicalis/394-406	PKGCEDVDDALSI
Dis3L_gi 160333118_Danio_reiro/473-485	PKGCEDVDDTLSV
Dis3L_gi 156382055_Nematostella_vactensis/479-491	PKGCEDVDDTLSI
Dis3L2_gi 17553506_Caenorhabditis_elegans/315-326	PKTARDLDDALH -
Dis3L2_gi 198421184Ciona_intestinalis/403-414	PPSARDLDDALH - PSTARDLDDALS -
Dis3L2_gi 1342888890_Homo_sapiens/384-395	PSTARDLDDALS-
Dis3L2_gi 24233556_Mus_musculus/382-393 Dis3L2_gi 363737173_Gallus_gallus/384-395	PSTAKDLDDALS -
Dis3L2_gi 118404918_Xenopus_tropicalis/355-366	PATARDLDDALS -
Dis3L2_gi 19404918_Aenopris_10picults355-500 Dis3L2_gi 292610486_Danio_reiro/348-359	PATARDLDDALS -
Dis3L2_gi 156388005_Nematostella_vactensis/301-312	PLTARDLDDALH -
Dis3L2_gi 321453433_Daphnia_pulex/426-438	PADARDLDDAVSG
Dis3L2_gi 221123214_Hydra_magnipapillata/273-284	PATARDLDDAVS -
Dis3L2 gi 328786136 Apis mallifera/301-312	PDAAVDLDDSVS-
Dis3L2_gi 24654592_Drosophila_melanogaster/573-584	PMTARDLDDAVS -
Dis3L2_gi 19115422_Schizosaccharomyces_pombe/454-465	
Dis3L2 gi 224066863 Populus trichocarpa/405-416	PSSATDLDDALS -
Dis3L2 gi 15220899 Arabidopsis thaliana/489-500	PSTATDLDDALS -
Dis3L2_gi 115448745_Oryza_sativa/476-487	PPTATDLDDAIS -
Dis3L2_gi 168042407_Physcomitrella_patens/481-492	PPTARDLDDALS-
Dis3L2_gi 154340243_Leishmania_braziliensis/320-332	PATAR <mark>DLDD</mark> ALSI

Figure S4 Phylogenetic analyses of the Dis3 homologues in eukaryotes. Three distinct groups, corresponding to Dis3, Dis3L and Dis3L2 are apparent in all trees, and the SPAC2C4.07c gene product of *S. pombe* (Dis3L2_Spo) is consistently classified with the Dis3L2 group. (**A**) 50% majority-rule consensus tree from 1000 bootstrap replicates of a maximum parsimony (MP) analysis, bootstrap support values shown for nodes. (**B**) Bayesian inference (BI) tree, with posterior probabilities of each node. (C) Conservation of active site consensus between different Dis3 like proteins.


А

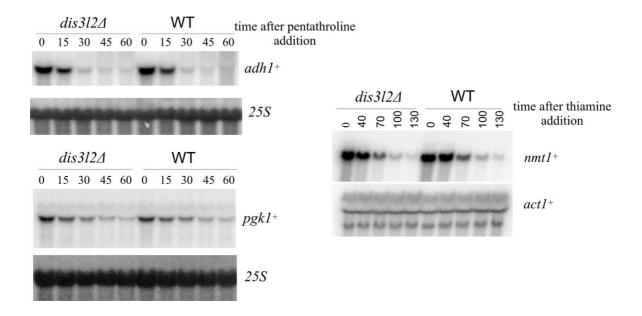

Figure S5 Dis3L2 localizes in the cytoplasm and cytoplasmic foci. (**A**) Cells expressing Dis3L2-GFP were grown to mid-log phase in minimal medium (EMM) and the localization of epitope tagged protein was determined by fluorescence microscopy. Nucleus were stained with Hoechst and its co-localisation with Dis3L2-GFP signal was was examined. (**B**) Dis3L2-GFP was examined for co-localization with Dcp2-RFP. Cells expressing Dis3L2-GFP and Dcp2-RFP were grown to mid-log phase in minimal medium (EMM) and than immediately subjected to microscopy.

Figure S6 $xrn1^+$ deletion is synthetically lethal with deletion of $ski2^+$. Haploid $ski2^+::hph$ cells were crossed with $xrn1^+::hph$ strain. Resulting diploids were sporulated and tetrads were dissected on YES plates. Genotypes of the spores were analyzed by colony PCR and are described in the bottom tables: WT- wild type strain, X- $xrn1\Delta$, S- $ski2\Delta$.

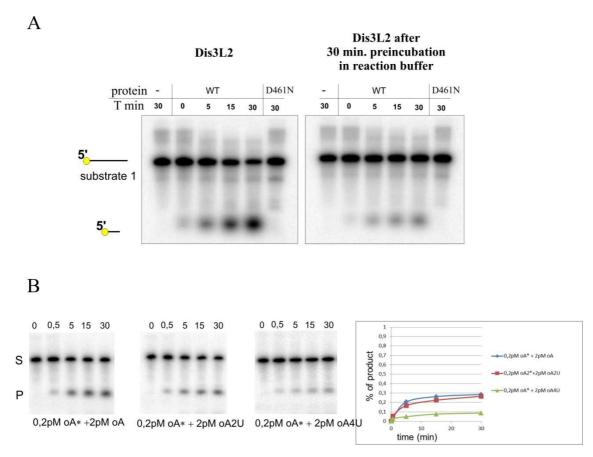
Figure S7 $adh1^+$ transcript levels accumulates in a $dis3l2\Delta lsm1\Delta$ background. Graph represents Northern blot results of $adh1^+$ mRNA analysis over total RNA from the wild type and different deletion mutant strains, from three independent experiments. Error bars represent standard deviation.

Figure S8 No detectable difference was observed in mRNAs degradation rates between wild type yeast strain (WT) and $dis3l2\Delta$ mutant. Wild type and $dis3l2\Delta$ strains were grown in the full media (for $adh1^+$ and $pgk1^+$) or minimal media (for $nmt1^+$) until midlog phase, subsequently transcription was stopped by either 1,10-penanthroline (for $adh1^+$ and $pgk1^+$) or thiamine (for $nmt1^+$) addition. Cells were harvested at the indicated time points after transcriptional arrest, total RNA was isolated and mRNA decay analyzed by Northern blot.

WT

$dis3l2\Delta$

$lsm1\Delta$


CTTTTCTTTCTTCCTCCTCCTCGTTCAT (-171) CAAACCATCTCGGGGTTAGAGT (-246) CCCATCCTTTAAAAAAAT (7) CCCATCCTTTAAAAAAAAAAAAAAATT (14) CCCATCCTTTAAAAAAAAAAAATT (12) CCCATCCTTTAAAAAAAAAA (10) CCCATCCTTTAAAAAAT (6) CCCATCCTTTAAAAAAAAA (10) CCCATCCTTTAAAAAAAAAA (10) CCCATCCTTTAAAAATT (5) CCCATCCTTTAAAAAAAAAAAAAA (13) CCCATCCTTTAAAATT (4) CCCATCCTTTAAAAAAAAT (8)

$dis3l2\Delta$ $lsm1\Delta$

TGTTTTGTATAGAAATCAATGTTTT (-20) GGACGATTGTACCTTTGAAAATTTT (-55) GATTGTACCTTTGAAAACCAATT (-52) GGACGATTGTACCTTTGAAAACCAACT (-50) TGTTTTGTATAGAAATCAATGT (-20) TGTTTTGTATAGAAATTTTT (-25) CCTTTGAAAATTTT (-55) TTTTGCATGTTTTTTTTTTTTT(-35) CCCATCCTTTAAAAAAAAAAAAAAAAAAAAA (18) CAACTACTTTTGCATGTTTT (-34) CCCATCCTTTAAAAAAAAAAAAAAAAAAAA (17) TTAGAATCCCATT (-4) CAACTACTTTTGCATGTTTT (-34) TTTTGTATAGAAATC (-23) TTAGAATCCCATT (-4) TTTTGCATGTTCTTTTT (-36) TTAGAATCCCATTTTTTTT (-4) CCCATCCTTTAAAAAAATTT (8)

Figure S9 Sequences of 3'-ends of $adh1^+$ transcripts obtained in 3' RACE experiment from different yeast strains. The non-genome encoded thymines are colored in red. Length of poly(A) tail is represented by the positive values in the brackets, and the extension of the 3'-end trimming is represented by the negative value. Nucleotides were counted from polyadenylation site (zero point).

Supplementary 14

Figure S10 (**A**) Dis3L2 loses its activity over time in the reaction conditions. 0.5 pmols of Dis3L2 or mutated protein version (D461N) were incubated with 2pmols of 5' labeled substrate 1 for 30 minutes or first pre-incubated 30 minutes in reaction buffer in 30° C and subsequently supplemented with the substrate and incubated another 30 minutes. Reactions were stopped at indicated times and products were separated on denaturing polyacrylamide gels (**B**) Uracil residues added to the 3' end can effectively target RNA substrates for degradation by Dis3L2 *in vitro*. Addition of non-labeled uridylated substrates inhibits degradation of labeled adenylated RNAs. Equal amounts of Dis3L2 protein were incubated with the indicated amounts of different RNA substrates (RNA oligonucleotides sequence in Fig.7 and Supplementary Table 1). Reactions with radioactive substrates (labeled with *) were supplemented with non-labeled oligonucleotides. Reactions were stopped at the indicated time points (top of the gels) and separated on denaturing polyacrylamide gels. Graphs on the right side depict the accumulation of the reaction product at different time points as calculated using Image Quant.

Supplementary Tables

Supplementary Table 1 Strains used in this study

Strain	Genotype	Creator
MGF10	h- ade6-M210 his3-D1 leu1-32 ura4-D18	J Cooper
MGF11	h- ade6-M210 his3-D1 leu1-32 ura4-D18	J Cooper
MGF1	<i>h</i> -	
MGF2	<i>h</i> +	
MGF3	h- ade6-M210 his3-D1 leu1-32 ura4-D18 dis3l2::KanMX4	Bioneer
MM1	<i>h- ade6-M210 his3-D1 leu1-32 ura4-D18 dis3l2::dis3l2-GFP- KanMS6</i>	this study
MM2	h- ade6-M210 his3-D1 leu1-32 ura4-D18 dis3l2::dis3l2-GFP- KanMS6 dcp2::dcp2-mRFP-hph	this study
MM3	h- ade6-M210 his3-D1 leu1-32 ura4-D18 dis3l2::dis3l2-GFP- KanMS6 pabp::pabp-mRFP-hph	this study
MM4	h- ade6-M210 his3-D1 leu1-32 ura4-D18 dis3l2::dis3l2-GFP- KanMS6 dis3::dis3-mRFP-hph	this study
MM5	h- ade6-M210 his3-D1 leu1-32 ura4-D18 dis3::dis3-GFP- KanMS6	this study
MM6	<i>h- ade6-M210 his3-D1 leu1-32 ura4-D18 rrp43::rrp43-GFP- KanMS6</i>	this study
MM7	h- ade6-M210 his3-D1 leu1-32 ura4-D18 dis3::dis3-TAPtag- KanMS6	this study
MM8	h- ade6-M210 his3-D1 leu1-32 ura4-D18 rrp43::rrp43-TAPtag- KanMS6	this study
MM9	h- ade6-M210 his3-D1 leu1-32 ura4-D18 dis3l2::dis3l2-TAPtag- KanMS6	this study
MM10	h- dis3l2::KanMS6	this study
MM11	h- dis3l2::hph	this study
MM12	h+dis3l2::hph	this study
MM13	h- xrn1::hph	this study
MM14	h + xrn1::hph	this study
MM15	h- dis3l2::KanMS6 ski2::hph	this study
MM16	h- ski2::hph	this study
MM17	h- dis3l2::KanMS6 lsm1::hph	this study
MM18	h-lsm1::hph	this study
MM19	h- dcp2::dcp2-GFP-KanMS6	this study
MM20	h- dis3l2::hph dcp2::dcp2-GFP-KanMS6	this study

RNA substrates	
Substrate 1	GUUUUGUAUAGAAAUCAAUG
Substrate 2	CCCGACACCAACCACUAAAAAAAAAAAAAA
oA	САССААССАСИАААААААААААА
oA2U	CACCAACCACUAAAAAAAAAAAUU
oA4U	CACCAACCACUAAAAAAAAAUUUU
Poli(U)	ՍԱՈՌՈՒՈՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅՅ
Poli(A)	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
Internally labeled substrate	GAAAUAUUUGUAAUUGCAACUUAAUUUUCCUGUAACAUAGUGUGAUUAAUUUU CAGUAGGGGGUUAUAAAAAUUGAAGGAUAAGAUUAUUGAUAACGCAA UAACCUUAUUUUCAGAG
DNA oligonucleotic	
Substrate3 (DNA)	AGTGGTTGGTGTCGGG
18SrRNAprobe	ACCAGACTTGCCCTCCAATTGTTCC
25SrRNAprobe	ACCTTGGAGACCTGCTGCGGTTATG
Primers	
L_fba1_probe	CATCCCTGCCATTAACGTCAC
R_fba1_probe	GACGTAGGCGAATTGGGTATC
L_pabp_probe	TACTCGCCGTTCTTTGGG
R_pabp_probe	ACCTGCTTCCTGCTTTCC
L_hsc1_probe	AGGGCAATGCTCGTCCTAC
R_hsc1_probe	GAGGCAGCCAAACCAGAAC
L_pyk1_probe	CTCCGTGATGCTGGTATG
R_pyk1_probe	GCTGGTGGACAAGACAAC
L_pgk1_probe	CACCAACAATGCCCGTATCG
R_pgk1_probe	TCCACAGTCCAAACCCATCC
L_act1_probe	CTATGTATCCCGGTATTGCC
R_act1_probe	GGAGCTTAGAAGCACTTACG
L_rrg1_probe	CACGAACAGCCTTCTTACTC
R_rrg1_probe	GAGCCAAAGTCTTCTTCACC
L_adh1_probe	CACCGATTTACACGCTCTTC
R_adh1_probe	GAAAGGTCCAAGACGATACG
L_pik1_probe	GCTGGTAAAAATGTTGTTAC
R_pik1_probe	TAGTAAATTCCGTTCG
L_nmt1_probe	TATGAGCGTGAAGGGATTGAG
R_nmt1_probe	CGACATAACGAAGTGAGTTGC
1 st _adh_PASE	CAAGATTGCCGGCCGTATCG
2 nd _adh_PASE	TTTCACCACACGTTTATACC
L_TAPtagSLIC	CGCTGCAGGTCGACGGATCCCCGGGTTAATTAACATGG AAAAGAGAAGATGGA
R_TAPtagSLIC	TAAGAAATTCGCTTATTTAGAAGTGGCGCGCCTCAGGT TGACTTCCCCGCGG
L_mut_Dis312	CAGCTCGAGACTTGAATGATGCTGTTTC
P_mut_Dis3l2	GAAACAGCATCATTCAAGTCTCGAGCTG
L_clon_Dis3l2	ATGAATTCATGGATTTAAAAACCAAATATTAG
P_clon_Dis3l2	TACTCGAGTTAATTCAAAGAAACTAGAC

Supplementary Table 2 Oligonucleotides and substrates used in this study.

*all the primers used for *S. pombe* gene deletions and integrations were designed using PPP: Pombe PCR Primer Programs tool (Penkett et al, 2006) and are not included in this list, as well as primers used for checking integration in the obtained strains.

Standard primers for 3' linker used in PASE reaction (Alexander et al, 2010) are not included in the table.

Name	Family	Species	Accession#
Dis3_Amel	Dis3	Apis mellifera	XP_397381
Dis3L2_Amel	Dis3_L2	Apis mellifera	XP_624734
Dis3 Cele	Dis3	Caenorhabditis elegans	NP_501835
Dis3L2_Cele	Dis3_L2	Caenorhabditis elegans	NP 498160
Dis3_Cint	Dis3	Ciona intestinalis	XP_002132066
Dis3L2_Cint	Dis3 L2	Ciona intestinalis	XP_002119190
Dis3_Drer	Dis3	Danio rerio	XP_001336850
Dis3L_Drer	Dis3L	Danio rerio	NP 001103928
Dis3L2_Drer	Dis3L2	Danio rerio	XR_084214
Dis3_Dpul	Dis3	Daphnia pulex	EFX89559
Dis3L2_Dpul	Dis3L2	Daphnia pulex	EFX64669
Dis3_Dmel	Dis3	Drosophila melanogaster	NP_651246
Dis3L2_Dmel	Dis3L2	Drosophila melanogaster	NP_728490
Dis3_Ggal	Dis3	Gallus gallus	XP 417016
Dis3L_Ggal	Dis3L	Gallus gallus	XP 003641875
Dis3L2_Ggal	Dis3L2	Gallus gallus	XP 422741
Dis3_Hmag	Dis3	Hydra magnipapillata	XR_053815
Dis3L2_Hmag	Dis3L2	Hydra magnipapillata	XP 002154262
Dis3_Mmus	Dis3	Mus musculus	NP 082591
Dis3L Mmus	Dis3L	Mus musculus	NP 001001295
Dis3L2_Mmus	Dis3L2	Mus musculus	NP 705758
 Dis3L_Nvec	Dis3L	Nematostella vectensis	 XP_001632370
Dis3L2_Nvec	Dis3L2	Nematostella vectensis	XP_001634492
Dis3_Nvec	Dis3	Nematostella vectensis	
Dis3_Osat	Dis3	Oryza sativa	EEE58267
Dis3L2_Osat	Dis3L2	Oryza sativa	NP_001048152
Dis3_Ppat	Dis3	Physcomitrella patens	XP_001766083
Dis3L2_Ppat	Dis3L2	Physcomitrella patens	XP_001773680
Dis3_Scer	Dis3	Saccharomyces cerevisiae	NP_014621
Dis3_Spo	Dis3	Schizosaccharomyces pombe	NP_596653
Dis3L2_Spo	Dis3_L2	Schizosaccharomyces pombe	NP_594510
Dis3_Umay	Dis3	Ustilago maydis	XP_759849
Dis3L2_Umay	Dis3L2	Ustilago maydis	XP_757367
Dis3_Xtro	Dis3	Xenopus (Silurana) tropicalis	NP_001120564
Dis3L_Xtro	Dis3L	Xenopus (Silurana) tropicalis	NP_001072835
Dis3L2_Xtro	Dis3L2	Xenopus (Silurana) tropicalis	NP_001072804
Dis3L_Hsap	Dis3L	Homo sapiens	NP_001137160
Dis3_Hsap	Dis3	Homo sapiens	NP_055768
Dis3L2_Hsap	Dis3L2	Homo sapiens	NP_689596
Dis3_Ptri	Dis3	Populus trichocarpa	XP_002303419
Dis3L2_Ptri	Dis3L2	Populus trichocarpa	XP_002302251
Dis3_Atha	Dis3	Arabidopsis thaliana	NP_565418
SOV_Atha	Dis3_L2	Arabidopsis thaliana	NP_177891

Supplementary Table 3 Sequences used in protein comparison and phylogenetic analyzes. Accession numbers from NCBI Entrez with the exception of *.

* Sequence not available in NCBI Entrez at the time of writing. Protein ID and Name from the Genome Portal of the Department of Energy Joint Genome Institute (Grigoriev et al, 2012) provided instead.

Supplementary Table 4 Proteins co-purified with Dis3TAP or Rrp43TAP and identified by mass-spectrometry. Protein or gene names are listed by score order. Known exosome complex subunits and

interacting proteins are underlined

Dis3TAP	Rrp43TAP
dis3	1:-2
tdh1	dis3
rrp46	rrp45
rrp45 rrp42	rrp4
rrp4	rrp42
rrp40	rrp46
fas2	fas2
rrp43 rrp41	rrp40
fas1	rrp43
gpm1	fas1
rpl4a	
csl4 tef1a	rrp41
mtr3	rrp6
pyk1	mtr3
tef3	csl4
eno101 egd2	sks2
egdz ssa2	act1
pgk1	ssa2
pda1	rpp201
swo1 SPBC16A3.08c	tef1b
gual	
act1	gpd3
rpp201	rpa5
rrp6 SDCC704.07	SPAC24C9.12c
SPCC794.07 his1	gual
pdb1	ura1
rpl7c	pda1
ural SDA CIER 07-	rpl4b
SPAC1F8.07c rpp203	arg5
adh1	SPAP8A3.05
rpa5	SPACUNK4.11c
rps3 hsp60	
fba1	pdb1
sce3	SPCC794.07
rps2	rps18a
wis2 cct2	hsp60
rps7	rpp203
SPBC8D2.18c	rpl14
rps18a	SPCC1235.01
vas2 sgt2	rpl25a
arg5	rps7
rpa1	rpp202
rps6a	rp130a
cdc48 rps5b	SPCC1827.03c
sla1	
rpl6	SPCC1739.07
rps0b	rpl18b
SPCC1739.07 rpl1201	cct4
rpl25a	fta5
rpl18a	rps23a
lys4	cct5
rps22a cdc48	rp128e
cdc48	101200

fta5	1 1
tef-1	sla1
ssp1	tif471
rps19a	ssp1
SPCC1259.09c	htb1
SPAC9.09	
gpd1	puf6
eft1	eft1
SPAC24C9.12c	SPCC364.06
SPAC22A12.16	
ilv5	rpl27a
btf3	rpl7c
rpl11a SPBC24C6.04	SPAC222.08c
eca39	rpp0
rpl30a	
pab1	rpt3
mbf1	hsp10
sua1	rpl35
cof1	rpl7b
SPCC1827.03c	swol
rps16a	
rpl23a SPAC1782.11	pfk1
SPAC1/82.11 rpl7b	SPAC12G12.07c
rp1/6	rpl37b
cct6	cct6
SPAP8A3.05	
SPCC1235.01	mlo3
rpl27a	tea3
rpl28e	rpn7
p23fy	
vma10	rps4c
rps6b krs1	btf3
SPCC1223.14	rps14a
rps0a	rpl22
rpp202	dld1
rps14a	
SPCC191.02c	rpl6
gly1	rps15b
hsp10	tfs1
rps102	rps102
rpl35	
rpl18b cut6	tif213
rpl24b	ubi3
sti1	rp18
SPAC12G12.07c	-
SPBC354.10	rps2
rps20	rpl17b
rps4c	rpc19
rps23a	rps5b
SPCC584.01c SPAPB1E7.07	tif211
srp2	
aro4	rpl13
SPBC660.16	rp136a
tif211	rpl16a
rpp0	SPAC1F8.07c
rpl13	
rps21	rp11201
rps12a	SPBC1734.11
but2	tcg1
mge1 SPCC364.06	cut6
sir1	
rpl2a	ppt1
SPAC222.08c	
rkil	
inh1	
rpl31	
cdc37	
ura5	
rpl36a	

gpx1
cdc8
rpl10b
htb1 Spppep7.05
SPBP8B7.05c SPAC26F1.13c
nup61
arg4
mlo3
rps4b
rpn2
rpl17b
SPAC1805.02c
fim1
rps17a
rpt3
tea3 SPAC4F10.19c
arg1 dbp2
rps9a
hub1
rps0b
SPAC17A5.15c
atp2
pmt3
tif1
SPAC24H6.10c
SPBC1711
lys3
rpl37b rps101
SPBC1703.07
SPBC19C7.06
SPBC18E5.07
rpl28a
rps10b
pmp20
SPAC8C9.04
mmf1
rpl22
rad25
tim13 rpb4
rpl15b
erg10
SPBC2F12.05c
bip1
hsp9
SPBC21B10.03c
cct8
cct4
SPAPB24D3.07c
rpl5a tif471
ypt1
rkp1
hts1
tal1
lys1
SPBC1539.06
grx4
rpl20a
rad24 SPBC776.15c
SPBC770.13C SPCC1183.02
rpl3b
cpy1
dld1
shm2
plb1
shg1
tpx1 SPD C712 02
SPBC713.03 rps8b

rps27	
cyc1	
rpl8	
ubi3	
SPBC1734.11	
rps30a	
tpi1 sui1	
clc1	
mpd2	
tef3	
mri1	
eif3f	
SPBC1271.04c	
SPAC10F6.16	
rps13	
tif213	
pan1	
SPBC359.05	
SPCC965.06	
SPAC25G10.08	
SPAC29E6.06c	
SPAC13G7.06	
arc4	
vip1 SPBC1198.05	
5FBC1198.05 tif11	
rps15a	
SPBC776.03	
tcg1	
SPAC1F5.11c	
ppt1	
cct5	
rps24b	
rpl16a	
SPAC9E9.09c	
utp22	
SPAC1F5.06	
mug125	
mts2 eif3m	
hmt2	
rrf1	
nhp6	
SPAC22E12.19	
SPAC23H3.15c	
uba2	
dps1	
SPBP4H10.15	
srp54	
hxk1	
hrq1	
aru1	
SPAC5H10.03 SPBC30D10.05c	
SPBC14C8.04	
ino80	
SPBC29A3.16	
rhb1	
mdn1	
srp72	
ded1	
SPAC926.08c	
prs3	
SPAC458.04c	
let1 SPBC337.07c	
SPBC337.0/c smd1	
utp20	
SPMIT.03	

References

Alexander RD, Barrass JD, Dichtl B, Kos M, Obtulowicz T, Robert MC, Koper M, Karkusiewicz I, Mariconti L, Tollervey D, Kufel J, Bertrand E, Beggs JD (2010) RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of premRNA splicing and 3'-end processing in Saccharomyces cerevisiae. *RNA* **16**: 2570-2580

Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. *Behav Brain Res* **125**: 279-284

Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. *Bioinformatics* **19:** 185-193

Frickey T, Lupas A (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. *Bioinformatics* **20**: 3702-3704

Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. *Mol Biol Evol* **14**: 685-695

Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. *Mol Biol Evol* **27**: 221-224

Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I (2012) The genome portal of the Department of Energy Joint Genome Institute. *Nucleic Acids Res* **40**: D26-32

Hatfield GW, Hung SP, Baldi P (2003) Differential analysis of DNA microarray gene expression data. *Mol Microbiol* **47:** 871-877

Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: An interactive viewer for large phylogenetic trees. *BMC Bioinformatics* **8:** 460

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics* **4:** 249-264

Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. *Nat Methods* **4:** 251-256

Malecki M, Stepien PP, Golik P (2010) Assays of the helicase, ATPase, and exoribonuclease activities of the yeast mitochondrial degradosome. *Methods Mol Biol* **587:** 339-358

Matsuyama A, Arai R, Yashiroda Y, Shirai A, Kamata A, Sekido S, Kobayashi Y, Hashimoto A, Hamamoto M, Hiraoka Y, Horinouchi S, Yoshida M (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. *Nat Biotechnol* **24**: 841-847

Penkett CJ, Birtle ZE, Bahler J (2006) Simplified primer design for PCR-based gene targeting and microarray primer database: two web tools for fission yeast. *Yeast* 23: 921-928

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* **19:** 1572-1574

Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. *Bioinformatics* **26**: 1569-1571

Swofford D. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

Wood V, Harris MA, McDowall MD, Rutherford K, Vaughan BW, Staines DM, Aslett M, Lock A, Bahler J, Kersey PJ, Oliver SG (2012) PomBase: a comprehensive online resource for fission yeast. *Nucleic Acids Res* **40**: D695-699