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1 Causal mediation model

1.1 Definitions

We first define the counterfactual notation. Let Y (s, g) be the potential outcome that
would have been observed if SNPs (S) and gene expression (G) had been set to s and

g, respectively, and G(s) be the potential outcome of the gene expression had the SNPs
(S) been set to s. The notation without parenthesis (e.g., S, G) denotes observed values.

Note that Y (s, g) and G(s) may or may not be observed. They are equivalent to observed
values when their determinants are set to the observed values: Yi(s = Si, g = Gi) = Yi,

Gi(s = Si) = Gi, known as the assumption of consistency.
Similar to the definitions by VanderWeele and Vansteelandt (2010), we define the direct,

indirect and total effects as follows. The direct effect of SNPs is the effect of the SNPs on
the disease outcome that is not through gene expression, whereas the indirect effect is the
effect of the SNPs on the disease outcome that is through the gene expression. With these

counterfactual notations, we can define the direct effect (DE), the indirect effect (IE) and
the total effect (TE) of the SNPs, respectively, on the log odds ratio (OR) scale as:

log[ORDE
s1,s0|x

(s0)] = logit[P (Yi(s1, Gi(s0)) = 1|Xi = x)]− logit[P (Yi(s0, Gi(s0)) = 1|Xi = x)]

log[ORIE
s1,s0|x

(s1)] = logit[P (Yi(s1, Gi(s1)) = 1|Xi = x)]− logit[P (Yi(s1, Gi(s0)) = 1|Xi = x)]

log[ORTE
s1,s0|x

] = log[ORDE
s1,s0|x

(s0)] + log[ORIE
s1,s0|x

(s1)]

= logit[P (Yi(s1, Gi(s1)) = 1|Xi = x)]− logit[P (Yi(s0, Gi(s0)) = 1|Xi = x)].

Note that the two counterfactual conditions we compare in the TE is what the outcome

would have been, had SNPs been s1 versus s0. All three effects are expressed by condition-
ing on the covariates (X), which are the measured potential confounding factors.
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1.2 Assumptions

To identify DE and IE using the observed data requires four assumptions, which are a

multivariate extension of those used in VanderWeele and Vansteelandt (2010). We use
A

∐
B|C to denote that A is independent of B conditioning on C. The four assumptions

are: after controlling for the covariates (X), (1) Y (s, g)
∐

S|X: no unmeasured confounding
for the effect of SNPs (S) on the outcome (Y ); (2) Y (s, g)

∐
G|S, X: no unmeasured

confounding for the effect of gene expression (G) on the outcome (Y ) after controlling for
SNPs (S); (3) G(s)

∐
S|X: no unmeasured confounding for the effect of SNPs (S) on gene

expression (G); (4) Y (s, g)
∐

G(s∗)|X: there is no downstream effect of SNPs (S) that can
confound gene expression-outcome relation. We also make the rare disease assumption to

approximate logit by log and vice versa.
The event that SNPs regulate gene expression occurs within a cell, it is plausible to as-

sume that no phenotypic covariates exert undue influence on SNP-expression relationship

(assumption (3)) and that it is unlikely that downstream factors of SNPs should confound
expression-disease relation (assumption (4)). Based on the same reason, the confounders

we collect and adjust for to ensure the causal intepretation for SNP-disease association (as-
sumption (1)) should be very similar to those for expression-disease association (assumption

(2)). However, if we model a multigenetic disease with a partial list of genetic factors, the
remaining causal genetic factors may violate the above four assumptions. Thus, in addition

to controlling for all possible confounding covariates, we either assume the complex genetic
architecture does not violate our assumptions or all causal genetic factors must be analyzed

simultaneously in the model. Later, we will show that these assumptions can be relaxed
substantially in developing tests for the TE.

1.3 Direct, indirect and total effects

With the above four assumptions and models (2.1) and (2.2), it can be shown:

logit[P (Yi(sa, Gi(sb)) = 1|Xi = x)]

≈ log[

∫
P (Yi(sa, g) = 1|Xi = x, Gi(sb) = g)P (Gi(sb) = g|Xi = x)dg]

= log[

∫
P (Yi(sa, g) = 1|Xi = x, Si = sa, Gi = g)P (Gi(sb) = g|Xi = x)dg] (by assmptions 1, 2 & 4)

= log[

∫
P (Yi = 1|Xi = x, Si = sa, Gi = g)P (Gi(sb) = g|Xi = x)dg] (by consistency)

= log[

∫
P (Yi = 1|Xi = x, Si = sa, Gi = g)P (Gi(sb) = g|Xi = x, Si = sb)dg] (by assmption 3)

≈ log[

∫
exp(xTα + s

T
a βS + gβG + s

T
a gγ)P (Gi = g|Xi = x, Si = sb)dg] (by consistency)

= x
Tα + s

T
a βS + (βG + s

T
a γ)(xTφ + s

T
b δ) +

1

2
(βG + s

T
a γ)2σ2

G. (A. 1)
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Note the expression Y (sa, G(sb)) requires a joint manipulation of both SNPs S and gene
expression G, respectively, to be sa and G(sb), which is another potential outcome with

SNPs assigned to be sb that may or may not be the same as sa. It can be intepreted as the
following hypothetical intervention steps: 1) intervene and set SNPs to sb; 2) observe the
potential expression G(sb); 3) return to the pre-intervention state; 4) intervene to set gene

expression to G(sb) and SNPs to sa; 5) observe Y (sa, G(sb)). Robins and Richardson (2010)
discuss an example where such an intervention may be possible if a suitable technology is

available.
With the above definitions of DE, IE and TE as well as the result in (A. 1), we can

derive the expression of the direct effect, the indirect effect and the total effect of the SNPs,
respectively, on the log odds ratio scale in terms of the regression coefficients in models

(2.1) and (2.2):

log[ORDE
s1,s0|x

(s0)] ≈(s1 − s0)
T [βS + γ(xTφ + s

T
0 δ + βGσ2

G)] +
1

2
σ2

G(s1 + s0)
Tγ(s1 − s0)

T γ

log[ORIE
s1,s0|x

(s1)] ≈(s1 − s0)
Tδ(βG + s

T
1 γ)

log[ORTE
s1,s0|x

] ≈(s1 − s0)
T [βS + βGδ + γ(xTφ + s

T
0 δ + βGσ2

G) + δs
T
1 γ]

+
1

2
σ2

G(s1 + s0)
Tγ(s1 − s0)

T γ

1.4 Assumptions required for testing the total effect (TE)

We now study the assumption for the null hypothesis of no total SNP effects and show that

the assumptions mentioned above can be relaxed substantially in developing tests for the
total effect of the SNPs on the disease, which still exploits expression data. To perform hy-

pothesis testing for no total effect of the SNPs S on Y in (4.1), we can substantially weaken
the four unmeasured confounding assumptions required for simultaneously estimating both

direct and indirect genetic effects described in the above discussion, and only need a single
assumption that no unmeasured confounding for the effect of SNPs S on the outcome Y af-
ter controlling for the covariates X, i.e., Y (s)

∐
S|X. This is because, under the assumption

Y (s)
∐

S|X, we can show that log[P (Yi(s) = 1|Xi = x)] = log[P (Yi = 1|Xi = x, Si = s)].
It follows that

logit[P (Yi(s) = 1|Xi = x)] ≈ log[P (Yi = 1|Xi = x, Si = s)]

= log[

∫
P (Yi = 1|Xi = x, Si = s, Gi = g)P (Gi = g|Xi = x, Si = s)dg]

≈ x
Tα + s

TβS + (βG + s
Tγ)(xTφ + s

Tδ) +
1

2
(βG + s

Tγ)2σ2
G.

Simple calculations by setting s to s0 and s1 show the total SNP effect (TE) that is given in

the above. Note logit[P (Yi(s) = 1|Xi = x)] = logit[P (Yi(s, Gi(s)) = 1|Xi = x)], where the
counterfactual Y (s) = Y (s, G(s)) corresponds to simply setting the SNPs to level s. Hence
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estimation of total SNP effect only requires the no unmeasured confounding assumption
Yi(s)

∐
Si|Xi. Note that the above derivation also depends on the linearity of the outcome

model as specified in (2.1) in the main text and the normality of the gene expression model.
In contrast, estimation of both direct and indirect effects individually requires estimat-

ing logit[P (Yi(sa, Gi(sb)) = 1|Xi = x)]. For Yi(sa, Gi(sb)), the SNPs are set to one level, sa,

while the gene expression is set to the level it would have been had the SNPs been set to a
different level, sb. Because sa and sb can be different, the assumptions needed for identifi-

cation of this counterfactual are much stronger, and the four no unmeasured confounding
assumptions as given previously are needed. The three additional unmeasured confounding

assumptions allow decomposing the total effect into direct and indirect effects, but are not
required for testing for the total genetic effects.

2 Derivation of model (4.7) in the main text

When [Y |S, G, X] follows the interaction model (2.1) in the main text, by plugging in (2.2)
into (2.1) in the main text, the true [Y |S, G, X] model can be written as

logit[P (Yi = 1|Si, Xi, εi)] = X
T
i α + S

T
i βS + (Xiφ + S

T
i δ + εi)βG + (Xiφ + S

T
i δ + εi)S

T
i γ

= X
T
i (α + φβG) + S

T
i (βS + δβG)

+ X
T
i φS

T
i γ + S

T
i δS

T
i γ + (βG + S

T
i γ)εi.

Integrating out εi, we have

logit[P (Yi = 1|Si, Xi, εi)] ≈ c∗i
{
X

T
i (α + φβG) + S

T
i (βS + δβG) + X

T
i φS

T
i γ + S

T
i δS

T
i γ

}

where c∗i = {1 + 0.35σ2
G(βG + S

T
i γ)2}−1/2 (Zeger et al., 1988; Breslow and Clayton, 1993).

3 Asymptotic distribution of Q

First note that Q = n−1(Y − µ̂0)
T (a1SS

T + a2GG
T + a3CC

T )(Y − µ̂0), can be ex-
pressed in terms of the L2 norm of the scores, ‖n−1/2

∑n
i=1 Vi(Yi − µ̂i)‖2

2. We denote

this quantity as ‖√nŜV ‖2
2, where SU(θ) =

[
SX(θ)q×1

SV (θ)(2p+1)×1

]
= n−1

∑n
i=1 Ui(Yi − µi),

θ = (αT , βS
T , βG, γT )T , and ŜV is the counterpart of SV (θ) by plugging in θ with

θ̂0 = (α̂T
0 , 0T

2p+1)
T , α̂0 is the MLE of α under H0.

A simple Taylor series expansion shows

√
nSX(θ̂0) =

√
nSX(θ0) −

√
nDXX(α̂0 − α0) + op(1) (A. 2)
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Using (A. 2), simple calculations show that

√
nŜV =

√
nSV (θ̂0) =

√
nSV (θ0) −

√
nDV X(α̂0 − α0) + op(1)

=
√

nSV (θ0) −
√

nDV XD
−1
XXSX(θ0) + op(1)

=
√

nASU(θ0) + op(1).

By the central limit theorem,
√

nSU(θ0)
D−→ ε in distribution as n → ∞, where ε follows

N (0, D). From the Slutsky theorem and the above results, we then have
√

nŜV
D−→ Aε.

Finally, it follows from the continuous mapping theorem, Q = ‖√nŜV ‖2
2

D−→ ‖Aε‖2
2 =∑2p+1

l=1 (Alε)
2.

The expectation and variance of Q can be obtained from the results of the quadratic
function. More specifically, we first express Q = n−1(Y − µ̂0)

T (a1SS
T + a2GG

T +

a3CC
T )(Y − µ̂0) as a quadratic function of Y, Y

T
BY, where B = n−1(I − H)(a1SS

T +
a2GG

T + a3CC
T )(I − H) and H = W

1/2
X(XT

WX)XT
W

1/2. It follows that E(Q) =
tr(BW) and Var(Q) = 2tr(BWBW).
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Table 1: (Supplemental Table 1) Empirical sizes (×10−2) of the proposed variance com-

ponent score tests using Davies’ approximation and perturbation. The empirical size was
calculated at the significance level of 0.05, 5 × 10−3, 5 × 10−4, based on 1,000,000 simu-

lations. QS: SNP-only analysis; QSG: joint analyses of SNP and gene expression without
interaction; QSGC : joint analyses of SNP, gene expression and their interaction

Davies’ method Perturbation

Significance level QS QSG QSGC QS QSG QSGC Omnibus

0.05 5.04 5.01 5.02 4.74 4.94 4.78 4.91

5 × 10−3 0.49 0.47 0.46 0.52 0.58 0.52 0.62

5 × 10−4 0.048 0.045 0.038 0.08 0.08 0.08 0.18
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(a) βG = 0, γ = 0; δ = 1.0
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(b) βG = 0.2, γ = 0; δ = 1.0
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(c) βG = 0.2, γ = 0.2; δ = 1.0

Figure 1: (Supplemental Figure 1) Empirical power (%) under the setting with three causal

SNPs of the ORMDL3 gene. SNPs are assumed to be eQTL SNPs (δ = 1). Each figure
plots the powers of the proposed tests as a function of the main effect of SNP (βs). The

three figures correspond to the three different true models, the model with only SNP effects,
the model with only main effects of SNP and gene expression, and the model with SNPs,

gene expression and their interaction effects. The dashed line in (a) indicates 5% type I
error rate.
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(a) βS = 0.4, βG = 0, γ = 0
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Figure 2: (Supplemental Figure 2) Simulated power curves at 15q24-15q25.1. The x-

axis indicates the physical location (Mb) of the 69 HapMap SNPs at 15q24-15q25.1. The
orange vertical bar indicates the relative locations of the causal SNP and the black triangles

indicate the ten typed SNPs. Different lines indicate the powers of different tests. The
lower panel of each subfigure is the plot for linkage disequilibrium, measured as r2 ranging

from 0 (white) to 1 (black). 8


