Supplementary Online Appendix

eAppendix A. Derivation of likelihood estimation for causal diagrams presented in Section I.

Figure 1.
Let {M,,: m},{N,;:n},{0,: 0} denote the finite support of M, N, and O, respectively. One observes that
PIVIALS = 1] = LS =LA L]
41,5 =11= P[S = 1|A, L]

_ Zm,n,o P[Y! Mm; Nn; Oo;S = 1|A, L]
Yy mnoPlS = 1,Y, My, N4, L]
_ YmnoPIS = 1|Y, My, Ny, 05, A, L1f (Mpn, Ny, 0,Y, A, L)P[Y |4, L]
Zymn OP[S - 1|Yy, Mm’ Nn' 00’ A’ L] f(Mm' Nnr Oo |Yy: A; L)P[Yy|A, L]
Let 7(Y,A,L) = Yo PIS = 1|Y, My, Ny, 05, A, L1f (My, Ny, 0, |Y, A, L). Therefore
7(Y,A,L)P[Y|A, L]
PIY|A, LS =1] =
y7(Yy, A, L) PIY = y|A, L]
{y(a+ﬁ1A+ﬁzL)}
1 + efatB1A+B,L}
(a+B,4+B,1)}
1 e
y=0 72,4, 1) [1 T ela+BiA+B;L)
(Y, A, L) e (at+Bia+B2L)}
B 231,=0 7(y, A, L)ev(a+Bi4+p;L)}
(Y, A, L) e @t+Bia+p,L)}
~1(y = 0,4, 1)e0 Bt Bl 4 1y = 1,4, L)e0@rFrarhL)

[ (Y, A, L) ] o (atpiatpL)}
3 (y =0,4,L

- [T(y = 0,4, L)] [T(y =14, L)] e{(at1a+p;L))
1y =0,4,L)] " lt(y =0,4,L)

[T(y =14, L)] o V(@+BA+,L))
_ (y =0,4,1)

- 14+ [r(y =1,4, L)] {(a+B1A+B,L)}
t(y=0,4,L
to=LAL)

Thus, we conclude logit[P[Y|A,L,S = 1]] = log [ oo OAL)] + a + B1A + B,L, indicating that selection bias induces an
association between (A,L) and Y if T depends on A and L, in addition to its dependence on .

T(Y A, L)[

Below we consider a number of special cases of Figure 1, to illustrate settings where t induces bias, as well as settings
where it does not.
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which cannot be simplified further, and indicates selection bias in the association of (A,L) on Y.

While P[S = 1|L, M,,, 0,,Y = y] can be directly computed using the final sampling weights provided to the analyst,
information on f(M,,,|Y = y, 4, L) may not be available. We note that f(M,,|Y = v, A, L) may be estimated using full
maximum likelihood. As an alternative, we present a simple approach which utilizes the final sampling probabilities.

Instead, f(M,,,|Y = 1,4, L) may be estimated using the following two regression models weighted by sampling
probabilities and assuming binary M:

logit[PIM|Y = 0,4, L] = no + A +n,L
logit[PIM|Y = 1,A,L]] = yo + V1A + 2L

The predicted value of M setting Y to 0 or 1 can then be used to construct the offset term under the assumption that the
association between A and M is constant across levels of L. Note that if A and L are binary or categorical, a saturated
model involving all higher order interactions between A and L may be easily fit and the predicted value of M can be
computed without any additional assumptions.
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Recall from the detailed derivation provided for Figure 1 that
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Figure 3.
Recall from the detailed derivation provided for Figure 1 that
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which does not depend on rand therefore indicates no selection bias.
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Recall from the detailed derivation provided for Figure 1 that
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Figure 4.b.
Recall from the detailed derivation provided for Figure 1 that
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Recall also that in Figure 4.b. we take the exposure to be N. Therefore, 7(Y, 4, L) reduces to
TV, N,L) = ) PIS = 1{My, NIf (MY, L)F(0,)
m,o

by the independencies encoded in the DAG. Therefore,
YmoPLS = 1IM,, NIf (M, |Y = 1,L)f(0,)
logit|PlY =1|N,L,S =1]| =1 -
ogitlPIY =1 IJ = log [Zm,oP[s = 1IMy, NIf (MY = 0,1) £(0,)
. > PLS = 1IM,,, NIf(M,,,IY = 1,L)
912, PIS = 1IM,,, NIf(M,,]Y = 0,L)
which indicates selection bias in the both L and N associations with Y.

+a+ BN+ S,L

While P[S = 1|M,,, N], can be directly computed using the final sampling weights provided to the analyst, information on
f(M,,|Y =y, L) may not be available. We note that f(M,,,|Y = y, L) may be estimated using full maximum likelihood.
As an alternative, we present a simple approach which utilizes the final sampling probabilities.

Instead f(M,,|Y = y, L) may be estimated using the following two regression models weighted by sampling probabilities
and assuming binary M:

logit[P[M|Y = 0,L]] = no + n,L
logit[P[MlY = 1,L]] =7Yo +7v1L

The predicted values of M can then be used to construct the offset term under the assumption of no model
misspecification.

Figure 5.a.
Recall from the detailed derivation provided for Figure 1 that

t(V,A,L) = Z PIS = 1|V, My, N, 0y, A, L1f (M., N, O, |Y, A, L)
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Recall also that in Figure 5.a. we take the outcome to be M. Therefore, 7(Y, 4, L) reduces to
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which indicates selection bias in both A and L associations with M.

logit[P[M = 1|A,L,S = 1]] = log +a+ A+ B,L

While P[S = 1|M = m, N,,] can be directly computed using the final sampling weights provided to the analyst,
information on £ (N, |4, L), may not be directly available. We note that f(N,,|4, L) may be estimated using full maximum
likelihood. As an alternative, we present a simple approach which utilizes the final sampling probabilities.

Instead (N, |4, L), may be estimated using the following regression model weighted by sampling probabilities and
assuming binary N:

logit[PIN|A, L]] = no + mA + 5L

The predicted value of N can then be used to construct the offset term under the assumption that the association between
A and N is constant across levels of L. Note that if A and L are binary or categorical, a saturated model involving all



higher order interactions between A and L may be easily fit and the predicted value of N can be computed without any
additional assumptions.

Figure 5.b.
Recall from the detailed derivation provided for Figure 1 that

(Y, A, L) = Z P[S = 1|V, M,,, N, 0,, A, L1f(M,,, N,,, 0,|Y, A, L)
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Recall also that in Figure 5.b. we take the outcome to be N. Therefore, 7(Y, 4, L) reduces to
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which indicates selection bias in the L-N association.
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While P[S = 1|M,,, N = n], can be computed using the final sampling weights provided to the analyst, information on
f (M, |L) may not be directly available. We note that f(M,,,|L) may be estimated using full maximum likelihood. As an
alternative, we present a simple approach which utilizes the final sampling probabilities.

Instead f(M,,|L) may be estimated using the following regression model assuming binary M:
logit[PIM|L]] = 1o + L

The predicted values of M can then be used to construct the offset term under the assumption of no model
misspecification.

Figure 6.
Recall from the detailed derivation provided for Figure 1 that

t(V,A,L) = Z PIS = 1|V, M.y, N, 0y, A, L1f (M., N, O, |Y, A, L)
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Recall also that in Figure 6 we take the exposure to be M and the outcome to be N. Therefore, 7(Y, 4, L) reduces to
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which indicates selection bias in the M-N association.



eAppendix B. SAS code used in the simulation study

$macro sim select(q,c_strength,alpha,betal,beta2,beta3);

data simulate&qg.;

*** gpecify number and distribution of categories for m ***;

num mcat = 3;

cl = 1/num mcat; c2 = 1/num mcat; c3 = 1/num mcat;

*** create m, n, and o variables (i.e. determinants of selection)
1 to 40000;

do i =

m cont = round(uniform(0)*100);

*** distribute continuous m evenly into 3 categories ***;

m cat = (m_cont ge 0)

+ (m_cont gt cl1*100)
+ (m_cont gt (cl + c2)*100)
+ (m_cont gt (cl + c2 + c3)*100);

m catl = (m_cat = 1);
m cat2 = (m _cat 2);
m cat3 = (m_cat 3);

*** create o variable and confounder ***;
o binary = rand('bernoulli',0.25);
conf = (log(&c strength.)*m catl + rand('normal'));

Kk Kk .
’

*** create n variable based on the following individual risk model:

logit (P[N=1|M,L])=0+BLl*ML+B2*M2+B3*L ***;

linpred = &alpha. + &betal.*m catl + &betaZ.*m cat2 + &betal3.*conf;
prob = exp(linpred)/ (1 + exp(linpred));
n binary = rand('bernoulli',prob);

*** create m-n-o indicator ***;
mno cat = m cat*100 + n binary*10 + o binary;

output;
end;
run;

*** create allocation proportions for input into proc surveyselect ***;

data samp prob mno; set simulates&q.;

~alloc

if mno cat = 100 then alloc_ = 0.2;

if mno _cat = 200 then alloc_ = 0.01;
if mno cat = 300 then _alloc_ = 0.19;
if mno cat = 110 then alloc_ = 0.1;

if mno cat = 210 then _alloc_ = 0.05;
if mno _cat = 310 then alloc_ = 0.05;
if mno cat = 101 then _alloc_ = 0.05;
if mno cat = 201 then alloc_ = 0.0025;
if mno cat = 301 then _alloc_ = 0.0475;
if mno cat = 111 then alloc_ = 0.15;
if mno cat = 211 then _alloc = 0.075;
if mno cat = 311 then alloc_ = 0.075;

keep m cat n binary o binary mno cat conf alloc ;

run;

*** gelect 1% sub-sample (n=400) according to m and n ***;
proc sort data = samp prob mno; by mno cat; run;

proc sort data

= simulate&q.; by mno _cat; run;

proc surveyselect data = simulates&q.
out = simulate svy mno&q.

sampsize

= 400;

strata mno_cat /alloc = samp prob mno;

run;

*** obtain selection probability (i.e. tau) ***;

proc sort data

= simulate svy mnoé&g.; by mno_cat;



proc means data = simulate svy mno&q.;

by mno cat;

var selectionprob;

ods output summary = offsets&q. (keep = mno cat SelectionProb Mean);
run;

*** add m, n, and o variables to selection probabilities file ***;
data offsetsé&qg.; set offsetsé&qg.;

if mno cat = 100 or mno_cat = 200 or mno_cat = 300 or

mno cat = 101 or mno cat = 201 or mno cat = 301 then n binary = 0;
if mno cat = 110 or mno_cat = 210 or mno_cat = 310 or

mno cat = 111 or mno cat = 211 or mno cat = 311 then n binary = 1;
if mno cat = 100 or mno_cat = 200 or mno_cat = 300 or

mno_cat = 110 or mno cat = 210 or mno _cat = 310 then o _binary = 0;
if mno cat = 111 or mno cat = 211 or mno cat = 311 or

mno_cat = 101 or mno cat = 201 or mno _cat = 301 then o _binary = 1;
m cat = (mno cat - n binary*10 - o binary)/100;

run;

proc sort data = offsets&g.; by m cat o binary; run;

proc transpose data = offsets&g. out = offsetsé&g. prefix = SelectionProbN;
by m cat o binary;
id n_binary;
var SelectionProb Mean;

run;

*** merge selection probability file with simulated survey data ***;
proc sort data = offsets&g.; by m cat o binary; run;
proc sort data = simulate svy mno&g.; by m cat o binary; run;
data simulate svy mno&qg.;
merge offsets&q. simulate svy mno&q.;
by m cat o binary;

*** create offset term from ratio of selection probabilities (i.e. tau) ***;
offset = log(SelectionProbNl/SelectionProbNO) ;

m catl = (m_cat = 1);
m cat2 = (m_cat = 2);
m cat3 = (m_cat = 3);
id = n ;

keep id n binary m cont m cat o binary samplingweight offset m catl m cat2 m cat3 conf;

run;

‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k************************;

*** estimate alpha and beta coeffients from logistic regression models
with and without adjustment for selection ***;

***************************************************************************************;
*** no adjustment ***;
proc logistic descending data = simulate svy mno&qg.;

model n binary = m catl m cat2 conf;

ods output ParameterEstimates = noadjust (keep = Variable Estimate StdErr);
run;
data noadjust betasé&t.; set noadjust betasé&t.noadjust; run;

*** adjust via unweighted conditional regression ***;

proc logistic descending data = simulate svy mnoé&qg.;

model n binary = m catl m cat2 conf o binary;

ods output ParameterEstimates = condition (keep = Variable Estimate StdErr);
run;
data condition betasé&t.; set condition betasé&t.condition; run;

*** agdjust via weighted unconditional regression ***;
proc genmod descending data = simulate svy mno&q.;
class id;
weight samplingweight;
model n binary = m _catl m cat2 conf/ link=logit dist=binomial;
repeated subject=id / type=ind;
ods output GEEEmpPEst = ipw (keep = Parm Estimate UpperCL LowerCL);
run;



data ipw _betas&t.; set ipw betas&t.ipw; run;

*** adjust via maximum likelihood ***;

proc logistic descending data = simulate svy mno&qg.;

model n binary = m catl m cat2 conf /offset = offset;

ods output ParameterEstimates = like (keep = Variable Estimate StdErr);
run;

data like betass&t.; set like betas&t.like; run;
$mend sim select;
$macro looper (t,c strength,alpha,betal,beta2,betal);

*** create empty data sets to store alpha and beta coefficients ***;
data noadjust betasé&t.; set null ; run;

data condition betas&t.; set null ; run;

data ipw _betas&t.; set null ; run;

data like betas&t.; set null ; run;

*** conduct 1,000 simulations ***;
$do g = 1 %to 1000;
%sim_select(&g., &c_strength., &alpha., &betal., &beta2., &beta3.);
proc datasets library = work;
delete
simulateé&q.
simulate svy mno&q.
offsetsé&qg.;
run;
$end;

$mend looper;

***************************************************************************************;

*** run simulation under 8 model specifications defined by:
a) weak and strong exposure effects
(B1=0.1,p2=0.4 and B1=0.4,p2=0.8, respectively),
b) weak and strong confounding effects
(B3=0.4 and R3=0.8, respectively), and
c) weak and strong associations between exposure and confounder
(OR(E-C)=1.1 and OR(E-C)=1.6, respectively)
with all assuming a 2% marginal disease prevalence (a=-3.9) ***;
***************************************************************************************;
%looper(1,1.1,-3.9,0.1,0.4,0.4);
$looper(2,1.1,-3.
%looper(3,1.1,-3.
$looper (
$looper (
(
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$looper(6,1.
7,1
8,1

I4

4



