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eAppendix A. Derivation of likelihood estimation for causal diagrams presented in Section I.  

 

Figure 1.  

Let                      denote the finite support of M, N, and O, respectively. One observes that  
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Thus, we conclude                         
          

          
           , indicating that selection bias induces an 

association between (A,L) and Y if   depends on A and L, in addition to its dependence on Y.   

 

Below we consider a number of special cases of Figure 1, to illustrate settings where   induces bias, as well as settings 

where it does not.  

 

Figure 2.a.  
Recall from the detailed derivation provided for Figure 1 that  

                                                

     

 

                

     

                  

                  

     

                  

By the independencies encoded in the DAG. Therefore, 

                        
                                           

                                           
            

     
                                     

                                     
            



which cannot be simplified further, and indicates selection bias in the association of (A,L) on Y. 

 

While                    can be directly computed using the final sampling weights provided to the analyst, 

information on               may not be available. We note that               may be estimated using full 

maximum likelihood. As an alternative, we present a simple approach which utilizes the final sampling probabilities.  

 

Instead,               may be estimated using the following two regression models weighted by sampling 

probabilities and assuming binary M: 

 

                               

                               

 

The predicted value of M setting Y to 0 or 1 can then be used to construct the offset term under the assumption that the 

association between A and M is constant across levels of L. Note that if A and L are binary or categorical, a saturated 

model involving all higher order interactions between A and L may be easily fit and the predicted value of M can be 

computed without any additional assumptions.  

 

Figure 2.b.  

Recall from the detailed derivation provided for Figure 1 that  

                                                

     

 

                                   

     

 

by the independencies encoded in the DAG. Therefore, 

                        
                                        

                                        
            

           

which does not depend on  and therefore indicates no selection bias. 

 

Figure 3.  

Recall from the detailed derivation provided for Figure 1 that  

                                                

     

 

                                 

     

 

by the independencies encoded in the DAG. Therefore, 

                        
                                      

                                      
            

            

which does not depend on  and therefore indicates no selection bias. 

 

Figure 4.a.  

Recall from the detailed derivation provided for Figure 1 that  

                                                

     

 

Recall also that in Figure 4.a. we take the exposure to be M. Therefore,          reduces to 

                                 

   

 

by the independencies encoded in the DAG. Therefore,  

                        
                            

                            
            

            

which does not depend on  and therefore indicates no selection bias. 



 

Figure 4.b.  

Recall from the detailed derivation provided for Figure 1 that 

                                                

     

 

Recall also that in Figure 4.b. we take the exposure to be N. Therefore,          reduces to 

                                   

   

 

by the independencies encoded in the DAG. Therefore,  

                          
                               

                               
            

     
                        

                        

            

which indicates selection bias in the both L and N associations with Y. 

 

While            , can be directly computed using the final sampling weights provided to the analyst, information on 

            may not be available. We note that             may be estimated using full maximum likelihood. 

As an alternative, we present a simple approach which utilizes the final sampling probabilities. 

 

Instead             may be estimated using the following two regression models weighted by sampling probabilities 

and assuming binary M: 

 

                         

                         

 

The predicted values of M can then be used to construct the offset term under the assumption of no model 

misspecification.  

 

Figure 5.a.  
Recall from the detailed derivation provided for Figure 1 that 

                                                

     

 

Recall also that in Figure 5.a. we take the outcome to be M. Therefore,          reduces to 

                                           

   

 

by the independencies encoded in the DAG. Therefore,  

                          
                                       

                                      
            

     
                        

                        
             

which indicates selection bias in both A and L associations with M. 

 

While               can be directly computed using the final sampling weights provided to the analyst, 

information on          , may not be directly available. We note that           may be estimated using full maximum 

likelihood. As an alternative, we present a simple approach which utilizes the final sampling probabilities. 

 

Instead          , may be estimated using the following regression model weighted by sampling probabilities and 

assuming binary N: 

 

                           

 

The predicted value of N can then be used to construct the offset term under the assumption that the association between 

A and N is constant across levels of L. Note that if A and L are binary or categorical, a saturated model involving all 



higher order interactions between A and L may be easily fit and the predicted value of N can be computed without any 

additional assumptions.  

 

Figure 5.b.  
Recall from the detailed derivation provided for Figure 1 that 

                                                

     

 

Recall also that in Figure 5.b. we take the outcome to be N. Therefore,          reduces to 

                                         

   

 

by the independencies encoded in the DAG. Therefore,  

                          
                                     

                                     
           

     
                      

                      
             

which indicates selection bias in the L-N association. 

 

While              ,  can be computed using the final sampling weights provided to the analyst, information on 

        may not be directly available. We note that         may be estimated using full maximum likelihood. As an 

alternative, we present a simple approach which utilizes the final sampling probabilities. 

 

Instead         may be estimated using the following regression model assuming binary M: 

 

                     

 

The predicted values of M can then be used to construct the offset term under the assumption of no model 

misspecification.  

 

Figure 6.  

Recall from the detailed derivation provided for Figure 1 that 

                                                

     

 

Recall also that in Figure 6 we take the exposure to be M and the outcome to be N. Therefore,          reduces to 

                                 

 

 

by the independencies encoded in the DAG. Therefore,  

                          
                       

                       
            

     
                  

                  
            

     
            

            
            

which indicates selection bias in the M-N association. 



eAppendix B. SAS code used in the simulation study 

 

%macro sim_select(q,c_strength,alpha,beta1,beta2,beta3); 

 

data simulate&q.; 

 

*** specify number and distribution of categories for m ***; 

num_mcat = 3;  

c1 = 1/num_mcat; c2 = 1/num_mcat; c3 = 1/num_mcat; 

 

 *** create m, n, and o variables (i.e. determinants of selection) ***; 

 do i = 1 to 40000; 

  m_cont = round(uniform(0)*100); 

   

  *** distribute continuous m evenly into 3 categories ***; 

  m_cat = (m_cont ge 0)  

   + (m_cont gt c1*100)  

   + (m_cont gt (c1 + c2)*100)  

   + (m_cont gt (c1 + c2 + c3)*100); 

   

   m_cat1 = (m_cat = 1); 

   m_cat2 = (m_cat = 2);  

   m_cat3 = (m_cat = 3); 

 

  *** create o variable and confounder ***; 

  o_binary = rand('bernoulli',0.25); 

  conf = (log(&c_strength.)*m_cat1 + rand('normal')); 

   

  *** create n variable based on the following individual risk model: 

   logit(P[N=1|M,L])=α+β1*M1+β2*M2+β3*L ***; 

  linpred = &alpha. + &beta1.*m_cat1 + &beta2.*m_cat2 + &beta3.*conf;  

  prob = exp(linpred)/ (1 + exp(linpred)); 

  n_binary = rand('bernoulli',prob); 

 

  *** create m-n-o indicator ***; 

  mno_cat = m_cat*100 + n_binary*10 + o_binary; 

 output; 

 end; 

run; 

 

*** create allocation proportions for input into proc surveyselect ***; 

data samp_prob_mno; set simulate&q.; 

 _alloc_ = .; 

 if mno_cat = 100 then _alloc_ = 0.2; 

 if mno_cat = 200 then _alloc_ = 0.01; 

 if mno_cat = 300 then _alloc_ = 0.19; 

 if mno_cat = 110 then _alloc_ = 0.1; 

 if mno_cat = 210 then _alloc_ = 0.05; 

 if mno_cat = 310 then _alloc_ = 0.05; 

 if mno_cat = 101 then _alloc_ = 0.05; 

 if mno_cat = 201 then _alloc_ = 0.0025; 

 if mno_cat = 301 then _alloc_ = 0.0475; 

 if mno_cat = 111 then _alloc_ = 0.15; 

 if mno_cat = 211 then _alloc_ = 0.075; 

 if mno_cat = 311 then _alloc_ = 0.075; 

 keep m_cat n_binary o_binary mno_cat conf _alloc_; 

run; 

 

*** select 1% sub-sample (n=400) according to m and n ***;  

proc sort data = samp_prob_mno; by mno_cat; run; 

proc sort data = simulate&q.; by mno_cat; run; 

proc surveyselect data = simulate&q. 

 out = simulate_svy_mno&q. 

 sampsize = 400; 

 strata mno_cat /alloc = samp_prob_mno; 

run; 

 

*** obtain selection probability (i.e. tau) ***; 

proc sort data = simulate_svy_mno&q.; by mno_cat; 



proc means data = simulate_svy_mno&q.; 

 by mno_cat; 

 var selectionprob; 

 ods output summary = offsets&q. (keep = mno_cat SelectionProb_Mean); 

run; 

 

*** add m, n, and o variables to selection probabilities file ***; 

data offsets&q.; set offsets&q.; 

 if mno_cat = 100 or mno_cat = 200 or mno_cat = 300 or  

    mno_cat = 101 or mno_cat = 201 or mno_cat = 301 then n_binary = 0; 

 if mno_cat = 110 or mno_cat = 210 or mno_cat = 310 or  

    mno_cat = 111 or mno_cat = 211 or mno_cat = 311 then n_binary = 1; 

 if mno_cat = 100 or mno_cat = 200 or mno_cat = 300 or 

    mno_cat = 110 or mno_cat = 210 or mno_cat = 310 then o_binary = 0; 

 if mno_cat = 111 or mno_cat = 211 or mno_cat = 311 or 

    mno_cat = 101 or mno_cat = 201 or mno_cat = 301 then o_binary = 1; 

 m_cat = (mno_cat - n_binary*10 - o_binary)/100; 

run; 

 

proc sort data = offsets&q.; by m_cat o_binary; run; 

proc transpose data = offsets&q. out = offsets&q. prefix = SelectionProbN; 

 by m_cat o_binary; 

 id n_binary; 

 var SelectionProb_Mean; 

run; 

 

*** merge selection probability file with simulated survey data ***; 

proc sort data = offsets&q.; by m_cat o_binary; run; 

proc sort data = simulate_svy_mno&q.; by m_cat o_binary; run; 

data simulate_svy_mno&q.; 

merge offsets&q. simulate_svy_mno&q.;  

 by m_cat o_binary; 

 

*** create offset term from ratio of selection probabilities (i.e. tau) ***; 

offset = log(SelectionProbN1/SelectionProbN0);  

m_cat1 = (m_cat = 1); 

m_cat2 = (m_cat = 2);  

m_cat3 = (m_cat = 3); 

 

id = _n_;  

 

keep id n_binary m_cont m_cat o_binary samplingweight offset m_cat1 m_cat2 m_cat3 conf; 

run; 

 

***************************************************************************************; 

*** estimate alpha and beta coeffients from logistic regression models  

  with and without adjustment for selection ***; 

***************************************************************************************; 

*** no adjustment ***; 

proc logistic descending data = simulate_svy_mno&q.; 

 model n_binary = m_cat1 m_cat2 conf; 

 ods output ParameterEstimates = noadjust (keep = Variable Estimate StdErr); 

run; 

data noadjust_betas&t.; set noadjust_betas&t.noadjust; run; 

 

*** adjust via unweighted conditional regression ***; 

proc logistic descending data = simulate_svy_mno&q.; 

 model n_binary = m_cat1 m_cat2 conf o_binary; 

 ods output ParameterEstimates = condition (keep = Variable Estimate StdErr); 

run; 

data condition_betas&t.; set condition_betas&t.condition; run; 

 

*** adjust via weighted unconditional regression ***; 

proc genmod descending data = simulate_svy_mno&q.; 

 class id; 

 weight samplingweight; 

 model n_binary = m_cat1 m_cat2 conf/ link=logit dist=binomial; 

 repeated subject=id / type=ind; 

 ods output GEEEmpPEst = ipw (keep = Parm Estimate UpperCL LowerCL); 

run; 



data ipw_betas&t.; set ipw_betas&t.ipw; run; 

 

*** adjust via maximum likelihood ***; 

proc logistic descending data = simulate_svy_mno&q.; 

 model n_binary = m_cat1 m_cat2 conf /offset = offset; 

 ods output ParameterEstimates = like (keep = Variable Estimate StdErr); 

run; 

data like_betas&t.; set like_betas&t.like; run; 

 

%mend sim_select; 

 

%macro looper(t,c_strength,alpha,beta1,beta2,beta3); 

 

*** create empty data sets to store alpha and beta coefficients ***; 

data noadjust_betas&t.; set _null_; run; 

data condition_betas&t.; set _null_; run; 

data ipw_betas&t.; set _null_; run; 

data like_betas&t.; set _null_; run; 

 

*** conduct 1,000 simulations ***; 

%do q = 1 %to 1000; 

 %sim_select(&q.,&c_strength.,&alpha.,&beta1.,&beta2.,&beta3.); 

 proc datasets library = work; 

  delete  

   simulate&q.  

   simulate_svy_mno&q.  

   offsets&q.; 

 run; 

%end; 

 

%mend looper; 

 

***************************************************************************************; 

*** run simulation under 8 model specifications defined by:  

  a) weak and strong exposure effects  

   (β1=0.1,β2=0.4 and β1=0.4,β2=0.8, respectively), 

  b) weak and strong confounding effects  

   (β3=0.4 and β3=0.8, respectively), and  

  c) weak and strong associations between exposure and confounder 

   (OR(E-C)=1.1 and OR(E-C)=1.6, respectively) 

 with all assuming a 2% marginal disease prevalence(α=-3.9) ***; 

***************************************************************************************; 

%looper(1,1.1,-3.9,0.1,0.4,0.4); 

%looper(2,1.1,-3.9,0.1,0.4,0.8); 

%looper(3,1.1,-3.9,0.2,0.8,0.4); 

%looper(4,1.1,-3.9,0.2,0.8,0.8); 

%looper(5,1.6,-3.9,0.1,0.4,0.4); 

%looper(6,1.6,-3.9,0.1,0.4,0.8); 

%looper(7,1.6,-3.9,0.2,0.8,0.4); 

%looper(8,1.6,-3.9,0.2,0.8,0.8); 

 

 

 


