Phosphonated Trityl Probe for Concurrent *In vivo* Tissue Oxygen and pH Monitoring Using EPR-based Techniques

Ilirian Dhimitruka,[†] Andrey A. Bobko,[†] Timothy D. Eubank[†], Denis A. Komarov,[§] and Valery V. Khramtsov*[†]

[†]Dorothy M. Davis Heart & Lung Research Institute and Division of Pulmonary, Allergy, Critical Care &

Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, United

States

[§]Vorozhtsov Institute of Organic Chemistry, Novosibirsk 630090, Russia

valery.khramtsov@osumc.edu

Table of content:

1.	Acid-base equilibrium for pnTAM probes	S2
2.	X-band EPR spectra of p ₁ TAM-H probe	S2
3.	X-band EPR spectra and titration curves of p_2TAM-H and p_2TAM-D	S3
4.	Spectral parameters and dissociation constants of p2TAM-D	S4
5.	Concentration self-broadening of p1TAM-D	S4
6.	Partition coefficients for p ₁ TAM-D probe	S4
7.	Acid-induced aggregation of pnTAM-D and Finland TAM-D	S5
8.	An exemplified analysis of in vivo L-band EPR spectra of p_1TAM -D probe	S 6
9.	Mass spectra of p ₁ TAM and p ₂ TAM probes	S7
10.	Literature cited	S10

Scheme SI1. The scheme of acid-base equilibrium for p_nTAM trityl radicals. pK_1^{i} and pK_2^{i} denote the pK_a values of first and second ionization constants for each (i = 1, 2, 3) phosphonic acid residue; pK_c^{i} denote the pK_a values of ionization constants for each (i = 1, 2) carboxylic acid residue of p_nTAM probes.

X-band EPR spectra of p₁TAM-H, p₂TAM-H and p₂TAM-D at different pH values and titration curves

for p₂TAM radicals

Figure SI1. EPR spectra of 100 μ M p₁TAM-H solutions in 1 mM Na-phosphate buffer, 150 mM NaCl, measured at various pH values under nitrogen atmosphere and temperature 37 °C. X-Band EPR spectrometer settings: microwave power, 130 μ W; time constant, 20.48 ms; conversion time, 5 ms; sweep time, 20.48 s; modulation frequency, 10 kHz; modulation amplitude, 0.05 G; sweep width 5.5 G; number of points, 4096.

Figure SI2. X-band EPR spectra of 250 μ M p₂TAM-H solutions in 1 mM Na-phosphate buffer, 150 mM NaCl, measured at various pH values under nitrogen atmosphere and temperature 37 °C. Spectrometer settings: microwave power, 130 μ W; time constant, 20.48 ms; conversion time, 5 ms; sweep time, 20.48 s; modulation frequency, 10 kHz; modulation amplitude, 0.05 G; sweep width 10 G; number of points, 4096.

Figure SI3. X-band EPR spectra of 0.2 mM p_2 TAM-D solutions in 1 mM Na-phosphate buffer, 150 mM NaCl, measured at various pHs under nitrogen atmosphere, at 37 °C. Spectrometer settings: microwave power, 40 μ W; modulation frequency, 10 kHz; modulation amplitude, 0.02 G; number of points, 8192.

Figure SI4. The pH dependencies of fraction of the ionization states of diphosphonated p_2 TAMs calculated from the corresponding EPR spectra (Figs. SI2 and SI1-3). The closed and open symbols denote the data obtained for p_2 TAM-D and p_2 TAM-H, correspondingly. The squares denote p_2 TAM⁵⁻, triangles denote p_2 TAM⁴⁻ and circles denote p_2 TAM³⁻ ionization states (See Scheme SI1). Solid lines represent the best fits using standard titration equations yielding pK_a values presented in the Table SI1.

Tuble Stittine pila values and it Bana Eric speedaar a analeters for Binerent fonzation St									
Ionization	pK _a	a_{P1} (PO ₃ ²⁻),	a_{P2} (HPO ₃ ⁻),	a _{P3} (H ₂ PO ₃),	ΔHpp,	Δg,			
State		mG	mG	mG	mG	mG			
p ₂ TAM ⁵⁻	7.35 \pm 0.05 6.65 \pm 0.05 \approx 2.6 \pm 0.3 ^b \approx 1.3 \pm 0.3	3420±5 (2) ^a	Na	na	34±2	0			
p ₂ TAM ⁴⁻		3420±5 (1) ^a	3660±5 (1) ^a	na	37±2	37±5			
p ₂ TAM ³⁻		na	3660±5 (2) ^a	na	42±2	72±8			
p ₂ TAM ²⁻		na	≈3650 (2) ^a	na	≈42	≈72			
$p_2 TAM^0$		na	Na	≈3750 (2) ^a	≈42	≈100			

Table SI1. The p*K*_aValues and X-Band EPR Spectral Parameters for Different Ionization States of p₂TAM-D.

^a the values in parenthesis denote the number of phosphono groups.

^b the pK_a value for carboxyl group.

Concentration self broadening of p₁TAM-D

Concentration-induced line self-broadening of TAM probes is one order of magnitude less than that of nitroxide probes¹ and is not an issue for low concentrations of the pTAM probes. However at high probe concentration line-broadening (see Fig.SI5) is observed.

Figure SI5. The concentration dependence of Lorenz linewidths of $p_1TAM^{3-}(\circ)$ and $p_1TAM^{4-}(\bullet)$ components of p_1TAM -D probe. Line represents the best linear fit with the slopes of (10±1) mG/mM and (7±1) mG/mM, correspondingly. L-band EPR spectra were recorded in the presence of 150 mM NaCl and 1mM Na-phosphate buffer under anoxic conditions and temperature of 37 °C.

Partition coefficients for p₁TAM-D probe

To support high aqueous solubility of p_1TAM probe, we measured their partition coefficients in octanol/water solutions. The solutions of p_1TAM -D (200 μ M) in the presence of 0.1 M Na-phosphate buffer at various pHs in the range from 6.0 to 8.0 were vigorously mixed with equal volume of octanol for 5 min and allowed to stand for another 5 min until separation of the phases was completed. The values of the partition coefficient, Kp, were calculated as a ratio of the integral intensities of the EPR spectra of p_1TAM -D probe in octanol and aqueous phases, correspondingly. The spectrum of p_1TAM -D probe was found to be below detection limit at these pH values providing an upper limit of Kp value being < 0.001. For comparison, Kp values for deuterated Finland TAM-D probe was found to be equal to 0.36 ± 0.13 (pH=6), 0.02 ± 0.01 (pH=6.5) and ≤ 0.003 (pH=7). The data support superior aqueous solubility of the phosphonated compound.

Solubility of $p_n TAMs$ at acidic pH

The aggregation of Finland TAM in acidic solutions was previously reported². An introduction of phosphono groups significantly extends the pH range of solubility of the p_n TAM probes (Fig. SI6) apparently due to low pK_a for the phosphonic acid dissociation (p $K_{a1} \approx 1.3$), and therefore maintaining a negatively charged structure at any reasonable pH above pH 3.

Figure SI6. The dependence of the EPR peak signal intensities of deuterated Finland TAM probe, TAM-D (\bullet , 100 µM), p₁TAM-D (\circ , 100 µM), p₂TAM-D (\bullet , 200 µM), and p₃TAM-D (\Box , 200 µM) on the pH of the sample. Lines represent the best fits using equation [TAM]_{pH} = [TAM]₀ - [TAM]₀/(1 + 10^{(pH-pKagg)/q}) yielding pKagg = 3.7±0.05, 2.82±0.05, 1.30±0.05 and 0.70±0.05; and q = 0.32, 0.63, 0.74 and 1 for TAM-D, p₁TAM-D, p₂TAM-D, and p₃TAM-D, correspondingly. The samples were measured in the presence of 1 mM Na-phosphate buffer, 150 mM NaCl and temperature 37 °C.

An exemplified analysis of in vivo L-band EPR spectra of p₁TAM-D probe

Lineshape analysis of the EPR spectrum was performed as previously described³ fitting experimental spectrum by rational approximation of Voigt function given by Hui *et al.*⁴ The independent character of the signal intensities ratio and line broadenings provides dual pH & oxygen functionality, as illustrated below.

Fig. SI7. L-band EPR spectrum of high-field component of p_1 TAM-D probe injected into the mammary gland (0.5 mM, 10 µl). Circles indicate simulated spectrum yielding the values of pO_2 and pH equal to 54 mmHg and 7.14 pH units, correspondingly.

For the spectrum shown in Fig. SI7, the lineshape analysis yields: $[p_1TAM^4-]/[p_1TAM^3-] = 1.73$ (which corresponds to pH 7.14); line distance between p_1TAM^{4-} and p_1TAM^{3-} lines, 115 mG (which corresponds to 1.4 mM buffer concentration, see Fig. 6B); and Lorenzian linewidths, $L_{tot}(p_1TAM^{4-}) = 46$ mG and $L_{tot}(p_1TAM^{3-}) = 53$ mG. Subtracting from the latter values the Lorenzian linewidths in deoxygenated 1.4 mM phosphate buffer, $L_{buf}(p_1TAM^{4-}) = 21$ mG and $L_{buf}(p_1TAM^{3-}) = 28$ mG (see calibration in Fig. 6A), we obtain oxygen-induced line broadenings, $\Delta L_{ox}(p_1TAM^{4-}) = 25$ mG and $\Delta L_{ox}(p_1TAM^{3-}) = 25$ mG. The latter corresponds to the oxygen partial pressure, $pO_2=52$ mmHg (see calibration in Fig. 4). Note that concentration-induced line self-broadening is insignificant at low probe concentrations used. From our previous imaging studies of the membrane-impermeable extracellular probe⁵ we should expect fast p_1TAM -D distribution throughout the tissue of the mammary gland or tumor, therefore final concentration of the probe is about an order lower (50-100 μ M) than the threshold for self-broadening (~400 μ M, Fig. SI5).

D:\Data\2012\08_August_2012\M082112\17271 dFT-P2C1\0_G1\1

D:\Data\2012\08_August_2012\M082112\17271 FT-P2C1\0_G4\1

Literature cited

1. Khramtsov, V. V.; Zweier, J. L., Functional in vivo EPR Spectroscopy and Imaging Using Nitroxide and Trityl Radicals. In *Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds*, Hicks, R., Ed. John Wiley & Sons, Ltd.: Chichester, UK., 2010; pp 537-566.

2. Dhimitruka, I.; Velayutham, M.; Bobko, A. A.; Khramtsov, V. V.; Villamena, F. A.; Hadad, C. M.; Zweier, J. L., Large-scale synthesis of a persistent trityl radical for use in biomedical EPR applications and imaging. *Bioorg Med Chem Lett* **2007**, 17, (24), 6801-5.

3. Komarov, D. A.; Dhimitruka, I.; Kirilyuk, I. A.; Trofimiov, D. G.; Grigor'ev, I. A.; Zweier, J. L.; Khramtsov, V. V., Electron paramagnetic resonance monitoring of ischemia-induced myocardial oxygen depletion and acidosis in isolated rat hearts using soluble paramagnetic probes. *Magn Reson Med* **2012**, doi: 10.1002/mrm.23251.

4. Hui, A. K.; Armstrong, B. H.; Wray, A. A., Rapid Computation of Voigt and Complex Error Functions. Journal of Quantitative Spectroscopy & Radiative Transfer. **1978**, 19, (5), 509-516.

5. Bobko, A. A.; Eubank, T. D.; Voorhees, J. L.; Efimova, O. V.; Kirilyuk, I. A.; Petryakov, S.; Trofimiov, D. G.; Marsh, C. B.; Zweier, J. L.; Grigor'ev, I. A.; Samouilov, A.; Khramtsov, V. V., In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors. *Magn Reson Med* **2012**, 67, 1827-1836.