File S3
Proof of Result 3

The asymmetric equilibrium (X,y) is determined by the solutions of the quadratic

equation
T(z;pp) = (1 —m)s’z® — sz[s(1 —m) — pp(s +2)(1 — 2m)] — pp(2m +s) = 0. (S3.1)
When pp = 0, equation (S3.1) reduces to
T(x;0) = —(1 —m)s’z(1 —z) =0, (53.2)

giving the two solutions & = 0 and £ = 1. As T(0; up) < 0, when pp > 0 the solution
x = 0 shifts to a negative solution of (S3.1). Hence, when up is positive and small, the
positive root Z(up) of T(x;up) = 0 is close to = 1. That is, when pp is small the
corresponding asymmetric equilibrium is close to the fixation of AB where & = § = 1.
Moreover, by continuity, if pup is small, their stability is the same. Near fixation of AB,

w=1—xand z =1 — y are small, and up to non-linear terms, when pup = 0, we have

1—
w' = #w +m(s+1)z
- s (53.3)
' = 1-— 1)z.
z 1+Sw+( m)(s+1)z
The characteristic polynomial P(\) of (S3.3) is
1
and
(14s)3?+1
Pl)=1-(1-m)———+1—-2m. .
(1) (1 —m) Tos + m (53.5)
In fact, it can be easily seen that
(1+8)P(1) = —s*(1 —m). (53.6)

As P(+o0) > 0 and P(1) < 0, since s > 0, 0 < m < 1, P(\) has a root larger than
1. Thus, when pp is small, fixation in AB is internally locally unstable and so is the

asymmetric equilibrium when pp is small.
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