
File S1

Proof of Result 1

1. When y = x, the mean fitnesses in the two demes E
x

and E

y

are equal:

w

x

= 1 + sx = 1 + sy = w

y

, (S1.1)

and, from (8), the equilibrium equation is, (with µ = µ

B

),

(1+sx)x = (1�m)
⇥

(1�µ)(1+s)x+µ(1�x)
⇤

+m

⇥

(1�µ)(1�x)+µ(1+s)x
⇤

. (S1.2)

Thus

(1 + sx)x = (1 + s)x
⇥

(1�m)(1� µ) +mµ

⇤

+ (1� x)
⇥

µ(1�m) +m(1� µ)
⇤

, (S1.3)

or

x+ sx

2 = (1 + s)x
⇥

1�m� µ+ 2mµ

⇤

+ (1� x)
⇥

m+ µ� 2mµ

⇤

. (S1.4)

This is equivalent to

Q(x) = sx

2 +
⇥

(s+ 2)(m+ µ� 2mµ)� s

⇤

x� (m+ µ� 2mµ) = 0. (S1.5)

Now, as 0 < m, µ < 1, we have

(m+ µ� 2mµ) = m(1� µ) + µ(1�m) > 0. (S1.6)

Therefore

Q(0) = �(m+ µ� 2mµ) < 0 (S1.7)

and

Q(1) = (s+ 1)(m+ µ� 2mµ) > 0. (S1.8)

As Q(±1) > 0, we conclude that the equation (S1.5) has a unique root x

⇤ with

0 < x

⇤
< 1. Thus there is a unique symmetric polymorphism (x⇤

,y

⇤), given by (13).

2. Near the equilibrium (x⇤
,y

⇤), on the boundary where only B is present, (z � x)

is small, and from (10), the internal local stability of (x⇤
,y

⇤) in the boundary is

determined by the factor

C

⇤ =
(1� 2µ)(1 + s)

(1 + sx

⇤)(1 + sz

⇤)
. (S1.9)



As x⇤ = z

⇤, C⇤
< 1 if (1+s) < (1 + sx

⇤)2, and as s > 0 this is true if s(x⇤)2+2x⇤
> 1.

From the equilibrium equation (S1.5), as Q(x⇤) = 0 we have

s(x⇤)2 + 2x⇤ = �
⇥

(s+ 2)(m+ µ� 2mµ)� s

⇤

x

⇤ + (m+ µ� 2mµ) + 2x⇤

= �(s+ 2)(m+ µ� 2mµ� 1)x⇤ + (m+ µ� 2mµ).
(S1.10)

Thus s(x⇤)2 + 2x⇤
> 1 if and only if

(s+ 2)(1�m� µ+ 2mµ)x⇤
> (1�m� µ+ 2mµ). (S1.11)

But (1 � m � µ + 2mµ) = (1 � m)(1 � µ) + mµ > 0 as 0 < m, µ < 1, and so

C

⇤
< 1 provided x

⇤
>

1

s+2

. As Q(1) > 0 and Q(x⇤) = 0, it is su�cient to show that

Q

�

1

s+2

�

< 0. Indeed

Q

✓

1

s+ 2

◆

=
s

(s+ 2)2
+
⇥

(s+ 2)(m+ µ� 2mµ)� s

⇤ 1

s+ 2
� (m+ µ� 2mµ)

=
s

(s+ 2)2
� s

s+ 2
= �s(s+ 1)

(s+ 2)2
< 0. (S1.12)

3. We compute Q

�

1

2

�

using (14),

Q

✓

1

2

◆

=
s

4
+

1

2

⇥

(s+ 2)(m+ µ� 2mµ)� s

⇤

� (m+ µ� 2mµ). (S1.13)

In fact,

Q

✓

1

2

◆

= �s

4

⇥

1� 2(m+ µ� 2mµ)
⇤

. (S1.14)

But 1� 2(m+ µ� 2mµ) = (1� 2m)(1� 2µ) > 0 when 0 < m, µ <

1

2

, in which case

Q

�

1

2

�

< 0 and x

⇤
>

1

2

as Q(1) > 0.
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File S2

Proof of Result 2

If an asymmetric polymorphism exists, then (11) holds, namely, (with µ = µ

B

),

1 + sy =
(1� 2µ)(1 + s)

1 + sx

. (S2.1)

That is,

y =
s(1� x)� 2µ(1 + s)

s(1 + sx)
, 1� y =

s(1 + s)x+ 2µ(1 + s)

s(1 + sx)
. (S2.2)

Substituting these relations into the equilibrium equation for x from (8), we find, after

some simplification, that

x =
1�m

1 + sx

⇥

(1� µ)(1 + s)x+ µ(1� x)
⇤

+
m

s

(sx+ 2µ+ µs). (S2.3)

Equation (S2.3) is equivalent to the quadratic equation

T (x) = (1�m)s2x2 � sx

⇥

s(1�m)� µ(s+ 2)(1� 2m)
⇤

� µ(2m+ s) = 0. (S2.4)

As µ,m, s are positive and m < 1, we have T (0) < 0 and T (±1) > 0, implying that T (x)

has two real roots, one positive and one negative. Now

T (1) = (1�m)s2 � s

⇥

s(1�m)� µ(s+ 2)(1� 2µ)
⇤

� µ(2m+ s)

= µ

⇥

s(s+ 2)(1� 2m)� (2m+ s)
⇤

.

(S2.5)

T (1;m) is a linear function of m and

T (1; 0) = µs(s+ 1) > 0

T (1; 1

2

) = �µ(2m+ s) < 0

T (1;m
0

) = 0.

(S2.6)

Hence if 0 < m < m

0

, T (1;m) > 0 and a unique 0 < x̂ < 1 exists such that T (x̂) = 0. In

order for x̂ to be an equilibrium, its corresponding ŷ should satisfy 0 < ŷ < 1, where

1� ŷ =
1 + s

1 + sx̂

sx̂+ 2µ

s

(S2.7)

and 0 < ŷ < 1 if and only if

(1 + s)(sx̂+ 2µ) < s(1 + sx̂) (S2.8)
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or

x̂ <

s� 2µ(1 + s)

s

. (S2.9)

So 0 < x̂ < 1 if 0 < µ < µ

0

= 1

2

s

s+1

, and
⇥

s� 2µ(1 + s)
⇤

> 0. We compute T

�

s�2µ(1+s)

s

�

,

which equals

(1�m)
⇥

s�2µ(1+s)
⇤

2�
⇥

s�2µ(1+s)
⇤⇥

s(1�m)�µ(s+2)(1�2m)
⇤

�µ(2m+s). (S2.10)

So

T

�

s�2µ(1+s)

s

�

= 2µ2(1 + s)(s+ 2m) + sµ(s+ 2)(1� 2m)� µ(2m+ s). (S2.11)

But when 0 < m < m

0

,

T (1) = sµ(s+ 2)(1� 2m)� µ(2m+ s) > 0, (S2.12)

therefore T

�

s�2µ(1+s)

s

�

> 0, and (S2.9) holds.
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File S3

Proof of Result 3

The asymmetric equilibrium (x̂, ŷ) is determined by the solutions of the quadratic

equation

T (x;µ
B

) = (1�m)s2x2 � sx

⇥

s(1�m)� µ

B

(s+ 2)(1� 2m)
⇤

� µ

B

(2m+ s) = 0. (S3.1)

When µ

B

= 0, equation (S3.1) reduces to

T (x; 0) = �(1�m)s2x(1� x) = 0, (S3.2)

giving the two solutions x̂ = 0 and x̂ = 1. As T (0;µ
B

) < 0, when µ

B

> 0 the solution

x = 0 shifts to a negative solution of (S3.1). Hence, when µ

B

is positive and small, the

positive root x̂(µ
B

) of T (x;µ
B

) = 0 is close to x = 1. That is, when µ

B

is small the

corresponding asymmetric equilibrium is close to the fixation of AB where x̂ = ŷ = 1.

Moreover, by continuity, if µ
B

is small, their stability is the same. Near fixation of AB,

w = 1� x and z = 1� y are small, and up to non-linear terms, when µ

B

= 0, we have

w

0 =
1�m

1 + s

w +m(s+ 1)z

z

0 =
m

1 + s

w + (1�m)(s+ 1)z.
(S3.3)

The characteristic polynomial P (�) of (S3.3) is

P (�) = �

2 � (1�m)



(1 + s) +
1

1 + s

�

�+ (1� 2m) (S3.4)

and

P (1) = 1� (1�m)
(1 + s)2 + 1

1 + s

+ 1� 2m. (S3.5)

In fact, it can be easily seen that

(1 + s)P (1) = �s

2(1�m). (S3.6)

As P (+1) > 0 and P (1) < 0, since s > 0, 0 < m < 1, P (�) has a root larger than

1. Thus, when µ

B

is small, fixation in AB is internally locally unstable and so is the

asymmetric equilibrium when µ

B

is small.
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File S4

Proof of Result 4

A straightforward computation shows that the 4⇥ 4 matrix L

ex

can be written as

L

ex

=

0

B

B

B

@

(1�m)A (1�m)B mC mD

(1�m)D (1�m)C mB mA

mA mB (1�m)C (1�m)D

mD mC (1�m)B (1�m)A

1

C

C

C

A

, (S4.1)

where
(1 + sx

⇤)A = (1 + s)(1� µ

b

) + r(1� x

⇤)
⇥

(s+ 2)µ
b

� (s+ 1)
⇤

(1 + sx

⇤)B = (1 + s)rx⇤ + µ

b

⇥

1� (s+ 2)rx⇤⇤

(1 + sx

⇤)C = (1� µ

b

) + rx

⇤⇥(s+ 2)µ
b

� 1
⇤

(1 + sx

⇤)D = (1 + s)µ
b

+ r(1� x

⇤)
⇥

1� (s+ 2)µ
b

⇤

.

(S4.2)

Observe that “formally” A,B,C,D are linear in µ

b

. Let A
0

be the value of A when

µ

b

= 0 and A

1

be its value when µ

b

= 1. Similarly we have B

0

, B

1

, C

0

, C

1

, D

0

, D

1

. In

fact,
(1 + sx

⇤)A
0

= (1 + s)
⇥

1� r(1� x

⇤)
⇤

(1 + sx

⇤)A
1

= r(1� x

⇤)

(1 + sx

⇤)B
0

= (1 + s)rx⇤

(1 + sx

⇤)B
1

= 1� rx

⇤

(1 + sx

⇤)C
0

= 1� rx

⇤

(1 + sx

⇤)C
1

= (1 + s)rx⇤

(1 + sx

⇤)D
0

= r(1� x

⇤)

(1 + sx

⇤)D
1

= (1 + s)
⇥

1� r(1� x

⇤)
⇤

.

(S4.3)

As 0 < r < 1, 0 < x

⇤
< 1 we have A

i

, B

i

, C

i

, D

i

positive for i = 0, 1. Hence, as A,B,C,D

are linear in µ

b

, A,B,C,D are all positive for 0 < µ

b

< 1. Moreover we have

C

0

= B

1

, C

1

= B

0

, D

0

= A

1

, D

1

= A

0

. (S4.4)

Let S(�) = det(L
ex

� �I) be the characteristic polynomial of L
ex

. The structure of L
ex

given in (S4.1) entails that S(�) factors into the product of two quadratic polynomials

S

1

(�) and S

2

(�):

S(�) = S

1

(�)S
2

(�), (S4.5)
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where

S

1

(�) = �

2 � �

⇥

(1�m)(A+ C) +m(B +D)
⇤

+ (1� 2m)(AC �BD)

S

2

(�) = �

2 � �

⇥

(1�m)(A+ C)�m(B +D)
⇤

+ (1� 2m)(AC �BD).
(S4.6)

See Balkau and Feldman (1973) for analogous calculations with migration modification.

Consider first the roots of S
1

(�) = 0. These are real since the discriminant of S
1

(�) = 0

is

⇥

(1�m)(A+ C) +m(B +D)
⇤

2 � 4(1� 2m)(AC �BD) =

=
⇥

(1�m)(A� C) +m(B �D)
⇤

2

+ 4m(1�m)(AD +BC) + 4(1�m)2BD + 4m2

AC,

(S4.7)

which is positive since A,B,C,D are positive and 0 < m < 1.

In addition,

AC �BD =
⇥

(1� µ

b

)A
0

+ µ

b

A

1

⇤⇥

(1� µ

b

)(C
0

+ µ

b

C

1

⇤

�
⇥

(1� µ

b

)B
0

+ µ

b

B

1

⇤⇥

(1� µ

b

)D
0

+ µ

b

D

1

⇤

.

(S4.8)

Since C

0

= B

1

, C
1

= B

0

, D
0

= A

1

, D
1

= A

0

, (S4.8) reduces to

AC �BD = (1� 2µ
b

)(A
0

B

1

�A

1

B

0

). (S4.9)

Substituting A

0

, A

1

, B

0

, B

1

from (S4.3) we have

(1 + sx

⇤)2(AC �BD) = (1� 2µ
b

)(1 + s)(1� r). (S4.10)

Since we assume 0 < m, µ
b

<

1

2

, the two roots of S
1

(�) = 0 are positive. Both of these

roots are less than 1 if and only if S
1

(1) > 0 and S

0
1

(1) > 0.

S

0
1

(1) = 2�
⇥

(1�m)(A+ C) +m(B +D)
⇤

. (S4.11)

As C
0

= B

1

, C

1

= B

0

, D

0

= A

1

, D

1

= A

0

, we have

(A+ C) = (1� µ

b

)(A
0

+ C

0

) + µ

b

(A
1

+ C

1

)

= (1� µ

b

)(A
0

+ C

0

) + µ

b

(B
0

+D

0

),
(S4.12)

(B +D) = (1� µ

b

)(B
0

+D

0

) + µ

b

(B
1

+D

1

)

= (1� µ

b

)(B
0

+D

0

) + µ

b

(A
0

+ C

0

).
(S4.13)
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Hence,

(1�m)(A+ C) +m(B +D) = (1�m

b

)(A
0

+ C

0

) +m

b

(B
0

+D

0

), (S4.14)

where

m

b

= m+ µ

b

� 2mµ

b

. (S4.15)

Substituting for A
0

, B

0

, C

0

, D

0

, gives

S

0
1

(1) = (1 + sx

⇤)�1

⇥

r + rsx

⇤ + s(1� r)(2x⇤ � 1) +m

b

(1� r)(s+ 2)
⇤

. (S4.16)

Now s > 0, 0 < r < 1, m
b

= m(1 � µ

b

) + µ

b

(1 �m) > 0, and x

⇤
>

1

2

if 0 < m, µ
B

<

1

2

.

Therefore S

0(1) > 0 provided 0 < m, µ
B

<

1

2

. Using (S4.11) and (S4.16) it is easily seen

that S(1) > 0 if

(1 + sx

⇤)�2(1� r)
n

(x⇤)2s2 + sx

⇤⇥�s+m

b

(s+ 2)
⇤

� sm

b

o

> 0. (S4.17)

Using the equation Q(x⇤) = 0 from (14), we have

s(x⇤)2 +
⇥

(s+ 2)m
B

� s

⇤

x

⇤ �m

B

= 0, (S4.18)

where

m

B

= m+ µ

B

� 2mµ

B

. (S4.19)

Therefore (S4.17) is satisfied if and only if

(m
b

�m

B

)(1 + sx

⇤)�2(1� r)s
⇥

x

⇤(2 + s)� 1
⇤

> 0. (S4.20)

As x⇤
>

1

2

, by Result 1, and 0 < m <

1

2

, (S4.20) holds if and only if m
b

> m

B

, which is

true if and only if µ
b

> µ

B

.

It is not obvious that the roots of S
2

(�) = 0 are real. However, as the matrix L

⇤
ex

is positive, the Perron-Frobenius theory ensures that its largest eigenvalue in magnitude

is positive. Therefore we just have to ensure that when both eigenvalues are real and

positive they are less than 1; when they are real, both are positive or both are negative
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since (1� 2m)(1� 2µ
b

)(AC �BD) is positive for 0 < m, µ
b

<

1

2

. The conditions for this

are that both S

2

(1) and S

0
2

(1) are positive. But

S

2

(1) = 1�
⇥

(1�m)(A+ C)�m(B +D)
⇤

+ (1� 2m)(AC �BD)

> 1�
⇥

(1�m)(A+ C) +m(B +D)
⇤

+ (1� 2m)(AC �BD) = S

1

(1),
(S4.21)

and S

1

(1) > 0 when 0 < m, µ
b

<

1

2

and µ

b

> µ

B

, so also S

2

(1) > 0. Similarly

S

0
2

(1) = 2�
⇥

(1�m)(A+ C)�m(B +D)
⇤

> 2�
⇥

(1�m)(A+ C) +m(B +D)
⇤

= S

0
1

(1).
(S4.22)

Thus, when S

0
1

(1) > 0 also S

0
2

(1) > 0.
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File S5

Proof of Result 5

At a symmetric equilibrium y = x, and also, by (32), ỹ = x̃. Thus (30) and (31)

imply that

x̃ =

⇥

(s+ 1)(1�m

B

)�m

B

⇤

x+m

B

sx+ 1
(S5.1)

and

x =

⇥

(1�m

B

)�m

B

(s+ 1)
⇤

x̃+m

B

(1 + s)

(1 + s)� sx̃

. (S5.2)

Substituting (S5.1) into (S5.2) gives the quadratic equation

(s+ 2)m
B

�

sx

2 +
⇥

2�m

B

(s+ 2)
⇤

x� (1�m

B

)
 

= 0. (S5.3)

As 0 < m,µ

B

< 1, s > 0 and m

B

= m(1� µ

B

) + µ

B

(1�m) > 0, x satisfies the equation

R(x) = 0 with R(x) given in (36). As 0 < m

B

< 1 we have R(0) < 0, and as R(±1) > 0,

R(x) = 0 has two real roots, one positive and one negative. Observe that

R(1) = s+
⇥

2�m

B

(s+ 2)
⇤

� (1�m

B

) = (1�m

B

)(s+ 1) > 0 (S5.4)

and

R

✓

1

2

◆

=
s

4
+

1

2
·
⇥

2�m

B

(s+ 2)
⇤

� (1�m

B

) =
s

4
(1� 2m)(1� 2µ

B

) (S5.5)

as 1�2m
B

= 1�2m�2µ
B

+4mµ

B

= (1�2m)(1�2µ
B

). Therefore when 0 < m,µ

B

<

1

2

we have R( 1
2

) > 0 and 0 < x̄ <

1

2

.
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File S6

Proof of Result 6

In view of (33), the symmetric equilibrium (x̄, ȳ) is internally stable if

(1� 2µ)2(1 + s)2

(1 + sx̄)2
⇥

1 + s(1� x̃)
⇤

2

< 1, (S6.1)

as x̄ = ȳ and x̃ = ỹ, where, by (S5.1)

x̃ =

⇥

(s+ 1)(1�m

B

)�m

B

⇤

x̄+m

B

sx̄+ 1
. (S6.2)

Thus

1 + s(1� x̃) = (1 + s)� s ·
⇥

(1 + s)�m

B

(2 + s)
⇤

x̄+m

B

sx̄+ 1
. (S6.3)

Hence

(1 + sx̄)
⇥

1 + s(1� x̃)
⇤

= (1 + s)(1 + sx̄)� s

⇥

(1 + s)�m

B

(s+ 2)
⇤

x̄� sm

B

, (S6.4)

or

(1 + sx̄)
⇥

1 + s(1� x̃)
⇤

= (1 + s) + sm

B

⇥

(s+ 2)x̄� 1
⇤

. (S6.5)

For condition (S6.1) to be satisfied, since (1 + sx̄)
⇥

1 + s(1� x̃)
⇤

> 0, it is su�cient that

(1 + s) + sm

B

⇥

(s+ 2)x̄� 1
⇤

> (1 + s), (S6.6)

or that x̄ >

1

s+2

. But

R

✓

1

s+ 2

◆

=
s

(s+ 2)2
+
⇥

2�m

B

(s+ 2)
⇤ 1

s+ 2
� (1�m

B

), (S6.7)

or

R

✓

1

s+ 2

◆

=
s

(s+ 2)2
+

2

s+ 2
� 1 = �s(1 + s)

(s+ 2)2
< 0. (S6.8)

Thus R( 1

s+2

) < 0 and R(1) > 0, and so x̄ >

1

s+2

as desired.
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File S7

Proof of Result 7

As the transformation T of the population state is T = T

2

�T
1

, where T
i

corresponds

to phase i, with selection of type i, for i = 1, 2, and as x̃ = T

1

x̄, x̄ = T

2

x̃, following the

analysis for the case without cycles, the linear approximation matrix L

ex

becomes

L

ex

= L

2

ex

· L1

ex

, (S7.1)

where, as in (S4.1) and (S4.2), we have

L

1

ex

=

0

B

B

B

@

(1�m)Ā (1�m)B̄ mC̄ mD̄

(1�m)D̄ (1�m)C̄ mB̄ mĀ

mĀ mB̄ (1�m)C̄ (1�m)D̄

mD̄ mC̄ (1�m)B̄ (1�m)Ā

1

C

C

C

A

, (S7.2)

L

2

ex

=

0

B

B

B

B

@

(1�m) eA (1�m) eB m

e

C m

e

D

(1�m) eD (1�m) eC m

e

B m

e

A

m

e

A m

e

B (1�m) eC (1�m) eD

m

e

D m

e

C (1�m) eB (1�m) eA

1

C

C

C

C

A

, (S7.3)

and
(1 + sx̄)A = (1 + s)(1� µ

b

) + r(1� x̄)
⇥

(s+ 2)µ
b

� (s+ 1)
⇤

(1 + sx̄)B = (1 + s)rx̄+ µ

b

⇥

1� (s+ 2)rx̄
⇤

(1 + sx̄)C = (1� µ

b

) + rx̄

⇥

(s+ 2)µ
b

� 1
⇤

(1 + sx̄)D = (1 + s)µ
b

+ r(1� x̄)
⇥

1� (s+ 2)µ
b

⇤

,

(S7.4)

⇥

1 + s(1� x̃)
⇤

e

A = (1� µ

b

) + r(1� x̃)
⇥

(2 + s)µ
b

� 1
⇤

⇥

1 + s(1� x̃)
⇤

e

B = (1 + s)µ
b

+ rx̃

⇥

1� (s+ 2)µ
b

⇤

⇥

1 + s(1� x̃)
⇤

e

C = (1 + s)(1� µ

b

) + rx̃

⇥

(s+ 2)µ
b

� (s+ 1)
⇤

⇥

1 + s(1� x̃)
⇤

e

D = µ

b

+ r(1� x̃)
⇥

(s+ 1)� (s+ 2)µ
b

⇤

.

(S7.5)

When we multiply L

2

ex

by L

1

ex

we find that the product L
ex

has the following structure:

L

ex

=

0

B

@

a e h d

b f g c

c g f b

d h e a

1

C

A

, (S7.6)
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where
a = (1�m)2 eAA+ (1�m)2 eBD +m

2

e

CA+m

2

e

DD

b = (1�m)2 eDA+ (1�m)2 eCD +m

2

e

BA+m

2

e

AD

c = m(1�m)
h

e

AA+ e

BD + e

CA+ e

DD

i

d = m(1�m)
h

e

DA+ e

CD + e

BA+ e

AD

i

e = (1�m)2 eAB + (1�m)2 eBC +m

2

e

CB +m

2

e

DC

f = (1�m)2 eDB + (1�m)2 eCC +m

2

e

BB +m

2

e

AC

g = m(1�m)
h

e

AB + e

BC + e

CB + e

DC

i

h = m(1�m)
h

e

DB + e

CC + e

BB + e

AC

i

.

(S7.7)

Let D(�) = det(L
ex

� �I) be the characteristic polynomial of L
ex

. From (S7.6), D(�)

factors into 2⇥ 2 determinants:

D(�) =

�

�

�

�

�

�

�

a+ d� � e+ h 0 0
b+ c f + g � � 0 0
c g f � g � � b� c

d h e� h a� d� �

�

�

�

�

�

�

�

. (S7.8)

Therefore D(�) can be written

D(�) = D

1

(�)D
2

(�), (S7.9)

where

D

1

(�) = �

2 � (a+ d+ f + g)�+ (a+ d)(f + g)� (b+ c)(e+ h)

D

2

(�) = �

2 � (a� d+ f � g)�+ (a� d)(f � g)� (b� c)(e� h).
(S7.10)

As 0 < m < 1 and A,B,C,D and e

A,

e

B,

e

C,

e

D are all positive, the matrix L

ex

is a positive

matrix and its largest eigenvalue in magnitude is positive. Observe that the discriminant

of D
1

(�) is

(a+ d+ f + g)2 � 4
⇥

(a+ d)(f + g)� (b+ c)(e+ h)
⇤

, (S7.11)

which is positive and equal to

[(a+ d)� (f + g)]2 + 4(b+ c)(e+ h). (S7.12)

In addition, (a+d+f +g) is positive. Therefore D
1

(�) has real roots, and its largest root

in magnitude is positive. Thus this positive root is less than 1 if D
1

(1) > 0 and D

0
1

(1) > 0.
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As the largest eigenvalue of L
ex

is positive, for stability of (x̄, ȳ) we require that if the

eigenvalues associated with D

2

(�) are real and at least one is positive, they are both less

than 1. Again the conditions for this are D

2

(�) > 0 and D

0
2

(1) > 0. Observe that

D

0
1

(1) = 2� (a+ d+ f + g)

D

0
2

(1) = 2� (a� d+ f � g) = D

0
1

(1) + 2(d+ g) > D

0
1

(1).
(S7.13)

In view of (S7.13), for the largest eigenvalue of L
ex

to be less than one, we require

D

1

(1) > 0, D

0
1

(1) > 0, D

2

(1) > 0. (S7.14)

We now compute the constant terms of D
1

(�) and D

2

(�). We already know, based on the

properties of the matrices L1

ex

and L

2

ex

that the constant terms of both D

1

(�) and D

2

(�)

are the same and are equal to

(1� 2m)2
�

AC �BD

�

⇣

e

A

e

C � e

B

e

D

⌘

. (S7.15)

With the same technique used to compute (S4.10), we deduce that

(1 + sx)2
�

AC �BD

�

= (1� 2µ
b

) (1 + s)(1� r), (S7.16)

and similarly

[1 + s (1� x̃)]2
⇣

e

A

e

C � e

B

e

D

⌘

= (1� 2µ
b

)(1 + s)(1� r). (S7.17)

Therefore the constant terms of both D

1

(�) and D

2

(�) are the same and are equal to

(1� 2m)2 (1� 2µ
b

)2 (1 + sx̄)�2 [1 + s (1� x̃)]�2 (1 + s)2 (1� r)2 , (S7.18)

which is positive, and so D

1

(�) has two positive roots. Also, as a, b, c, d are all positive,

D

2

(1) = 1� (a� d+ f � g) + (a� d)(f � g)� (b� c)(e� h)

> 1� (a+ d+ f + g) + (a+ d)(f + g)� (b+ c)(e+ h) = D

1

(1).
(S7.19)

Hence for the symmetric equilibrium to be externally stable, we require that D

1

(1) and

D

0
1

(1) are both positive.
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Now from (S6.5) we know that

(1 + sx̄)
⇥

1 + s(1� x̃)
⇤

= (1 + s) + sm

B

⇥

(s+ 2)x̄� 1
⇤

. (S7.20)

As x̄ >

1

s+2

we have

(1 + sx̄) [1 + s (1� x̃)] > (1 + s). (S7.21)

Thus the equal constant terms of D
1

(�) and D

2

(�) given in (S7.18) are positive and less

than 1. As a result it is impossible for the two positive roots of D
1

(�) to both be larger

than 1, and they are both less than 1 provided D

1

(1) > 0. Hence the external stability of

the symmetric equilibrium requires that

D

1

(1) = 1� (a+ d+ f + g) + (a+ d)(f + g)� (b+ c)(e+ h) (S7.22)

is positive (the last summand in (S7.22) is given in (S7.18)). We now compute a+d+f+g.

Computation of (a+ d+ f + g)

We have

(a+ d+ f + g) =
h

(1�m)2 e

A+m

2

e

C +m(1�m)
⇣

e

B + e

D

⌘i

A

+
h

(1�m)2 eC +m

2

e

A+m(1�m)
⇣

e

B + e

D

⌘i

C

+
h

(1�m)2 e

B +m

2

e

D +m(1�m)
⇣

e

A+ e

C

⌘i

D

+
h

(1�m)2 e

D +m

2

e

B +m(1�m)
⇣

e

A+ e

C

⌘i

B.

(S7.23)

As A,B,C,D and also e

A,

e

B,

e

C,

e

D given in (S7.4) and (S7.5), respectively, are all linear

functions of µ
b

, where 0  µ

b

 1, we can represent them as A = (1� µ

b

)A
0

+ µ

b

A

1

, etc.

Hence
(1 + sx̄)A

0

= (1 + s) [1� r (1� x̄)] = (1 + sx̄)D
1

(1 + sx̄)B
0

= (1 + s)rx̄ = (1 + sx̄)C
1

(1 + sx̄)C
0

= 1� rx̄ = (1 + sx̄)B
1

(1 + sx̄)D
0

= r(1� x̄) = (1 + sx̄)A
1

,

(S7.24)

[1 + s (1� x̃)] eA
o

= 1� r (1� x̃) = [1 + s (1� x̃)] eD
1

[1 + s (1� x̃)] eB
o

= rx̄ = [1 + s (1� x̃)] eC
1

[1 + s (1� x̃)] eC
o

= (1 + s) [1� rx̃] = [1 + s (1� x̃)] eB
1

[1 + s (1� x̃)] eD
o

= (1 + s)r (1� x̃) = [1 + s (1� x̃)] eA
1

.

(S7.25)
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Since
m

b

= m+ µ

b

� 2mµ

b

= m(1� µ

b

) + µ

b

(1�m)

1�m

b

= 1�m� µ

b

+ 2mµ

b

= (1�m)(1� µ

b

),
(S7.26)

we can write

(a+ d+ f + g) =
h

(1�m)(1�m

b

) eA
0

+ (1�m)m
b

e

D

0

+m(1�m

b

) eB
0

+m ·m
b

e

C

0

i

A

+
h

(1�m)(1�m

b

) eC
0

+ (1�m)m
b

e

B

0

+m(1�m

b

) eD
0

+m ·m
b

e

A

0

i

C

+
h

(1�m)(1�m

b

) eB
0

+ (1�m)m
b

e

C

0

+m(1�m

b

) eA
0

+m ·m
b

e

D

0

i

D

+
h

(1�m)(1�m

b

) eD
0

+ (1�m)m
b

e

A

0

+m(1�m

b

) eC
0

+m ·m
b

e

B

0

i

B.

(S7.27)

Substitute into (S7.27)

A = (1� µ

b

)A
0

+ µ

b

D

0

, B = (1� µ

b

)B
0

+ µ

b

C

0

,

C = (1� µ

b

)C
0

+ µ

b

B

0

, D = (1� µ

b

)D
0

+ µ

b

A

0

,

(S7.38)

to obtain

(a+ d+ f + g) = (1�m

b

)2
h

e

A

0

A

0

+ e

B

0

D

0

+ e

C

0

C

0

+ e

D

0

B

0

i

+m

b

(1�m

b

)
h⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

+
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

i

+m

2

b

h

e

A

0

C

0

+ e

B

0

B

0

+ e

C

0

A

0

+ e

D

0

D

0

i

.

(S7.29)

Equation (S7.29) can also be written as

(a+ d+ f + g) = (1� 2m
b

)
h

e

A

0

A

0

+ e

B

0

D

0

+ e

C

0

C

0

+ e

D

0

B

0

i

+m

b

h⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

+
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

i

+m

2

b

h⇣

e

A

0

+ e

C

0

⌘

�

A

0

+ C

0

�

+
⇣

e

B

0

+ e

D

0

⌘

�

B

0

+D

0

�

�
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

+
⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

i

,

(S7.30)

or as

(a+ d+ f + g) = (1� 2m
b

)
h

e

A

0

A

0

+ e

B

0

D

0

+ e

C

0

C

0

+ e

D

0

B

0

i

+m

b

h⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

+
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

i

+m

2

b

⇣

e

A

0

+ e

C

0

� e

B

0

� e

D

0

⌘

�

A

0

+ C

0

�B

0

�D

0

�

.

(S7.31)
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From (S7.24) and (S7.25),

(1 + sx̄)[1 + s(1� x̃)]
h

e

A

0

A

0

+ e

B

0

D

0

+ e

C

0

C

0

+ e

D

0

D

0

i

=

= (1 + s)
⇥

2(1� r) + r

2

⇤

+ r

2

s(s+ 1)x̄� r

2

sx̃� r

2

s

2

x̄x̃, (S7.32)

(1 + sx̄)[1 + s(1� x̃)]
h⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

+
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

i

=

= 2r2(1 + sx̄)[1 + s(1� x̄)] + r(1� r)(s+ 2) [(s+ 2) + s (x̄� x̃)] ,(S7.33)

(1 + sx̄)[1 + s(1� x̃)]
⇣

e

A

0

+ e

C

0

� e

B

0

� e

D

0

⌘

�

A

0

+ C

0

�B

0

�D

0

�

=

= (s+ 2)2 (1� r)2 . (S7.34)

Remember that by (S7.18)

(1 + sx̄)2 [1 + (1� x̃)]2 [(a+ d)(f + g)� (b+ c)(e+ h)] =

= (1� 2m)2 (1� 2µ
b

)2 (s+ 1)2 (1� r)2 .
(S7.35)

But

(1� 2m)(1� 2µ
b

) = 1� 2(m+ µ

b

� 2mµ

b

) = 1� 2m
b

. (S7.36)

Therefore

(1 + sx̄)2 [1 + (1� x̃)]2 [(a+ d)(f + g)� (b+ c)(e+ h)] =

= (1� 2m
b

)2 (s+ 1)2 (1� r)2 .
(S7.37)

Combining all of this, we get that D
1

(1) = 1�(a+d+f+g)+(a+d)(f+g)�(b+c)(e+h),

which we compute as

1� (1� 2m
b

)
(1 + s)

⇥

2(1� r) + r

2

⇤

+ r

2

s(s+ 1)x̄� r

2

sx̃� r

2

s

2

x̄x̃

(1 + sx̄)[1 + s(1� x̃)]

�m

b

2r2(1 + sx̄)[1 + s(1� x̃)] + r(1� r)(s+ 2)[(s+ 2) + s(x̄� x̃)]

(1 + sx̄)[1 + s(1� x̃)]

�m

2

b

(s+ 2)2 (1� r)2

(1 + sx̄)[1 + s(1� x̃)]

+
(1� 2m

b

)2 (s+ 1)2 (1� r)2

(1 + sx̄)2 [1 + s (1� x̃)]2
.

(S7.38)

Observe that

r

2[(1 + s) + s(s+ 1)x̄� sx̃� s

2

x̄x̃] = r

2(1 + sx̄)[1 + s(1� x̃)], (S7.39)
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so (S7.38) simplifies to

1� r

2 � (1� 2m
b

)
2(1 + s)(1� r)

(1 + sx̄)[1 + s(1� x̃)]
�m

b

r(1� r)(s+ 2)[(s+ 2) + s(x̄� x̃)]

(1 + sx̄)[1 + s(1� x̃)]

�m

2

b

(s+ 2)2 (1� r)2

(1 + sx̄)[1 + s(1� x̃)]
+

(1� 2m
b

)2 (s+ 1)2 (1� r)2

(1 + sx̄)2 [1 + s (1� x̃)]2
.

(S7.40)

Clearly D

1

(1) of (S7.40) has a factor of (1� r), and in fact

D

1

(1) = (1� r)f(r), (S7.41)

where f(r) is a linear function of r, for 0  r  1. Now

f(1) = 2� (1� 2m
b

)
2(1 + s)

(1 + sx̄)[1 + s(1� x )]
�m

b

(s+ 2)[(s+ 2) + s(x̄� x̃)]

(1 + sx̄)[1 + s(1� x̃)]
. (S7.42)

Following (S6.7) we have

(1 + sx̄)[1 + s(1� x̃)] = (1 + s) + sm

B

[(s+ 2)x̄� 1]. (S7.43)

We also have an equivalent expression for (S7.43) in terms of x̃, namely

(1 + sx̄)[1 + s(1� x̃)] = (1 + s) + sm

B

[(s+ 1)� (s+ 2)x̃]. (S7.44)

Also, whereas x̄ >

1

s+2

, we have x̃ <

s+1

s+2

. Applying all of this to (S7.42) and using the

fact that

(1 + sx̄)[1 + s(1� x̃)] = (1 + s) +
1

2
sm

B

[s+ (s+ 2)(x̄� x̃)], (S7.45)

we get that

(1 + sx̄)[1 + s(1� x̃)]f(1) = 2(s+ 1) + sm

B

[s+ (s+ 2)(x̄� x̃)]

� 2(1� 2m
b

)(s+ 1)�m

b

(s+ 2)[(s+ 2) + s(x̄� x̃)]

= s

2

m

B

�m

b

h

(s+ 2)2 � 4(s+ 1)
i

+ s(s+ 2)(m
B

�m

b

)(x̄� x̃)

= s

2(m
B

�m

b

) + s(s+ 2)(m
B

�m

b

)(x̄� x̃).
(S7.46)

Thus

(1 + sx̄)[1 + s(1� x̃)]f(1) = s(m
B

�m

b

)[s+ (s+ 2)(x̄� x̃)]. (S7.47)
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But as (s+ 2)x̄ > 1, (s+ 2)x̃ < (s+ 1),

s+ (s+ 2)(x̄� x̃) = [(s+ 2)x̄� 1] + [(s+ 1)� (s+ 2)x̃] > 0. (S7.48)

It follows that the sign of f(1) is the same as the sign of (m
B

�m

b

).

We now compute f(0):

f(0) = 1� (1� 2m
b

)
2(1 + s)

(1 + sx̄)[1 + s(1� x̃)]
�m

2

b

(s+ 2)2

(1 + sx̄)[1 + s(1� x̃)]

+
(1� 2m

b

)2 (s+ 1)2

(1 + sx̄)2 [1 + s(1� x̃)]2
.

(S7.49)

Using the expression (S7.43) for the product of the two mean fitnesses, we get

(1 + sx̄)2 [1 + s (1� x̃)]2 f(0) = {(1 + s) + sm

B

[(s+ 2)x̄� 1]}2

� 2(1� 2m
b

)(s+ 1) {(1 + s) + sm

B

[(s+ 2)x̄� 1]}

�m

2

b

(s+ 2) {(1 + s) + sm

B

[(s+ 2)x̄� 1]}

+ (1� 2m
b

)2 (s+ 1)2 .
(S7.50)

In (S7.50) we replace the x̄

2 term using the equilibrium equation (36) to give

(1 + sx̄)2 [1 + s(1� x̃)]2 f(0) = (m
B

�m

b

)s
n

m

b

s(s+ 1)

�m

2

B

(s+ 2)2 +m

B

h

(s+ 1)(s+ 4)�m

b

(s+ 2)2
i

+m

B

(s+ 2)x̄
h

m

B

(s+ 2)2 +m

b

(s+ 2)2 � 4(s+ 1)
io

.

(S7.51)

The right-hand side of (S7.51) is (m
B

�m

b

)s multiplied by

m

b

s(s+1)+m

B

(s+ 2)2 (m
B

+m

b

)[x̄(s+2)�1]+m

B

(s+1)[(s+4)�4x̄(s+2)]. (S7.52)

We will show that (S7.52) is always positive. In fact, (S7.52) is equal to

m

b

s(s+ 1) +m

B

·m
b

(s+ 2)2
⇥

x̄(s+ 2)� 1
⇤

+m

2

B

(s+ 2)2
⇥

x̄(s+ 2)� 1
⇤

+m

B

(s+ 1)
⇥

(s+ 4)� 4x̄(s+ 2)
⇤

.

(S7.53)

From the equilibrium equation (36) we get that

m

B

⇥

(s+ 2)x̄� 1
⇤

= sx̄

2 + 2x̄� 1. (S7.54)
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Hence (S7.53) is equal to

m

b

s(s+ 1) +m

B

·m
b

(s+ 2)2
⇥

x̄(s+ 2)� 1
⇤

+

+m

B

(s+ 2)2
⇥

sx̄

2 + 2x̄� 1
⇤

+m

B

(s+ 1)
⇥

(s+ 4)� 4x̄(s+ 2)
⇤

.

(S7.55)

The last two terms have a factor m
B

that multiplies

(s+ 1)(s+ 4)� (s+ 2)2 + (s+ 2)2 x̄(2 + sx̄)� 4x̄(s+ 1)(s+ 2) =

= s+ (s+ 2)x̄
⇥

(s+ 2)(2 + sx̄)� 4(s+ 1)
⇤

= s+ (s+ 2)x̄
⇥

(s+ 2)sx̄� 2s
⇤

= s

h

(s+ 2)2 x̄2 � 2(s+ 2)x̄+ 1
i

= s

⇥

(s+ 2)x̄� 1
⇤

2

,

(S7.56)

which is positive. To sum up, f(0) also has the same sign of (m
B

�m

b

), and so

D

1

(1) = (1� r)s(m
B

�m

b

)�(r), (S7.57)

where �(r) is a linear function of r that is positive for all 0  r  1. As (m
B

�m

b

) =

(1� 2m)(µ
B

� µ

b

), this proves the following result.
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File S8

Proof of Result 8

i. In a constant environment, the mean fitness w⇤ at the symmetric equilibrium (x̄⇤
, ȳ

⇤)

is w⇤ = 1+sx

⇤, and it is a decreasing function of µ
B

if @x

⇤

@µB
is negative, or equivalently

if @x

⇤

@mB
is negative (sincem

B

= m+µ

B

(1�2m) and 0  m <

1

2

). Using the equilibrium

equation (14),
@x

⇤

@m

B

=
1� (s+ 2)x⇤

2sx⇤ +
⇥

(s+ 2)m
B

� s

⇤

. (S8.1)

As x⇤
>

1

s+2

, in order for @x

⇤

@mB
to be negative, it is su�cient that

x

⇤
>

s�m

B

(s+ 2)

2s
. (S8.2)

This follows easily from the fact that Q(x) of (14) satisfies Q(0) < 0, Q(x⇤) = 0, and

Q

⇣

s�mB(s+2)

2s

⌘

< 0.

ii. With a fitness cycle of period 2, the mean fitness w̄ at the symmetric equilibrium

(x̄, ȳ) is

w̄ = (1 + s) + sm

B

⇥

(s+ 2)x̄� 1
⇤

. (S8.3)

w̄ is an increasing function of µ
B

if @w̄

@µB
> 0 or equivalently if @w̄

@mB
> 0. Now

@w̄

@m

B

= s

⇥

(s+ 2)x̄� 1
⇤

+ s(s+ 2)m
B

@x̄

@m

B

. (S8.4)

Thus @w̄

@mB
> 0 provided @x̄

@mB
> 0. Using the equilibrium equation R(x) = 0 for x̄,

we have
@x̄

@m

B

=
x̄(s+ 1)� 1

2sx̄+
⇥

2�m

B

(s+ 2)
⇤

. (S8.5)

Since
⇥

x̄(s+ 1)� 1
⇤

> 0, we conclude that @x̄

@mB
> 0 if

x̄ >

m

B

(s+ 2)� 2

2s
, (S8.6)

which follows from R(0) < 0, R(x̄) = 0, and R

⇣

mB(s+2)�2

2s

⌘

< 0.
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Figure S1. The evolutionarily stable switching rate as function of migration

and recombination rate, n = 3. The symmetric selection coe�cient s = 0.4. Recom-

bination rates shown in the legend. The stable switching rate for n = 3 is sensitive to

the interplay of recombination and migration rates, with sudden possible discontinuities

in the stable switching rate.
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Figure S2. The evolutionarily stable switching rate as function of migration

and environmental rate of change, n > 3 for di↵erent recombination rates. The

symmetric selection coe�cient s = 0.4. The rate of environmental change n shown in the

legend. The plotted curves represent a fit to the data using a generalized additive model

with penalized cubic regression splines. In panel A, r = 0. In panel B, r = 0.25. In panel

C, r = 0.5.
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Figure S3. The evolutionarily stable switching rate as function of migration

and symmetric selection coe�cient s. Recombination rate is r = 0. The environment

changes every n = 4 generations. The symmetric selection coe�cient s shown in the

legend. The plotted curves represent a fit to the data using a generalized additive model

with penalized cubic regression splines. The stable switching rate is invariant to the

strength of symmetric selection between the two demes.
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