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Proof of Result 5

At a symmetric equilibrium y = x, and also, by (32), ỹ = x̃. Thus (30) and (31)

imply that
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Substituting (S5.1) into (S5.2) gives the quadratic equation
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As 0 < m,µ
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< 1, s > 0 and m
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(1�m) > 0, x satisfies the equation

R(x) = 0 with R(x) given in (36). As 0 < m
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< 1 we have R(0) < 0, and as R(±1) > 0,

R(x) = 0 has two real roots, one positive and one negative. Observe that
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