File S2

Proof of Result 2

If an asymmetric polymorphism exists, then (11) holds, namely, (with $\mu = \mu_B$),

$$1 + sy = \frac{(1 - 2\mu)(1 + s)}{1 + sx}.$$
 (S2.1)

That is,

$$y = \frac{s(1-x) - 2\mu(1+s)}{s(1+sx)}, \qquad 1-y = \frac{s(1+s)x + 2\mu(1+s)}{s(1+sx)}. \qquad (S2.2)$$

Substituting these relations into the equilibrium equation for x from (8), we find, after some simplification, that

$$x = \frac{1-m}{1+sx} \left[(1-\mu)(1+s)x + \mu(1-x) \right] + \frac{m}{s} (sx+2\mu+\mu s).$$
 (S2.3)

Equation (S2.3) is equivalent to the quadratic equation

$$T(x) = (1-m)s^2x^2 - sx[s(1-m) - \mu(s+2)(1-2m)] - \mu(2m+s) = 0.$$
 (S2.4)

As μ, m, s are positive and m < 1, we have T(0) < 0 and $T(\pm \infty) > 0$, implying that T(x) has two real roots, one positive and one negative. Now

$$T(1) = (1-m)s^2 - s[s(1-m) - \mu(s+2)(1-2\mu)] - \mu(2m+s)$$

= $\mu[s(s+2)(1-2m) - (2m+s)].$ (S2.5)

T(1;m) is a linear function of m and

$$T(1;0) = \mu s(s+1) > 0$$

$$T(1;\frac{1}{2}) = -\mu(2m+s) < 0$$

$$T(1;m_0) = 0.$$

(S2.6)

Hence if $0 < m < m_0$, T(1;m) > 0 and a unique $0 < \hat{x} < 1$ exists such that $T(\hat{x}) = 0$. In order for \hat{x} to be an equilibrium, its corresponding \hat{y} should satisfy $0 < \hat{y} < 1$, where

$$1 - \hat{y} = \frac{1+s}{1+s\hat{x}}\frac{s\hat{x} + 2\mu}{s}$$
(S2.7)

and $0 < \hat{y} < 1$ if and only if

$$(1+s)(s\hat{x}+2\mu) < s(1+s\hat{x}) \tag{S2.8}$$

or

$$\hat{x} < \frac{s - 2\mu(1+s)}{s}.$$
(S2.9)

So $0 < \hat{x} < 1$ if $0 < \mu < \mu_0 = \frac{1}{2} \frac{s}{s+1}$, and $[s - 2\mu(1+s)] > 0$. We compute $T(\frac{s-2\mu(1+s)}{s})$, which equals

$$(1-m)\left[s-2\mu(1+s)\right]^2 - \left[s-2\mu(1+s)\right]\left[s(1-m)-\mu(s+2)(1-2m)\right] - \mu(2m+s).$$
(S2.10)

 So

$$T\left(\frac{s-2\mu(1+s)}{s}\right) = 2\mu^2(1+s)(s+2m) + s\mu(s+2)(1-2m) - \mu(2m+s).$$
(S2.11)

But when $0 < m < m_0$,

$$T(1) = s\mu(s+2)(1-2m) - \mu(2m+s) > 0, \qquad (S2.12)$$

therefore $T\left(\frac{s-2\mu(1+s)}{s}\right) > 0$, and (S2.9) holds.